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Professeur, Université Grenoble Alpes (UMR 5275) Rapporteur
Marco VELLI
Professeur, UCLA-University of California Examinateur
Andrea VERDINI
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The solar system is embedded in an extension of the Sun’s high atmosphere, known as the
solar wind. An early hint that the medium is indeed a wind of ionized particles (a plasma)
blowing from the Sun, comes from observations of particle acceleration and ionization in
comet tails.

Plasmas are composed by a quasi-neutral set of charged particles, that is, with approxi-
mately the same amount of positive and negative charges. The movement of these particles
is determined by the possible presence of external electromagnetic fields combined with the
fields generated by the movement of the particles. This co-dependency between particles
and fields gives rise to a collective behavior for particles and fields that characterizes plasmas
and differentiates them from other states of matter.

The composition of the solar plasma is made mainly of protons and electrons, and a
small concentration of Helium ions (alpha particles). In the following, we will describe the
solar wind plasma via the one-fluid equations of magnetohydrodynamic (MHD). Right after
that, we will present the modified version of these equations that we use in our numerical
simulations, the so-called Expanding Box Model.

This work is centered on the study of turbulence in the solar wind plasma. Once the
equations describing the solar wind are introduced we will describe fluid turbulence and
some of its features that will be studied in this work.

After this general introduction to plasmas and fluid turbulence, we then focus on the
medium that the previous theoretical framework is going to describe, the solar wind. We
will start with an overview of its origins close to the Sun’s surface. Then we will explain
how in-situ measurements of the solar wind are done and what those measurements tell us
about the two properties of the solar wind that we have studied: turbulent anisotropy in
the inertial range and turbulent heating.

14



Chapter 1

Solar Wind

The first hydrodynamic theory of the origin of the solar wind was published by Parker
[76]. He remarked that a strong difference in thermal pressure between the high atmosphere
(corona) and interstellar plasma could lead to a global supersonic wind at a few solar radii.
Parker’s theory required a source of internal (thermal) energy which had to be transported
from surface to the high corona and at larger distances. Direct in situ spacecraft observations
then confirmed the existence of the supersonic solar wind which cools with distance more
slowly than predicted by the fluid equations.

One of the sources of the solar wind heating required by Parker’s theory is the thermal
conduction: heat is thus transported from a 106K corona through the solar wind predomi-
nantly by electrons. Another source of heat, which we shall study in detail in this thesis, is
provided by turbulent dissipation of fluctuations transported by the solar wind.

1.1 Sources of the wind and solar cycle

The solar atmosphere, mainly composed of protons, electrons and alpha particles, is strongly
stratified in the vertical (radial) direction: density drops from n ' 1017cm−3 at the surface
down to about 5 − 15 cm−3 at the Earth’s orbit. The strongest stratification occurs close
to the Sun. One identifies at least two layers, the thin, dense chromosphere and the hot,
rarefied corona which extends up to several solar radii. The chromosphere is separated from
the corona by an abrupt transition (chromospheric transition), at about 2000 km above the
photosphere. While the chromosphere is relatively cold (between 6000K and 10000K) the
corona has a proton temperature around 2MK. High in the corona, at several solar radii,
the plasma begins to be accelerated to outer distances from the Sun and to form the solar
wind.

Fig. 1.1 shows the average density and temperature profiles around the chromospheric
transition (panel a) and bulk velocity measurements using radio source scintillation mea-
surements ([92], panel b).

Not all the solar surface is a source of wind. In fact, sources of the wind are largely
controlled by the topology of the magnetic field. The atmosphere shows in white light
density contrasts which actually trace the magnetic structures, more specifically, closed and
open structures. An example of density structures during an eclipse is shown in fig. 1.2
(left), while a reconstruction of magnetic field lines is shown in fig. 1.2 (right).

In the whole corona (up to about 2.5 Rs), the magnetic field energy dominates, and
the magnetic field is thought to be organized in flux tubes that force the flow to follow the
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Figure 1.1: Radial structure of atmosphere and wind: (a) density (dashed line) and temper-
ature (solide line) profiles close to solar surface [108]; (b) radio-scintillation measurements
(points in the image) of the solar wind bulk speed in the first 50 solar radii (from [92]). Solid
lines correspond to theoretical models for the bulk speed evolution. Each kind of symbol for
the measured points correspond to a different author. The references for these authors can
be found in the cited paper.

Figure 1.2: (Left) Eclipse white-light image of the corona [35]. (Right) Coronal magnetic
field-line configuration on 6 February 2004, as derived by applying a PFSS (Potential Field
Source Surface) extrapolation with source surface at 2.5Rs to a photospheric magnetic map
from Mount Wilson observatory [106].
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Figure 1.3: Three Ulysses spacecraft orbits of the Sun. Figure shows radial solar wind
velocity and images of the Sun at varying degrees of solar activity [67].

magnetic field direction. One can distinguish open field lines (that extend to infinity) and
closed lines that are anchored at their two ends in solar surface. Along the former, the flow
can escape the Sun, while the plasma is trapped in magnetic flux tubes with closed lines.
In fig. 1.2 (left), open flows fill the dark regions with low densities, while flows are trapped
in white regions with large densities: the main source of the solar wind are thus in dark
regions with low densities and open field lines (although some closed fields can open and
launch slow wind). The alternance of closed and open magnetic field regions on the Sun
thus controls how the solar wind maps into the heliosphere.

This global magnetic pattern changes in a quasi-regular way during the solar cycle (see
fig 1.3). The Sun’s magnetic field adopts a quasi-dipolar pattern, with two magnetic poles
with opposite polarities, during the so-called Solar minimum activity, and a multipolar pat-
tern during Solar maximum activity. The quasi-dipole associated with minimum activity
reverses each eleven years in average. At the time of maximum activity on the contrary, no
clear polarity is defined, Solar spots, cold regions of the photosphere with a high concentra-
tion of magnetic field lines are frequently seen. Strong solar events such as Coronal Mass
Ejections (CME) are abundant during this period and perturb properties of the pristine
solar wind.

Independently of the period of solar activity, the intensity of the magnetic field decreases
with distance. From about 10 solar radii onwards, the magnetic field energy becomes sub-
dominant compared to the kinetic energy of the flow (which defines the Alfvén point or
Alfvén surface), and the magnetic field lines cease to control the flow.

From the Alfvén point onwards, the mean magnetic field lines no longer co-rotate with
the Sun, but spiral around it. This forms what is known as Parker’s spiral.
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1.1.1 Fast and slow winds

One can see important variations in the properties of the plasma depending on its source
region, that is, the place where the solar wind originates. The winds originating from sources
near the closed magnetic regions are characterized by a mean speed around 350 km s−1 when
measured at 1AU . At the same distance, the particle density per unit volume is in average
15 cm−3, the proton temperature is around 5 · 104K and the mean magnetic field modulus
is 6 nT ([12]).

On the other hand, winds from sources well within open magnetic regions reach speeds
close to 600 kms−1, lower particle densities, 4 cm−3, larger proton temperatures, 2 · 105K,
but the mean magnetic field is the same as when the source is close to closed regions.
Due to these differences we shall group solar winds into slow and fast winds, or into cold
and hot winds respectively. Note that this difference between cold and hot winds is only
based on proton temperature: electrons have similar temperature in fast and slow winds
Te ≈ 1 · 105K, (see table 1.1). The radial variation of electron temperature between 0.3 and
1 AU, Te ∝ R−0.59±0.32 [56] is also slower than that of protons, Tp ∝ R−0.9±0.1 [98] (see
section 4.4.1 for a further discussion on the measurements of proton temperature evolution).

Other ion species, such as He+2 (alpha particles) also show some differences between
slow and fast solar wind streams. At 1AU, their relative abundance with respect to protons
is around the 4% and the temperature ratio, Tα/Tp, is around 1.2 for the more collisional
slow winds and around 4.5 for fast winds [63]. Bulk speed of alpha particles also shows
differences between slow and fast streams, as it is smaller than that of protons for slow
streams and higher for fast winds, the difference reaching 170kms−1 [58].

Until now we have just specified the amplitudes of macroscopic (i.e. fluid) properties in
fast and slow winds. There are also differences in microscopic quantities, such as velocity
distribution functions. While proton velocity distribution functions (VDF) for slow winds
are similar to a Maxwellian distribution, fast winds VDFs are gyrotropic with respect to the
mean magnetic field, as can be seen in figure 1.5. In contrast, electron VDFs do not present
strong temperature anisotropies such as proton VDFs (see table 1.1). Protons, electrons and
alpha particles present departures from a gaussian distribution in the form of non-thermal
tails, as the one shown in figure 1.4. The generation of non-thermal tails has been linked
to the wave-particle interactions of high frequency waves in plasmas such as Kinetic Alfvén
Waves (KAWs) and whistler waves: KAWs are invoked in the generation of the non-thermal
tail of proton distributions ([79] and references within), and whistler waves in the generation
of the non-thermal tail of electron distributions [105, 104][78].

In this thesis, we restrict ourselves to the study of solar wind plasma at low frequencies
(correspondingly large scales), that can be well described by MHD equations (see section
2.1). Thus, high frequency waves and their effects on the particles VDFs are excluded
from our description of the plasma. Also, the deviations of the VDFs from Maxwellian
distributions will be minimized: in particular, perpendicular and parallel temperatures will
be considered equal, as well as electron and proton temperatures.

1.2 From corona to Earth

Starting from the corona, the solar wind speed becomes larger than the sound speed beyond
one solar radius, and larger than the Alfvén speed beyond ten solar radii (see fig. 1.6). After
this distance, the wind flow is quasi-radial. The wind speed then reaches a value close to
its cruise speed, e.g., it doesn’t change much between 0.2 and 1 astronomical units (AU),
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Figure 1.4: Scheme of an electron velocity distribution function at 1AU for high speed
solar wind electrons. Bottom panel: isocontours in the plane of velocities parallel and
perpendicular to the mean magnetic field (Green circle represents the limit of the Maxwellian
core). Top panel: parallel (solid black line) and perpendicular (dashed blue line) cross section
of the VDF in the bottom panel. Dashed red line is a Maxwellian distribution that fits the
core of the VDF. From [77].

Slow winds Observations Fast winds Observations
Bulk velocity (km s−1) 320 667
Number density (cm−3) 5.4 3
Proton Temperature (K) 4.8 · 104 2.8 · 104

Electron Temperature (K) 1.1 · 105 1.3 · 105

Proton anisotropy Tp‖/Tp⊥ 3.4 1.2

Electron anisotropy Te‖/Te⊥ 1.2 1.2

Table 1.1: Average properties of fast and slow solar winds measured at 1AU made by [43]
and [55] Adapted from a table from [52].
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Figure 1.5: Velocity distribution functions of protons in the Solar Wind at 1AU (top row)
and 0.3 AU (Bottom row). Left panels correspond to slow winds and right panels to fast
winds. The dashed line corresponds to the mean magnetic field axis. From: [60].

Figure 1.6: Model profiles of the solar wind speed (U) and the Alfvén wave speed (Va)
with distance from the Sun. The vertical bar separates the source, or sub-Alfvénic region,
from the super-Alfvénic flow. “Previous Missions” marks the region explored by the Helios
mission. From [26].
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i.e., between 42 and 210 solar radii: this will allow us to use the expanding box model to be
described below (see section 2.2). The quasi-radial flow and the quasi-constant speed forces
a plasma volume to expand in the two directions perpendicular to the radial and not in the
radial direction (see fig. 2.1), so that the volume expands as R2 instead of R3.

This increase of a plasma volume embedded in the wind has two consequences (i) density
should decrease as 1/R2, which is indeed observed; (ii) applying the one-fluid adiabatic law,
i.e., assuming pressure forces are the only ones against which the expanding plasma volume
is working, with no extra internal energy source, one obtains for the temperature

T ∝ ργ−1 ∝ ρ2/3 ∝ R−4/3 (1.1)

However, as we shall see in the heating section 4.4.1 below, the proton temperature
gradient is flatter than that, which requires a heat source to slow down the plasma cooling
during expansion.
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Chapter 2

Plasma description

2.1 The MHD equations

We adopt a one-fluid description (Magnetohydrodynamics or MHD) of the Solar Wind
plasma. A fluid description describes the plasma in terms of the evolution of its macro-
scopic variables: density, velocity, pressure, heat flux,... and the evolution of the magnetic
and electric fields, B and E, given by Maxwell’s equations. A fluid description can be
derived in several ways, either from a kinetic description or starting directly with a fluid
description, imposing a series of conservation laws (see for instance [19]). In all cases, fluid
equations are a hierarchy of equations that need to be closed by imposing the evolution of
certain macroscopic variables. For an MHD description of the plasma, it is assumed quasi-
neutrality (approximately the same density of negative and positive charges), a Gaussian
velocity distribution function for all species and slow variations of the plasma fluctuations
in space and time1, that allows to consider ∇×B = µ0j. The evolution of the current j is
given by assuming Ohm’s law: E + u×B = ηj.

For the MHD description presented below, we also assume that the flux of thermal energy
is q = −κ∇T , that the plasma follows the equation of state for ideal gases P = ρT and that
the polytropic index is γ = 5/3 (thus, in the absence of local sources of heating, the system
is adiabatic).

The previous assumptions made to obtain the MHD description allow to describe the
plasma as a conductive fluid whose evolution is coupled to that of the magnetic field. Several
observations however argue against this choice to describe the Solar Wind. The main ones
are as follows: (1) electron and proton temperatures differ; (2) mostly in fast winds: the
velocity distribution function is not gaussian, resulting in different values for the P⊥ (pressure
perpendicular to the mean magnetic field ) and P‖ (pressure parallel to the mean field); (3)
other species (Alpha particles in particular) show a velocity drift along the mean field.

These features all derive from the low rate of Coulomb collisions (as measured by the
Knudsen number2) starting from the corona. The justification for neglecting the effects of
low collisionality in a first approach is because no direct simulations of the 3D turbulent

1The frequency of the fluctuations should be below the giration frequency of the protons, fp =
(2π)−1|e||B|/mp, and space fluctuations larger than the Larmor radius of the protons, ρL = mp|u⊥|/|e||B|,
where u⊥ is the modulus of the velocity components perpendicular to the mean magnetic field line B

2The Knudsen number is a dimensionless parameter that indicates the ”collisionality” for a population of
particles. λmfp being the mean free path of particles and ωcol the frequency of collision between particles,
the Knudsen number can be defined as Kn = kλmfp or as Kn = ω/ωcol, to characterize the collisionality
respectively at the spatial scale k−1 or at the frequency ω.
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cascade and the associated energy flux has been done yet properly for the solar wind (see
next section 2.2). So it is valuable to investigate if, in spite of the simplifications of the MHD
description, turbulent heating and spectral anisotropy properties that will be obtained from
simulations are already close or not to the solar wind observations.

Finally, we measure the energy cascade rate (to be defined later in Section 3.1.3) and the
associated visco-resistive dissipation rate, defined in eq. 2.2 below. The actual dissipation
in the solar wind occurs at kinetic scales. Our MHD description replaces these scales by
visco-resistive scales: this will be justified later in Section 3.1.2).

The MHD equations read as follows,

∂tρ+∇ · (nu) = 0

ρ(∂tu + u · ∇u) +∇P − (∇×B)×B = µ(∆u +
1

3
∇(∇ · u))

∂tB + u · ∇B = B · ∇u−B(∇ · u) + η∆B

∂tP + u.∇P + γP (∇.u) = κ∆T + (γ − 1)Q

∇ ·B = 0

(2.1)

Q = µ((∇× u)2 +
4

3
(∇ · u)2) + η(∇×B)2 (2.2)

The last term at the left-hand side of the momentum equation in (2.1) can be decomposed
into

(∇×B)×B = −∇(B2/2) +
(B · ∇)B

2
(2.3)

where the first term contains the magnetic pressure and the second one is the magnetic
tension. In front of a perturbation of the mean magnetic field, these terms will try to restore
straight magnetic field lines. Due to this, kinetic and magnetic oscillations propagate in the
plasma. From the linearized MHD equations 2.1 one can obtain the dispersion equation of
the MHD waves.

Apart from the entropy mode that does not propagate (ω = 0), propagating modes are
Alfvén waves and the fast and slow magnetosonic waves. Alfvén waves are of particular
interest, as they are directly identified in the solar wind, via their eigenmode relation, in
the so-called Alfvénic streams. They are obtained from the linearized MHD equations by
imposing that the density, pressure, magnetic and velocity fluctuation parallel to the mean
magnetic field are zero. The remaining equations for the fluctuating amplitudes u and
b = (B −B0)/

√
ρ

0
= δB/

√
ρ

0
are

∂tu = (Va · ∇)b (2.4)
∂tb = (Va · ∇)u (2.5)

with phase speed being the Alfvén speed

Va =
B0√
ρ0

(2.6)

and dispersion relation
ω = ±k ·Va (2.7)

The previous propagation equation may be rewritten as

∂tz
± ∓ (Va · ∇)z± = 0 (2.8)
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with
z± = u± b (2.9)

For a mean magnetic field line pointing towards the Sun, z+ propagates outwards the Sun
while z− propagates inwards. The Alfvénic streams mentioned above thus have either with
z+ � z− or z− � z+, depending on the polarity of the mean field B0.

The dispersion relation of magnetosonic modes is:

(ω/k)2 =
1

2
[(v2

A + c2
s)±

√
(v2
A + c2

s)− 4v2
Ac

2
s cos2 θ] (2.10)

where cs =
√

γP
ρ is the sound speed and θ is the angle between k and B0.

2.2 MHD equations with large scale radial flow (EBM)

We describe here the expanding box model (EBM) defined in ([33]), which is the method
that will be used in this thesis to simulate turbulent evolution in the solar wind. More
precisely, the model will allow us to follow a turbulent plasma volume transported by the
mean solar wind between say 0.2 and 1 AU. As we will show, it consists in subtracting the
mean radial flow from the velocity field in the MHD equations presented in section 2.1. We
begin by explaining the motivation.

As explained in section 3, turbulence redistributes kinetic and magnetic energies among
scales, usually from large to small scales. The problem is that to follow the turbulent cascade
process between 0.2 and 1 AU in an Eulerian frame requires locally (at a fixed distance, with
no wind) a large number of mesh points (typically 5123 or 10243) but to follow the cascade
from 0.2 AU up to the Earth’s orbit (1 AU) requires in principle much more, as (i) the
largest energy containing eddies have a frequency of f=4 10−4Hz i.e., a period τ = 2500s;
(ii) the time during which we want to follow the plasma evolution is about 4 days. The ratio
between the two times is about 144, which means either that we leave any hope to follow
turbulence correctly, or that we ignore the effect of the transport by the wind.

A solution to this problem consists in employing a technique often used to simulate the
flow evolution in a wind tunnel: it amounts to subtract the average flow, changing to the
Galilean frame transported by the mean flow. This transforms the distance evolution into
time evolution. Of course, since we ignore the boundary conditions of our advected domain,
we must choose the only possible method in this case, that is, adopt periodic boundary
conditions.

The EBM approach relies on the idea that the change of Galilean frame described above
is but the first step to eliminate the mean flow. The reason is that the mean flow, contrary
to that of a wind tunnel, is not uniform, it is radial:

~U0 = U0êr (2.11)

As a consequence, after our Galilean frame change, the plasma (as described with local
cartesian coordinates) actually still expands in directions perpendicular to the radial (see
fig. 2.1). To get rid of this residual flow, we subtract this transverse expansion by adopting
coordinates comobile with it. We obtain in this way a set of modified MHD equations, with
both linear and nonlinear modifications, which predict the evolution of the plasma volume
in a cartesian system attached to the central radial line. We now are free to use periodic
boundary conditions, which closes our definition of the expanding box model, using a local
cartesian coordinate system.
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Note finally that, since the model relies on a mean radial flow with constant speed, it can
be used only far from the acceleration range of the solar wind and, a fortiori, at distances
larger than the Alfvén point. In practice, we will use it between 0.2 and 1 AU in this thesis.
This choice is also supported by in-situ measurements between 0.3 and 1AU, using data from
Helios missions: they have shown that the evolution of the particle density with heliospheric
distance is close to n ∝ R−2 [98] [37, 38], thus close to the prediction of radial constant
expansion obtained from the conservation of mass.

The radius R at which the plasma box is located varies with time τ as

R(τ) = R0 + U0τ (2.12)

where R0 is the initial position of the box. Space, time, velocity, temperature and density
are measured in the following units:

L0/(2π) (2.13)

t0NL = L0/(2πu
0
rms) (2.14)

u0
rms (2.15)

mp(u
0
rms)

2/(2kB) (2.16)

ρ0 (2.17)

where ρ0 is the initial average density of the plasma, u0
rms is the initial rms velocity of the

fluctuations, t0NL is the initial nonlinear time based on the initial rms velocity, and L0 is the
initial size of the box perpendicular to the radial direction.

Let us choose a cartesian coordinate system (X,Y,Z), with the X direction aligned with
the Sun-Earth radius passing by the center of the initial plasma volume. Y and Z are
taken to complete the Radial Tangential Normal coordinate system. The set of coordinates
comobile with the transverse expansion is then

t = τ (2.18)
x = (X − U0τ)/Rx (2.19)
y = Y/a(t) (2.20)
z = Z/a(t) (2.21)

We choose the unit length to be the initial transverse size (i.e., L0
Y = L0

Z) of the domain
divided by 2π) (by transverse we will always mean “perpendicular to the radial” in the
following, while “perpendicular” and “parallel” will mean “with respect to the mean magnetic
field”). Note that we have chosen a regular box as our physical domain. Curvature terms
from the spherical expansion of the wind can be neglected if we assume LX,Y,Z/R� 1 ([33]).

The parameter Rx is the initial aspect ratio of the domain:

Rx = LX/L
0
Y = LX/L

0
Z (2.22)

Remark that LX is constant as the wind speed is assumed constant, and therefore LX = L0
X .

The parameter a(t) is the normalized heliospheric distance:

a = R(t)/R0 = 1 + εt (2.23)

where ε = da/dt is the initial expansion rate defined as the initial ratio between the char-
acteristic expansion and turnover times in the transverse directions (perpendicular to the
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Figure 2.1: Sketch of the evolution of a plasma volume advected by a radial wind with
constant speed. (a) exact evolution; (b) approximate evolution adopted in the EBM model.
From [33].

radial):

ε =
τNL
τexp

=
U0/R0

k0u0
rms

(2.24)

with k0 the minimum wavenumber in the transverse direction.
At a given distance R(t), the domain aspect ratio is thus decreasing as:

LX/LY = Rx/a(t) (2.25)

The choice of the initial aspect ratio Rx of the domain is somewhat arbitrary: in the fol-
lowing, we will consider Rx = 1 and Rx = 5. If we choose Rx = 1, the aspect ratio varies
from unity to 1/5 (this is the choice made in Dong et al 2014). If we choose Rx = 5, then
the aspect ratio (when traveling from 0.2 to 1 au) varies from 5 to unity (this is the choice
made in [101], [102] and in [69]).

The EBM equations read

∂tρ+∇(ρu) = −2ρ
ε

a

∂tu + u.∇u +
1

ρ
∇(P +

B2

2
)− B.∇B

ρ
=
µ

ρ̃
(∇̃2u +

1

3
∇̃(∇̃.u))− U

ε

a

∂tB + u.∇B−B.∇u + B(∇.u) = η∇̃2B− B
ε

a
∇ ·B = 0

∂tP + u.∇P + γP (∇.u) = −2γP
ε

a
+ ρ̄κ∆̃T + (γ − 1)ρ̄Qν

Qν = µ(ω̃2 + 4/3 (∇̃ · u)2) + ηJ̃2

P = ρT

(2.26)

where U = (0, uy, uz), B = (2Bx, By, Bz) are obtained from terms involving the gradient
and the divergence of the mean perpendicular flow, ∇ ·U0⊥ ≈ 2ε/a (see for instance [25]).
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As in section 2.1, we continue to assume that in the absence of dissipation and heat flux,
the system is adiabatic, γ = 5/3.

In the heating term, the vorticity and current are defined in terms of the modified nabla
operator ∇̃: ω̃ = ∇̃×u and J̃ = ∇̃×B (see eq. 2.29 for the definitions of the modified nabla
operator).

In these equations, ρ̃ is the density normalized by its average:

ρ̃ = ρ/ρ̄ = a2ρ (2.27)

and ρ̄ = 1/a2 is the average density of the plasma. The standard nabla operator is related
to gradients expressed in terms of comobile coordinates x,y,z as:

∇ = ((1/Rx)∂x, (1/a)∂y, (1/a)∂z) (2.28)

The nabla operator appearing in the dissipative terms in the right hand side of eqs. 2.26 is
defined so as to adapt to the comobile coordinates x,y,z, in order to prevent the excessive
damping of fluctuations perpendicular to the radial:

∇̃ = (∂x, ∂y, ∂z) (2.29)

In order to prevent a too fast decrease with time of the Reynolds number (defined in section
3.1.2), we adopt the following temporal dependance of the diffusion coefficients:

µ = η = κ = µ0/a(t) (2.30)

The definitions in equations (2.29) and (2.30) do not respond to physical but to numerical
reasons. On the one hand, the loss of small perpendicular scales due to expansion and the
limitations imposed by the use of an MHD description impedes us to properly describe
small scale physics, in particular the dissipative process. Since our focus is not put on
the description of the dissipation process itself, but on the amount of energy dissipated by
turbulence, we can prescribe the aforementioned definitions. On the other hand, in any
turbulence simulation it is necessary to avoid the artificial accumulation of energy at the
smallest mesh-size, in order to prevent an unphysical equipartition of energy between all
degrees of freedom. Equations (2.29) and (2.30) have been defined to do so, and at the same
time maintain a high Reynolds number.
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Chapter 3

Turbulence

3.1 Homogeneous turbulence

A qualitative picture of turbulence in every day life is given by random patterns (usually
eddies) forming in the wake of a solid obstacle facing a flow, or air turbulence forming
for instance above a tea cup, as in fig. 3.1(Left). Turbulence can be found in a variety of
contexts, such as geophysical flows ([54]), gravitational waves ([27]), interstellar medium
([39]), or the Solar Wind ([18]). Here, we shall concentrate on fluid turbulence, with fluids
that can be described either by Navier-Stokes or MHD equations.

The simplest case is that of homogeneous and isotropic fluid turbulence, that is, with
nothing destroying a priori homogeneity and isotropy of space. It shows two main proper-
ties (i) a quasi-constant flux of energy (or related quantity) flowing in general from large
to small scales (in that case one speaks of direct cascade); (ii) a systematic randomness
which prevents one to exhibit any analytic solution of a turbulent system and asks for a
statistical description of the phenomenon, a situation analogous to that of thermodynamical
equilibrium for instance.

3.1.1 Shock formation as a simplified model of turbulence

The flux of energy from large to small scales is well illustrated by a related phenomenon:
shock formation. It is illustrated in fig.3.1(right) by a numerical solution of the 1D com-
pressible Navier-stokes equations,

∂tρ+ ∂x(ρu) = 0 (3.1)

∂t(ρu) + ∂x(ρu2) + ∂xP = µ∂xxu (3.2)
∂tP + ux∂xP + γP∂xux = κ∂xxT (3.3)
P = ρT (3.4)

Panel (a) shows how the initial smooth (cosine) profile evolves finally into a shock with a
large gradient in the center of the figure. Panel (b) shows the growth of harmonics of the
successive Fourier modes with time. Panel (c) shows the corresponding evolution of the
energy spectrum with time. Panel (d) shows finally the kinetic energy evolution: the energy
in the first Fourier mode first decreases (solid line), followed by the decrease of the overall
energy content (dotted line).
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Figure 3.1: Introducing turbulence. Left: Oblique light reveals turbulent eddies forming
spontaneously above a warm cup of tea (courtesy of R. Grappin). Right: Shock steepening
in 1D compressible Navier-Stokes equations ([8]). (a) Shock formation (formation of a steep
gradient starting with a smooth cosine profile; (b) growth of successive harmonics with time;
(c) successive energy spectra; (d) energy decay with time of the first Fourier mode (dotted)
and of the total kinetic energy (solid line).
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Kinetic energy is thus finally distributed on a whole range of wave numbers, while the
initial energy was concentrated on a single wavenumber: this evolution is due to the non-
linear term, namely the advection term. Moreover, as shown in panel (d), while during
the first part of the evolution the total kinetic energy is more or less constant, it begins
to systematically decrease when t > 2, after the shock has formed (panel (a)). The shock
formation process may be considered a deterministic version of what is called “turbulent
dissipation” which begins when energy has been distributed among various scales, including
the so-called dissipation scales where the viscous term is effective.

3.1.2 3D hydrodynamic turbulence

In the previous 1D shock formation, the eddies visible in fig. 3.1(Left) are lacking completely,
since only 1D movements are possible. In this case, the random character of turbulent
evolution is absent, the evolution is deterministic. As a consequence, another property of
turbulence which we explain now is lacking: the locality of the kinetic energy flux which
allows to predict how energy is distributed among scales.

Assume indeed that we deal now with incompressible 3D hydrodynamic equations. The
equations are similar to the incompressible 3D MHD equations, but with no magnetic field
and with the pressure equation replaced by a divergenceless condition on the velocity field:

∂tu + u · ∇u +∇P = ν∆u (3.5)
∇ · u = 0 (3.6)

The divergenceless (incompressibility) condition is obtained from the compressible equa-
tions (see MHD eqs.2.1 with B = 0) by taking the limit of infinite sound speed (or very
subsonic flow). The situation is not very different from the previous 1D compressible Navier-
Stokes equations (3.4), except for two things: (i) the incompressibility conditions implies
that the total kinetic energy of the system is conserved by nonlinear couplings, while in the
1D compressible case this conservation was only approximately satisfied; (ii) the 3D config-
uration in practice transforms completely the evolution by making it chaotic: the precise
spatial and temporal distribution of large gradients, contrary to the shock case seen previ-
ously, is unpredictable. A consequence is that no analytic (or even semi-analytic) solution
of the problem exists presently. This implies in particular that in 3D turbulence, no simple
typical profile can be produced such as the one shown for a 1D shock at time t = 2 in
fig. 3.1a.

Fourier space description: K41 phenomenology

Happily enough, the random character of turbulence does not prevent one to find average
quantities which allow a description of the statistical equilibrium. This approach started
with Kolmogorov (1941). Consider first the hydrodynamic system with no viscosity or,
which is equivalent, with only large scale velocity fluctuations, for which the viscous term is
negligible. This means that the Reynolds number, which is the ratio of the nonlinear term
evaluated at the energy containing scales, L, and of the typical viscous term, is much higher
than unity:

Re = (u · ∇)u/(ν∆u)� 1 (3.7)

or
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Re = UL/ν � 1 (3.8)

In this situation, the kinetic energy is an invariant, which nonlinear couplings (associated
to the advection term) redistribute among the different Fourier modes of the system. Since
at small scales (high wavenumbers) modes are more and more numerous, these degrees of
freedom rapidly gain energy, taking it from large scale ones. But, again, kinetic energy as a
whole is conserved, at least during a first phase in which viscous dissipation can be neglected.
So, if we would have strictly ν = 0, a Gibbs-like equilibrium with equal distribution of energy
between all modes would rapidly be reached, thus with the small scales sharing the largest
amount of energy.

In the real physical world with non zero viscosity, the transfer of energy from the large
to the small scales is moderated by the fact that finally, as small scales become populated,
the viscous terms become active in a range of scales called dissipative range.

In between the largest scales and the dissipative scales, a qualitative description of this
turbulent equilibrium has been proposed by Richardson [83]. According to his description,
energy is injected at large scales in the form of whirls of characteristic size L and turnover
velocity U . The large size whirls would split into smaller whirls due to the non-linear
interactions imposed by the term (u∇)u in the Navier-Stokes equations. Then, the kinetic
energy stored in the large scale whirls would pass to the smaller ones of size l and turnover
velocities u.

It has been then proposed by Kolmogorov [48] that the process of energy redistribution
between scales is local in scale space, that is, with the energy being transferred between
neighboring scales l and l/2, thus making possible to estimate it quantitatively. This process
of transferring energy from scale to scale was named turbulent cascade. Assuming that the
dissipation of energy only takes place at small scales, this process would continue until the
size of the whirls reaches the dissipation scales, where the kinetic energy would finally be
transmitted to the internal energy of the system. In this picture we can differentiate three
scale ranges: the injection scale (with largest energy content), the inertial range (that of the
turbulent cascade), and the dissipation range, where the energy flux is ultimately dissipated.

In the inertial range, viscosity can be neglected, so the energy is conserved during the
cascade, so that the energy flux εt between neighboring scales is scale-independent:

εt =
dE

dt
≈ u2

tNL
≈ u3l−1 = ku3 (3.9)

where
tNL = l/u = 1/(ku) (3.10)

is the characteristic time for nonlinear interactions, or also turnover time, a term appropriate
for eddies. By writing that the energy flux ε is scale invariant, it can then be deduced that
the isotropic energy spectrum at the inertial range scales is a power law of the wavenumber
k,

Ek = CKε
2/3
t k−5/3 (3.11)

where Ek is the energy spectrum, related to the velocity as u2 =
∫ k√2

k/
√

2
Ekdk ' kEk. The

k−5/3 scaling is thus the 3D counterpart of the k−2 energy spectrum which holds in the
shock formation case considered earlier. It is known as the Kolmogorov spectrum and CK
as the Kolmogorov constant, an integration constant that depends on the system in which
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turbulence takes place. For turbulence in 3D incompressible neutral fluids, one measures
CK ≈ 1.6.

The end of the inertial range begins with scales where viscous terms begin to be compa-
rable to nonlinear terms, that is for which u · ∇u ' ν∆u or ku ' νk2 , also u ' νk. Using
the Kolmogorov spectrum (eq. 3.11) and u2 ' kEk, we finally obtain the dissipative scale

kD ' ε1/4t ν−3/4 = k0Re
3/4 (3.12)

which is seen to go to infinity when viscosity goes to zero (or, equivalently, when the Reynolds
number goes to infinity), which means that the dissipation scale goes to zero in this limit,
and the inertial range where the k−5/3 law holds extends without limit. Eq. 3.12 will be
used to normalize the spectra when analyzing our numerical results.

Note that ν = 0 is not equivalent to a vanishing viscosity: the spectral slope k−5/3 holds
only in the latter (physical) case.

An important point is the clear separation between the inertial range and the dissipation
range, which ensures that one can indeed measure the energy flux ε, using eq. 3.9. This is
possible only if the Reynolds number is large enough, i.e., when viscosity is small.

Such a situation, that is, a large inertial range allowing to measure the energy flux via
eq. 3.9), will be assumed to hold in more general situations, whatever the precise form of
the dissipation term which may differ from the standard viscous term. The only assumption
is that dissipation is completely non negligible only at the smallest scales, as are the visco-
resistive terms, which scale with wavenumber k as k2u. This assumption is basic in our
following work on turbulent heating, where the dissipation process is still unknown, but
yet believed to be active at small scales (corresponding to frequencies larger than 1 Hz, see
fig. 4.1). This assumption will allow us to integrate numerically the MHD equations with
visco-resistive terms and then to use the visco-resistive dissipation rate in the simulations
to estimate the turbulent dissipation in the solar wind.

3.1.3 3D MHD turbulence

We again consider here the incompressible limit of the equations, as it is only in this limit
that a turbulent phenomenology is easily built. In this limit, one can prove that there are
three inviscid invariants (by this we mean a quantity conserved by nonlinear couplings, in
the limit of zero viscosity): (i) “total” energy, that is, the sum of kinetic and magnetic
energy (in Alfvén speed units) Ev = u2/2 and Eb = B2/(2ρ); (ii) cross helicity v.B/√ρ; (iii)
magnetic helicity a.B where a is the magnetic potential (B = ∇× a).

Let us define the fluctuating magnetic field as δB = B − B0, where B0 is the mean
magnetic field. The standard view is that the turbulent spectrum, in the MHD case, is
formed as in the hydrodynamic case by the cascade of the total energy. Thus, applying the
Kolmogorov phenomenology to the total energy, i.e., with E(k) replacing the kinetic energy
spectrum, we obtain again E(k) ∝ k−5/3. More precisely, the total energy flux between
scales reads

QK41 =
dE

dt
≈ u2 + δB2/ρ

tNL
≈ k(u2 + δB2/ρ)3/2 (3.13)

where the non-linear time is

tNL = 1/(k(u2 + δB2/ρ)1/2) (3.14)
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Incompressible MHD using Elsasser variables, cross-helicity

It is useful to recast MHD equations in a new form, still in the incompressible limit ∇·u = 0.
We assume here (which is standard in the incompressible limit) ρ = constant and define
u and b = (B − B0)/

√
ρ to be the kinetic and magnetic fluctuations in Alfvén speed unit,

with the Alfvén speed being vA = B0/
√
ρ. We now define the Elsasser variables as:

z± = u± b (3.15)

One can then write the MHD equations in the incompressible limit as:

∂tz± ∓ (vA · ∇)z± + (z∓ · ∇)z± +
1

ρ
∇P = 0 (3.16)

∇ · z± = 0 (3.17)

where the pressure P is the total pressure (actually, pressure is no longer an independent
degree of freedom, since the incompressible condition ∇· z± = 0 implies that the pressure is
a functional of the z± amplitudes). For the sake of clarity, we have left the diffusive terms
aside.

The linearized equations read:

∂tz± ∓ (vA · ∇)z± = 0 (3.18)

These equations describe the propagation of Alfvén waves along the mean field B0, the mode
z+ propagating opposite to the mean field and z− in the direction of the mean field. Both
are Alfvén waves (that is, with dispersion relation ω = ±k · vA), corresponding to two of
the three modes of compressible MHD, namely true Alfvén waves and slow magnetosonic
waves (the fast modes have disappeared since the incompressible limit corresponds to infinite
sound speed).

Energies E± =< z2
±/2 > in each mode are conserved separately by nonlinear terms (this

is equivalent to the separate conservation mentioned above of total energy and v.b cross-
helicity). This should lead to two separate cascades, one for each of the two energies E±,
with each its own energy flux. Each energy flux may be written formally in the Kolmogorov
line:

Q±K41 =
dE±

dt
≈ (z±)2

t±
(3.19)

with the definitions of the nonlinear times, obtained by visual inspection of eq. 3.16:

t± = 1/(kz∓) (3.20)

The nonlinear time (that is, the cascade time) of each Alfvén species z± thus goes to infinity
when the other species is absent. This leads to the well known paradox of fast winds (or
Alfvénic winds) which are almost devoid of one of the two species, but nevertheless show
well-developed energy spectra (see section 5.1).

Last, we define the standard measure of the imbalance between the two (z±)2 energies,
called normalized cross-helicity:

σc =
|z+|2 − |z−|2

|z+|2 + |z−|2
(3.21)
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Anisotropy of the cascade with mean magnetic field B0

In general, that is, in the absence of specific forcing or boundary conditions, the 3D MHD
cascade is expected to be isotropic in Fourier space. However, when a non zero mean field
B0 is present with intensity comparable or larger than the large eddies’ amplitudes, then one
expects Alfvén waves to introduce a global anisotropy with respect to the mean magnetic
field axis.

The origin of this important property lies in the following points: (i) nonlinear terms
in the MHD equations couple Alfvén waves propagating in opposite directions along the
mean field; (ii) the Alfvén waves frequency varies from zero to kB0/

√
ρ when wave vectors k

pass from perpendicular to parallel to the mean field B0; (iii) the efficiency of the nonlinear
coupling averages to zero when the nonlinear time becomes longer than the oscillation period
1/ω.

As a consequence, only wave vectors with directions close to perpendicular to the mean
field contribute to an efficient turbulent cascade, while the cascade is negligible in other
directions (e.g., [94], [28], [8]). In other words, as soon as the mean field is large enough, the
cascade should be mainly perpendicular, and the resulting energy spectrum should adopt
an anisotropic pattern with aspect ratio given by

k‖/k⊥ = brms/B0 < 1 (3.22)

Local and nonlocal interactions

It will be useful to comment shortly the equations in Fourier space. For the sake of simplicity,
we still consider the incompressible limit:

∂tẑ
±
i (k) = ±i(k ·B0)ẑ±i (k) +Mijm(k)

∫∫
dpdq ẑ∓j (p)ẑ±m(q)δ(k− p− q)− νk2ẑ±i (k)

(3.23)

k · ẑ±(k) = 0 (3.24)

where ẑ± are the Fourier coefficients of the Elsasser variables. The kernel Mijm(k) stands
for

Mijm = (−i/2)Pijm (3.25)
Pijm = kmPij + kjPim (3.26)

Pij = δij −
kikj
k2

(3.27)

The pressure has disappeared from the equations, as, using the zero divergence condition, the
pressure gradient can be expressed in terms of quadratic terms involving the Elsasser fields.
Note that the non-linear terms in the right-hand side of equation (3.23) only contribute to
the evolution of ẑ±i as the triad (k,p,q) verifies

k = p + q (3.28)

Triadic interactions of modes are therefore responsible for the development of turbulence,
at least in the incompressible limit.

We can distinguish two kinds of interactions. When |k| ≈ |p| ≈ |q| we talk about local
interactions since it concerns modes with wave-numbers close to each other. Conversely,
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Figure 3.2: Schematics of a local triad interaction (top) and a non-local one (bottom) and
the corresponding position for each mode in the inertial range of a well developed turbulence.

when |p| << |k| ' |q|, the large scale wavenumber p directly drives excitation from q to
k. Such nonlocal interactions dominate in general only during the early phase of turbulence
onset, before the spectrum is well developed. Only later on, when the local couplings
dominate, the simple K41 expression for the energy flux (eq. 3.9) can be used.

3.1.4 Spectra, autocorrelations and structure functions

Let us start with the definition of the velocity vector u and its Fourier transform uk:

u =

∫∫∫
uk expik·x dk. (3.29)

Conversely:

uk =
1

(2π)2

∫∫∫
u exp−ik·x dx. (3.30)

The 3D spectral density is the modulus of the Fourier coefficient,

E3D
k = |uk|2 (3.31)

The 3D spectral density tells us how the energy is distributed among the different wave-
numbers k (or scales 1/k) in the three directions of space.
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Note that, most of the time, the 3D spectral density cannot be measured directly in situ.
Only 1D measurements along the Sun-Earth direction can be done, which are equivalent to
measuring the 1D reduced energy spectrum, E(kx), defined as

E(kx) =

∫∫
E3D

k dkydkz (3.32)

x being the coordinate along the radial direction.
Consider the case of homogeneous turbulence in neutral fluids, turbulence develops an

isotropic energy spectrum that scales as a power law of the wavenumber, E(k) ∝ k−5/3.
A similar information can be obtained from autocorrelations

Ruu(l) =

∫
R3

u(x + l)u(x)dx =< u(x + l)u(x) > (3.33)

where l is the distance between two points in real space. It can be related to spectra by
E3D

k =
∫
Ruu(l) exp−ik·l dl

The structure functions (SF) of order n are defined as

Sn(l) =

∫
R3

(u(x + l)− u(x))ndx =< (u(x + l)− u(x))n > (3.34)

with SF of order 2 satisfying to

S2(l)
2

=< u2 > −Ruu(l). (3.35)

Note that in the above lines we have presented several ways to measure at a given scale
the energy of the system and other quantities (autocorrelations and second order structure
functions) bearing a similar physical meaning. It is possible to derive the conservation
equation of these quantities from the primitive equations with just a few assumptions.

Exact laws can be derived for the evolution of second moment (autocorrelations, structure
functions and/or their Fourier transforms, namely energy spectra) in terms of corresponding
third order moments. However, these equations are not directly solvable, since the evolution
of third order moments require to solve their evolution equations in terms of fourth order
moments, etc... This is clearly not feasible, and forces us to solve direct simulations of
the primitive equations, and to compute the above defined averages (structure functions,
spectra) as a last step, once the primitive equations have been numerically solved.

3.2 Turbulence with large scale radial flow

Imposed large scale flows or magnetic fields can lead to new or modified turbulent regimes.
An example in hydrodynamics is the case of rigid rotation which modifies both the scaling
(the spectrum steepens) and anisotropy (the cascade is mainly active in the Fourier plane
perpendicular to the rotation axis), and in MHD with mean field as seen in subsection 3.1.3.

In general, large scale gradients are supposed to play the role of an energy reservoir
and/or help to trigger the onset of the energy cascade. In the solar wind context, for
instance, the shear between fast and slow streams has been considered in this way, and,
also, to trigger the decrease of cross-helicity with heliocentric distance ([84]).
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Figure 3.3: Turbulent cascade vs linear expansion. Two possible evolutions of an initial
isotropic spectrum (a), in two limiting cases: (b) standard cascade perpendicular to the
mean magnetic field with negligible expansion; (c) no cascade, with only expansion. (From
[25]).

3.2.1 Inhibition of the turbulent cascade by expansion

Contrary to plain (divergenceless) shear flows which trigger the cascade, the mean radial
flow, due to the associated anisotropic expansion, should instead prevent or at least delay
the turbulent cascade.

An analogy with gravitational collapse and cosmological expansion helps to understand
the case of turbulence onset within the solar wind. Gravitational collapse is known to
occur at scales larger than Jeans’ scale, while smaller scales are stable, but cosmological
expansion shifts the Jean’s scale at larger scales, thus inhibiting gravitational collapse, a
rather intuitive result (eg, [40]). It happens that the plasma expansion during solar wind
transport has a similar effect on the turbulence onset. The analogy can be understood easily
if we think of quasi-stationary turbulence as a permanent formation of quasi-singularities
and/or gradients. As expansion is continuously damping the existing gradients, it is clearly
fighting against the cascade. The clearest example of turbulence inhibition by expansion
is given by acoustic waves, for which one can demonstrate analytically the inhibition of
shock formation when the wave is transverse to the radial direction ([33], see also part III of
this thesis). In the two-dimensional case, inhibition by expansion of the turbulent cascade
starting with a large scale spectrum was found numerically by [29].

The inhibition of turbulent cascade by expansion is complicated by its anisotropy: as
the radial size of a plasma volume doesn’t expand far enough from the acceleration region,
the inhibition should be absent for a radial cascade. However, such a conclusion holds only
in the special case of 1D purely compressive waves, for which indeed wavevector triads (see,
eq. 3.24) are colinear: in quasi-solenoidal flows dominated by currents and vortices, triads
are not colinear, so that the detailed expansion effect is difficult to predict.

The general problem is well summarized by considering the two extreme ideal cases
shown in fig. 3.3, depending on the strength of the expansion compared to the nonlinear
terms. We show in panel (a) the initial (isotropic) spectrum. Final spectra are shown in
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panels b and c: panel b shows the case (i) of negligible expansion and panel c that (ii) of a
very strong expansion. At the beginning of (i), the mean field is at 450 with the x direction;
at the beginning of (ii), it is close to the radial, so that at the end, the strong damping
of the Bx component due to expansion (see section 3.2.2) will have turned the mean field
to 450. Therefore, the mean field is at 450 at the end of both cases. However, the spectra
E(kx, ky, kz = 0) show very different geometries.

In case (i) (panel (b)), expansion of the wind can be neglected, so that the cascade
proceeds in the standard way, namely perpendicular to the mean field, as described earlier in
Section 3.1.3. In second (ii) (panel (c)), nonlinear couplings are negligible, and one sees only
the linear effect of the expansion, which consists in expanding all structures perpendicular to
the radial, corresponding, in Fourier space, to a plain collapse of energy isocontours towards
the radial axis.

In conclusion, in these two extreme ideal cases, well identifiable (and different) spectral
anisotropies will be found, with respectively the mean field or the radial directions as a
symmetry axis. As a corrolary, one can expect in general that the spectra will exhibit
intermediate patterns mixing the two symmetry axis ([90], [31], [25], [102]).

3.2.2 Fluctuations decay: strong versus weak expansion

When expansion alone is active, that is, nonlinear couplings can be neglected, then two
important simple cases arise in the framework of a radial flow with constant speed.

The first case occurs when the typical frequency ω of the fluctuation (e.g., for Alfvén
waves the frequency given by eq. 2.7) is small compared to the expansion rate U0/R. Then
the invariants of the problem are: mass, radial momentum, angular momentum and magnetic
flux. By taking the EBM equations and assuming that the temporal evolution of the previous
invariants only depends on the damping terms due to expansion on the right-hand side of
eq. (2.26), we obtain the decay laws corresponding to the previous invariants:

ρ ∝ 1/R2 (3.36)
ux = constant (3.37)

uy,z ∝ 1/R (3.38)

Bx ∝ 1/R2 (3.39)
By,z ∝ 1/R (3.40)

Another set of decay laws is found when the Alfvén frequency is larger than the expansion
rate. This implies u and B/

√
ρ adopt a common (WKB) decay rate, or in other words,

that wave-action is conserved for Alfvén waves (see [31] for more details on the derivation
of these power laws)

ux,y,z ' Bx,y,z/
√
ρ ∝ 1/

√
R (3.41)

3.2.3 Cascade rate and turbulent heating

How much heat is necessary in the one-fluid MHD approach to achieve a temperature profile
Tp ∝ 1/Rα ? We reproduce here the analysis given e.g., in [100] (see also chapter 11 in part
III). We take the spatial average of the temperature evolution equation, replace the temporal
derivative by the radial derivative, ∂t → U0∂R, and as well the damping term ε/a by its
dimensional expression U0/R(t). This gives:

U0∂RT + 2(γ − 1)T (U0/R) ' (γ − 1)Qν (3.42)

38



We define now Qα as the heating necessary to obtain a temperature profile of the form
T = 1/Rα. Thus we replace in eq. 3.42 U0dT̄ /dR = −αU0T̄ /R; this gives:

Qα = 4−3α
2 TU0/R (3.43)

In the following we will insist on the special value α = 1, which leads to what we will call
the critical heating Qc:

Qc = Q1 = (1/2)TU0/R (3.44)

Finally, it is important to note that, to obtain a temperature profile such as T = 1/Rα in a
given distance range, heating must be continuously equal to eq. 3.43 in this range.
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Chapter 4

Solar Wind turbulence

4.1 In situ observations

Thanks to the deployment of satellite probes in the heliosphere since the 90s (Ulysses,
Helios, ACE, Wind...), solar wind is one of the few examples of astrophysical plasmas in
which in-situ measurements can be made. Since the launch of these probes, it has been
possible to recover data from solar wind plasma using several types of instruments among
which search-coils and mass spectrometers are specially important in the measurement of
turbulence in the solar wind. The first ones consist on three coils, each one aligned along
three orthogonal axis. Magnetic fluctuations of the plasma induce currents in the coils that
are then amplified and pretreated by an on-board analyser. This finally allows to measure
the three components of the magnetic field at the position of the satellite.

The mass spectrometer on the other hand consists in a particle detector that measures
the kinetic energy of particles in several directions, allowing to recover the distribution
function f(v) for different particles species. Once the distribution function is obtained, it
is possible to compute its moments and thus to obtain the fluid variables: density, velocity
and temperature of the plasma.

There are however some limitations with respect to the measurements that can be done
with satellite probes. The range of values to be measured by the on-board instruments
is limited. Most importantly, the number of spacecraft is limited, since probes can only
provide information on in situ properties of plasma at the point where they are placed.
Finally, spacecraft can only sample a limited part of the heliosphere. At the points where
the probes are present, the Solar Wind flows radially at super-Alfvénic speed. Since the
flow is super-Alfvénic, one can assume that Solar Wind fluctuations are frozen-in and thus
transform time into space (or frequency into wavevectors) for fluctuations propagating as
fast as the Alfvén speed (i.e. Alfvénic fluctuations). This is known as the Taylor hypothesis
and is valid only as long as the velocity of the wind is much larger than the phase velocity
of fluctuations. It allows to relate directly the Doppler frequency f (the one seen by the
spacecraft) to the (radial) wavenumber and the wind bulk speed, neglecting the frequency
f0 seen in the plasma frame:

f = f0 +
kUsw
2π

≈ kUsw
2π

(4.1)

At MHD scales, fluctuations propagate at Alfvén or magnetosonic speeds, which are one
order of magnitude below the wind bulk speed, so the Taylor hypothesis is valid. At sub-
ion scales, Taylor’s hypothesis might be no longer valid for certain modes, such as whistler
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modes ([42]).
A single spacecraft can only give information about fluctuations propagating along the

direction of propagation of the wind, namely the radial direction. In particular, the 1D
energy spectrum of magnetic field fluctuations can be recovered from the the autocorrelations
function RBB(l) =< B(x+ l)B(x) >. Let us define a reference frame where x̂ is the unitary
vector in the direction of propagation of the wind, ŷ is perpendicular to x̂ and B0 and ẑ is
the orthogonal to the other two. Then, the autocorrelation function measured by a satellite
is the autocorrelation in the x̂ direction,

RBB(l) = RBB((τUsw, 0, 0)) (4.2)

where τ is the sampling time. Using the conversion relations stated in section 3 it becomes
the reduced spectrum for kx wave-numbers, E(kx), as defined in eq. 3.32. The reduced
energy spectrum in terms of wave-numbers is related to the energy spectrum in terms of
frequency by

E(kx)dkx = P (f)df (4.3)

By Taylor’s hypothesis, f = kxUsw/2π, and therefore the reduced energy spectrum in
terms of the satellite frequency is P (fsat) = 2π

Usw
E(kx).

If one assumes symmetry of the 3D energy spectrum around the mean magnetic field axis,
a single spacecraft can provide the reduced energy spectrums in the parallel and perpendic-
ular directions to the mean magnetic field ([90]), E‖ and E⊥ (= Eky in our reference frame
) respectively. To do so, it is enough to project the distance l = τUsw into the parallel and
perpendicular directions to the mean magnetic field l‖ = τUsw cos(θ) and l⊥ = τUsw sin(θ),
where θ is the angle between B0 and Usw. Thus, the measured autocorrelation becomes

RBB(l) = RBB((l‖, l⊥, 0)) (4.4)

There are other techniques that do not rely on the assumption of gyrotropy of the energy
spectrum around the B0 axis. The so-called k-filtering technique ([45]) uses multi-spacecraft
measurements to give the spectral energy density in k space for every satellite frequency ωsat.
Data is obtained from ensembles of N satellites forming a polyhedral geometry in space, as
is done by the 4 spacecraft of CLUSTER mission that form a tetrahedron. The k-filtering
technique is capable of measuring the energy spectra with low error for frequencies between
10−3Hz and 10−1Hz, at the lower half of the inertial range (see figure 4.1). Nevertheless,
even within this range the validity of the results depend on maintaining the same distance
between the satellites, the regularity of the tetrahedron and the stationarity of the measured
signal ([87]). These constraints have to be imposed to the selection of data, that makes
more difficult the generalized application of this technique. Thus, we will rely more on the
results obtained by single spacecraft measurements since a higher number of studies with
this technique are at our disposal. We will further address this issue in section (4.3.1).

4.2 MHD inertial range

In previous sections, we have already mentioned some of the peculiarities that distinguish
solar wind turbulence from neutral fluid turbulence. In particular, what stands out is the
presence of multiple spectral slopes as can be seen in fig. 4.1. The spectrum shown is the
magnetic energy spectrum, which can be measured up to high frequencies, while the kinetic
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Figure 4.1: Measurements of magnetic energy spectrum at 1AU. From: [47].

energy spectrum cannot be measured at frequencies higher than 1 Hz. In this spectrum, one
identifies several frequency ranges. At the lower frequencies, the spectrum scales as f−1.
The origin of this spectrum is still an open question (e.g. [103]). It is mostly observed in
fast solar winds and its frequency range decreases with heliospheric distance ([6], [12]).

Between 10−4 and 10−1 Hz the spectral index of the total energy (kinetic + magnetic
energy) is close to −5/3 in average (see the distribution of the index in fig. 4.2, left panel).
This is generally interpreted to be due to a turbulent quasi-incompressible cascade with
constant flux of the total energy (sum of kinetic and magnetic energy) in the framework
of MHD. Note however that the spectral index shown is only an average. In reality, it is
varying systematically with the wind velocity, passing for the total energy from −1.7 in the
slowest wind to −1.55 in the fastest wind (cf fig. 4.2, right panel))

Coming back to fig. 4.1, at frequencies larger than 1 Hz, around the gyration frequency of
protons, the magnetic spectrum becomes steeper, with a scaling close to f−2.8. It is thought
that at these frequencies, linear perturbations in the plasma such as kinetic Alfvén waves
(KAWs), cyclotron waves and/or fast magnetosonic waves are present ([41]). Some authors
propose that at still higher frequencies, turbulence cascades into the dissipation scales around
the electron gyration frequency, where the spectra have been found to decrease exponentially
([2], [1]). Other works report a power law f−4.1 instead of an exponential decrease ([88],[89]).

4.3 Spectral anisotropy

As it has already been explained in sections (3.1.3) and (3.2.1), turbulence properties can
vary with wave-vector direction. In the context of turbulence, anisotropy may actually
refer to either spectral index anisotropy, power anisotropy or wave-vector anisotropy ([18,
17]). The variation of the spectral indices of the reduced spectrum with the directions of
measurement is known as spectral index anisotropy. Power anisotropy is defined as the
ratio of the reduced power spectra in two different directions, typically the parallel and one
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Figure 4.2: Spectral indices at 1AU for magnetic energy fluctuations (red dots), kinetic
energy fluctuations (blue dots), their sum (black dots), and their difference (green dots).
From: [16]. Left panel: distribution of spectral indices; Right panel: spectral indices vs
wind bulk speed.

perpendicular radiation to the mean magnetic field, E(k‖)/E(k⊥). In particular, it provides
information about the end of the inertial range and the relative weight of the energy flux in
each direction.

Here we are interested by the wave-vector anisotropy (that will be called simply spectral
anisotropy in the following). This anisotropy can be measured most easily in direct simula-
tions by plotting energy isocontours of 3D spectra, or related 2D spectra. Similar analysis
can be made of autocorrelations of the magnetic and velocity fluctuations. However, such
3D or 2D measurements are not directly possible with single spacecraft data, which pro-
duce only temporal records, from which 1D radial records can be extracted via the Taylor
hypothesis.

Nevertheless, 2D turbulent structures of the Solar Wind can be recovered from the 1D
records, if we assume that turbulence in the solar wind is gyrotropic, namely axisymmetric
with respect to the mean magnetic field B0. In this case, thanks to the fact that the mean
magnetic field is changing direction constantly, one may attach a frame to the mean field
direction: in this case one can produce autocorrelation figures which depend on distance,
but in different directions with respect to the mean field, i.e., 2D autocorrelation figures.

Two methods can be used for that, which use different definitions of the mean magnetic
field, thus leading to different definitions of the fluctuation amplitudes which are to be
correlated:

BLOC =
1

∆t

∫
∆t
Bdt (4.5)

BGLOB =
1

T

∫
T
Bdt (4.6)

The local mean field (BLOC) is computed on the same time interval ∆t as the one on which
the correlation is computed. The global mean field (BGLOB) is computed on a fixed interval
of length T , the time intervals over which the correlation is computed being all smaller than
T.

Remember from section 4.1 that with the frozen-in hypothesis this is equivalent to com-
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pute the mean magnetic field at a scale l ≈ USW
2πf = USW∆t

2π . When considering the local
magnetic field, magnetic fluctuations are computed at each scale with respect to BLOC . As
a consequence, the resulting anisotropy changes with respect to the one we would find when
using the global mean magnetic field.

We will consider here only the global method which has two advantages on the local
method: (i) it has been used extensively in the solar wind, showing in particular different
geometries in the slow and fast winds, as we will see; (ii) it can be directly related to the
spectra and hence to the turbulent cascade rate and the resulting heating, which is not
possible with the local method [66].

4.3.1 The Maltese Cross

Measurements of turbulent anisotropy are made at 1 AU in order to ensure the stationarity
of the fluctuations ([65]). At this distance from the Sun, in situ measurements of turbulent
anisotropies have been done using the techniques already introduced in section 4.1: single-
spacecraft autocorrelations and multiple-spacecraft k-filtering/wave telescope techniques.

In slow winds turbulent anisotropy has been measured using k-filtering techniques at
1AU between 10−3 and 1Hz ([72],[71]). In fast winds, measurements have been done at
higher frequencies, between 10−2 and 1Hz ([85],[86]). For all cases observed using this
technique, turbulence was found to be developed in the plane perpendicular to the mean
magnetic field.

Single spacecraft techniques have also been used to measure turbulence anisotropy in
fast and slow winds but, in contrast with k-filtering techniques, they need to assume axial
symmetry around B0. Their advantage with respect to multi-spacecraft techniques is that
they are able to measure anisotropy at lower frequencies. It is at these low frequencies,
between 10−4 and 10−3Hz, that the autocorrelations of the magnetic fluctuations show an
structure known as the Maltese cross ([65]).

The interpretation of Matthaeus et al. was that the observed autocorrelation is composed
of two components: one aligned with the mean magnetic field and the other in the directions
perpendicular to B0. Since autocorrelations are computed in real space, the Fourier space
counterparts of these components would correspond to spectral isocontours mainly perpen-
dicular to B0, known as the ”2D” component of the Maltese cross; and the other component
would correspond to spectral isocontours extended along the mean magnetic field axis, the
”slab” component. Later analysis of the power anisotropy showed that the 2D component
contains about 80% of the energy ([9]).

In 2005, [23] found distinct structures for slow winds USW < 400kms−1 and fast winds
USW > 500kms−1: the 2D geometry was observed in slow winds and the SLAB geometry
in fast winds. This observation was made in the middle of the inertial range, from 10−3Hz
(entering Matthaeus et al’s interval of measurements) and 10−2Hz. In the same range of
frequencies as that of Dasso’s measurements, it was observed that for intermediate wind
speeds, the wave-vector anisotropy was also between the "2D" and the Slab geometries,
suggesting a continuous transition from one to the other as wind speed increases ([107]).

This change of the spectral anisotropy in fast winds is beyond the standard description
of MHD turbulent cascade, which is generally believed to be mainly developed in the plane
perpendicular to the mean magnetic field. Nevertheless at still higher frequencies, between
10−2 and 10−1Hz, the "2D" pattern has been found to be dominant ([86]).

Thus, in fast winds, anisotropy varies along the inertial range from an slab geometry at
low frequencies to a 2D one in the high frequency range of the inertial range. On the other
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Figure 4.3: Left: autocorrelations of the magnetic field fluctuations computed at 1AU with-
out distinction between fast and slow winds that form the so called Maltese cross (from:
[65]). Center: same kind of measurements done at higher frequencies and setting appart
slow (up) and fast wind (down) data (from:[23]). Right: reduced two dimensional spec-
tra computed from the integration of the 3D magnetic spectra in the azimuthal direction
to B0. They have been computed from slow (up) and fast winds (down) at 1AU using
multi-spacecraft techniques (from: [86])

hand, slow winds anisotropy is more robust, showing the same 2D geometry perpendicular to
B0 all along the inertial range. Figure 4.3 summarizes this variation of anisotropy depending
on wind speed and frequency.

4.4 Proton temperature gradient and turbulent heating

4.4.1 Turbulent amplitude and proton temperature variations in the in-
ner heliosphere

As we shall see in a moment, measurements of the proton temperature gradient in the inner
heliosphere, say (Helios mission) between 0.3 and 1 AU are somewhat controversial. To
understand why, let us examine the left panel in fig.4.4, which shows the daily variations of
bulk velocity and proton thermal velocity, during the first four months of Helios 1 mission.
A clear correlation is visible between velocity and proton temperature variations. It is not
absurd to think that this correlation begins not too far from the accelerating region, and
thus is somewhat a signature of the acceleration process. Then, as the plasma flows away,
this initial correlation works as an initial condition, that is, the velocity and temperature
live their lives independently.
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Figure 4.4: First 118 days of Helios 1 mission starting from 1975, during solar minimum.
(a) Synoptic view of daily averages. Solid line: bulk speed; dotted line: thermal proton
velocity (arbitrary units); thick solid line: heliocentric distance (between 0.3 and 1 au); (b)
Scatter plot of bulk velocity vs proton temperature Tp; (c) Scatter plot of bulk velocity vs
compensated temperature RTp.

In other words, during the advection of plasma volumes by the solar wind, the initial
correlation should in principle be progressively destroyed due to the plasma cooling during
transport, and, to a lesser degree, to a residual additional acceleration of the wind - which
act in opposite ways. Can we separate the two effects?

Let us try, ignoring for simplicity any systematic speed variations with distance. We
multiply the temperature by Rα, and measure the correlation between this compensated
temperature and bulk velocity. We find in this way that the correlation rises from 71% with
no temperature compensation (α = 0) up to the much higher value 91% when compensating
by α within [0.8,1.3]. If we use α outside this interval, the correlation coefficient decreases.

However, although heating, (that is, a cooling slower than adiabatic), is revealed in this
simple way, the interval of optimal α values is large, too large to conclude with certainty that
substantial heating is at work (no heating corresponds to α = 4/3 = 1.33). The problem is
that the systematic radial dependence is hidden by the much larger (correlated) variations
of bulk velocity and proton temperature. We give in fig. 4.4b-c the scatter plots of velocity
vs compensated temperature RαTp, with α = 0 and with α = 1.

Note that the turbulent amplitude as well is highly correlated with proton temperature,
as shown in fig. 4.5. Hence, the radial variation of the turbulent amplitude is also largely
masked by the variation due to the wind source.

Temperature gradient: a long series of studies

The methodology used to measure the index α of Tp ∝ Rα has changed and evolved with
years. The initial work [91] took the data from radial line-up configurations of the two
Helios satellites. They conclude to a small departure from the adiabatic prediction in the
case of slow solar winds (Vsw < 400km/s), while fast winds (Vsw > 600km/s) show a flatter
temperature profile.

In the following years, [62] improved the statistics of the previous method by measuring
the bulk velocity distributions at different heliospheric distances between 0.3 and 1AU for
fast and slow winds. Temperature was then computed for bulk velocity bins of 100 km/s.
As a consequence, the measured radial dependance of proton temperature for slow winds
becomes R−1, and flatter temperature profiles obtain for fast winds. Note that this work
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Figure 4.5: Same Helios 1 subset as in fig 4.4. Synoptic view of the daily fluctuations of
energy densities eV and eB of u (dotted lines), b = δB/

√
ρ fields (solid lines) averaged in

the octave around the two waveperiods of one hour (two upper curves) and 3 minutes (two
lower curves). Thick line: proton thermal velocity in arbitrary units. From [32].

Figure 4.6: Measurement of proton temperature as a function of radial distance with Helios
1 and 2 data for winds with mean speed over 600kms−1. Solid line corresponds to the fitted
function Tp ≈ 2.5 · 105(R/R0)−0.74K. From [37].

neglected the possible mixing of slow and fast wind populations due to the acceleration of
the winds.

Measuring of the velocity gradients between 0.3 and 1AU done by [4] was implemented
into Marsch’s methodology by Totten et al.[98]. This resulted in fast and slow wind proton
temperatures decreasing at the same rate, namely as Tp ∝ R−0.9±0.1.

Other authors have continued to measure the temperature gradient in the inner helio-
sphere assuming constant radial speed. Such is the case of [38], who finds in wind populations
with speed below 300 kms−1 that Tp ∝ R−0.58. For winds with speed over 600 kms−1, it
was found that Tp ∝ R−0.74 [37]. The difference with respect to Totten et al’s measurements
is larger for the case of slow winds, since they suffer a stronger acceleration in the inner
heliosphere.

More recently, [49] has found a non-monotonic variation of α with the temperature as-
sociated to the closest distance to the Sun. The hotter and cooler winds shown presented
an evolution similar to Totten’s, R−0.8, while intermediate temperatures reached a faster
decrease, R−1. The difference with respect to Totten et al. consisted in dividing the tem-
perature distributions into different classes instead of working with the velocity distributions.
The possible mixing of temperature classes was also accounted for in this work.

Thus, different methodologies used in the past have led to different results in the mea-
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surement of the evolution of proton temperature with heliospheric distance. In this thesis,
we choose for the sake of simplicity to take as a reference the simple profile Tp ' 1/R,
compatible with Totten et al’s result Tp ' 1/R0.9±0.1[98].

Possible explanations of the slow proton cooling in the inner heliosphere

As discussed in [93] there are four possible ways to slow down the proton cooling below 1AU:
(i) the compression of the plasma volume, (ii) the deposition of coherent energy at dissipative
scales, (iii) the divergence of the heat flux and (iv) the energy exchange with other plasma
particles. The contribution of each of these elements to the variation of proton temperature
can vary along the heliosphere. For instance, from 10 AU onwards, the temperature gradient
observed by [82] is strongly affected by the presence of pick-up ions [44][74], ionized particles
by the passage of the solar system through the Galaxy’s interstellar medium. Other works
also suggest a certain variability of the contribution of the turbulent cascade to solar winds
energy between 3 and 4 AU [57].

A significant part of the research done by past and future missions such as Parker Probe
and Solar Orbiter is dedicated to the proton temperature evolution within the inner helio-
sphere, below 1AU. Within this region, the observed proton temperature results from the
combination of the four mechanisms mentioned in the previous paragraph. Their contribu-
tions however appear to be unequal:

(i) Solar wind plasma is compressed mainly by the interaction of different wind streams.
It has been argued that the compression of streams contributes no more than a 15%
to proton heating [13]. [68] showed that this heating source is localized at the com-
pression regions between interacting jets (around 0.6 AU in their study). Since these
compression regions are not abundant and very localized between 0.3 and 1 AU [81],
and their estimated contribution to the total heating is low, it can be neglected as a
possible source of the low temperature decrease.

(ii) The energy spectrum has been measured by several authors within the inner heliosphere
[6] [59]. As reported in the following sections (4.4.2 and 4.4.3), several methods for
measuring, directly or indirectly the energy cascade rate associated with the turbulent
fluctuations in the inertial range of the solar wind indicate that it provides a source
term for heating large enough to explain the observed slow proton cooling, at least at
1 AU.

(iii) The possibility that the divergence of heat flux is the main contributor to the proton
temperature gradient is defended by Scudder [93]. The measurement of the proton
heat flux from Helios data via the third order cumulant (skewness) of the proton VDF
is not unique. The reason is that Helios particle detector selected particles in terms of
their energy per electric charge. Since alpha particles are positive charges with a mean
drift with respect to the proton VDF, the resulting VDF detected by Helios shows a
double peak, accounting for the protons and alphas contributions. The method used to
separate the VDFs was developed by Marsch et al.[62] and has been the most widely
used to evaluate proton heat flux. With Marsch’s method [62], the contribution of
the divergence of the proton heat flux can be neglected. On the contrary, Scudder
shows in his paper [93] that with his method to compute the skewness of the proton
VDF measured by Helios, the divergence of the proton heat flux becomes the main
contributor to proton heating of the solar wind. As it is acknowledged by Scudder
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[93], the discrepancies between the results based on his method and that of Marsch
will be solved only by the data gathered by the 3D mass-resolved spectrum of Parker
Solar Probe mission, in which the VDF of protons will be measured separately from
any other positive ion.

(iv) The exchange of energy between different particles species can also alter the evolution
of proton temperature in the heliosphere. Part of the contribution of (i), (ii) and (iii)
to proton temperature can be directed to the heating of electrons and the heavy ions
in the solar wind plasma [73], [3]. The opposite, electrons and heavy ions heating
protons, is also possible.

Considering the temperature and density of protons and alpha particles (see section
1.1.1), [100] estimates that alpha particles represent, at most, 12% to 16% of proton
turbulent heating and refers to previous bibliography that sustains this idea. The
dependency of the temperature and thermal velocity ratio of heavy ions to protons with
the collisional age for each species1 also suggests that the thermalization of heavy ions
(and therefore energy exchange by Coulomb collision with protons) occurs mostly at the
lower Corona [63], [99]. Until a direct measurement of Helium to proton temperature
ratio distribution at distances below 0.3 AU is done (by Solar Orbiter or Parker Solar
Probe missions), we consider that the role of heavy ions in the process of turbulent
heating between 0.2 and 1AU is negligible.

For what concerns the electrons, [95] argues that the measured excess of turbulent
heating goes to other ions and electrons (at most 1/3 of the total turbulent heating
[51][21][10]). In contrast, recent measurements by [96] show that the high electron
heat flux for both fast and slow winds is enough to explain the heating of this species.
Energy exchange by Coulomb collisions between electrons and protons can be neglected
in the inner heliosphere, according to this work. The observation of a different set of
solar wind data and the use of temperature measurements done by [37, 38] might
explain part of the differences with respect to the authors defending that part of the
turbulent heating is needed to heat the electrons and other species.

Hence, the role of electrons cannot be easily neglected in the energy balance equation
of the solar wind: either electrons might act as a source of heating for protons or
as a sink for part of the turbulent heating. Due to the lack of this ingredient in our
numerical model, we will not be able to establish that turbulent heating is the only one
responsible for the proton temperature gradient. In our work, we make the assumption
that all turbulent heating contributes only to the heating of protons. In future works,
the contribution of electrons to proton heating might be implemented into our work
thanks to a method based on the papers of [21] and [10].

4.4.2 Measuring turbulent heating via second order moments

A first idea to measure directly the turbulent heating possibly at the origin of the flat proton
temperature profile is to use the Kolmogorov phenomenological estimate QK41 (eq. 3.13) to
evaluate the turbulent energy flux and thus the turbulent dissipation. This has been done
by [100], who find that the Kolmogorov energy flux is a factor 10 above the critical heating
necessary to obtain Totten et al’s profile (Tp ∝ 1/R0.9), in cold winds (see fig4.7). A factor

1The collisional age is defined as the number of collisional timescale for a given species in the characteristic
expansion time for the wind. See for instance [63] for more details on the definition.
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Figure 4.7: Kolmogorov-like estimate of turbulent heating QK41 (eq. 3.13) at frequency f =
10−2 Hz (red symbols) and critical heating rate Qc (blue symbols), vs proton temperature
at 1 AU ([100]). Solid lines for each data population correspond to fitted power laws with
proton temperature.

close to 10 between the simple expression of QK41 and the true turbulent dissipation rate
is also found in direct simulations of MHD turbulence, as noted by [100]. Thus one may
consider that this result is a good indication that turbulent heating is close to critical.

When in hot winds, the ratio becomes close to a factor 40, however, the latter result
depends on the frequency, due to the flat spectral slopes in fast winds which makes the
Kolmogorov’s expression to be non constant in the inertial range (the authors made this
estimate in the frequency band around f = 0.01 Hz).

We have done the same exercice by using the first 118 of Helios I data, as specified in
the second section of [30]. Thus, we computed the Kolmogorov energy flux as

QK41 =
2πf

U0
(kEV (k) + kEM (k))3/2 (4.7)

where f = 4 · 10−3Hz and the energy of magnetic and kinetic fluctuations is δu2 ≈ kEV (k)
and δB2 ≈ kEM (k).

We compared our computation of the Kolmogorov energy flux to the critical dissipation
for 0.3 ≤ R ≤ 1 AU (see fig. 4.8), while the previous work considered only data at 1 AU.
If we find that the result doesn’t change much during the transport between 0.3 and 1 AU,
this will be a good indication that the turbulent heating hypothesis is at the origin of the
proton temperature profile Tp = 1/R0.9.

It is seen that in cold winds, the Kolmogorov energy flux is at all distances a factor
ten above the critical heating, in the frequency interval [5 10−4,5 10−3] Hz. With the same
data used to obtain the curves in fig. 4.8, we have computed averages during four distance
intervals. Figure 4.8 shows that at all distances the period with minimum solar activity and
cold winds is comparable to the period studied by Vasquez et al 2007 at 1 AU (note however
that the latter period is between 1998 and 2002, which includes a peak of solar activity).

Figure 4.9 shows values which ratio QK41/Qc grow quasi-linearly in the log-log plots with
frequency for hot winds. These show spectra systematically flatter than for cold winds (see
right panel of figure 4.2), that is, flatter than the k−5/3 of Kolmogorov’s phenomenology.
As a result, in fig. 4.9, the high frequency values show normalized values of the Kolmogorov
flux estimate that reach 50 at the high frequency end. The level is not constant, which is not
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Figure 4.8: Helios mission, solar minimum. Kolmogorov-like estimate of turbulent heating
QK41 (eq. 3.13) evaluated at frequency f = 4 10−3 Hz (crosses) and critical heating rate Qc
(lines), vs proton temperature. From left to right panels: increasing distance range from 0.3
to 1 AU. This is to be compared with the previous figure 4.7 which gives a similar analysis
using a much larger dataset at 1 AU. Vertical units: [106 J/(kgs)].

contradictory with the possibility that the true normalized heating is distance-independent,
as the Kolmogorov estimate is clearly not correct in hot flows.

4.4.3 Measuring turbulent heating via third order moments

Another, more direct method to check the ratio between turbulent heating and critical
heating rate (here Q?, corresponding to an index α = 0.9 for the temperature gradient),
consists in measuring third order moments using the Politano-Pouquet expression for the
energy flux in the incompressible limit of MHD ([80]), using several different hypothesis to
reconstruct the 3D moments from the 1D measurements.

Fig. 4.10 shows the ratio between the heating estimate via 3-third order moments Q3 and
the critical heating Q?, vs the product UTp. It is seen that for most cases except perhaps
for the coldest- slowest winds, heating is sufficient to generate the temperature profile Tp ∝
R−0.9 observed by Totten et al [98]. This has been shown to be true also for expressions of the
energy flux valid for compressible isothermal MHD([15, 5]): the measurement of the energy
cascade rate using these laws is equal or higher than for the Politano-Pouquet expression
([36])
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Figure 4.9: Helios mission, solar minimum. Kolmogorov estimate QK41 (eq. 3.13) of the
turbulent heating, normalized by the critical heating Qc vs frequency. Curves show averages
in four distance ranges from 0.3 to 1 AU. The distance interval [0.3, 1] is divided into four
equal subsets starting with 0.3 AU. Solid line: closest to 0.3 AU; then dotted, dashed, with
dotted-dashed for the interval closest to R = 1AU . Left: Low proton temperatures; right:
high proton temperatures.

Figure 4.10: Estimations of turbulent heating normalized by the critical heating (eq. 3.44)
at 1AU for slow and fast winds. Turbulent heating is computed via third-order moments
laws that have assumed an isotropic hydrodynamic turbulence (green triangles), isotropic
MHD turbulence (blue squares) or anisotropic MHD turbulence (red circles). From [95].
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Chapter 5

Plan of this thesis

We consider successively two issues related to solar wind turbulence: (i) finding the origin of
spectral anisotropy (in Part II) and (ii) understanding turbulent heating (in Part III). This
resembles a challenge in that observational measurements (eg, [98]) support a single proton
temperature gradient, pointing to a single turbulent heating regime in both slow and fast
winds, while the spectral anisotropy is known to differ in fast and slow streams, which may
on the contrary be interpreted as pointing to different turbulent regimes.

5.1 Spectral anisotropy: understanding the Maltese Cross

In part II we study the generation of the spectral anisotropy in both the slow and fast
wind. As we have seen in section 3.2.1, spectral anisotropy should provide a test for the idea
that turbulence and expansion are in competition in the Solar Wind. In this competition,
turbulence forces energy to cascade in (wave vector) directions perpendicular to the mean
field, and expansion forces wave vectors perpendicular to the radial directions to mimic an
inverse cascade that actually is a simple linear consequence of expansion. Such a direction
of research has been advocated a long time ago in the first 1D and 2D works by [33] and
[31], and more recently by [25].

The work by [102] (VG16) provides our starting point. In VG16, one shows using the
EBM equations that initial conditions naturally evolve towards distinct spectral shapes,
reproducing convincingly the two branches of the maltese cross ([65]). First, when the initial
spectrum (at 0.2 AU) has its wave vectors lying mainly in the plan perpendicular to the
mean field, the perpendicular cascade proceeds, with the spectrum remaining perpendicular
to the mean field while it rotates. This provides the first branch of the maltese cross.
Second, when the initial spectrum is isotropically distributed in all directions of Fourier
space, the evolution proceeds differently, with the wave-vectors being progressively aligned
in the radial direction. The latter structure may be interpreted as showing a dominant effect
of the expansion (leading to a collapse of wave-vectors parallel to the radial direction), while
the previous structure may be interpreted as showing a standard cascade with dominant
turbulent couplings.

We will denote here the two final relaxed regimes respectively as “2D” or gyrotropic,
corresponding to the structure observed in slow winds by Dasso et al 2005, and the radial
parallel regime as “R-Slab”, corresponding to the “Slab” structures observed in fast winds.
The reason of the change in terminology from “SLAB” to “R-SLAB” is that the Slab structure,
being found by assuming axisymmetry around the mean magnetic field, was believed to be
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indeed axisymmetric around the mean field, while in the EBM simulations they are found
to be axisymmetric around the radial direction. There is however no contradiction, since
the sampling method automatically transforms the latter into the former. In the VG16
simulations, to obtain a 2D structure at 1 AU, one must start at 0.2 AU with a 2D structure,
while, to obtain an R-SLAB structure at 1 AU, one has to start with an isotropic structure
at 0.2 AU.

Our goal here is to see how the previous picture changes when we include cross helicity.
The motivation to include cross-helicity is that it characterizes fast winds ([7]). This leads
possibly to purely linear waves, not to well-developed spectra, while in fact well-defined
power-laws are indeed observed, a paradox already remarked 40 years ago ([24]).

We first present the initial conditions for the simulations and the method. We then
study how the combination of expansion and cross-helicity affects the spectral anisotropy,
thus extending the work of VG16 to high cross-helicity simulations.

5.2 Turbulent heating in slow and fast winds

Previous attempts to cope numerically with turbulent heating in the solar wind ([11]) have
all considered a set of closure hypothesis, which allowed to write closed equations for second
order moments as total (kinetic and magnetic) turbulent energy, residual energy (magnetic
minus kinetic energy) etc... These unknowns were determined not only by the choice of
initial conditions, but also by the choice of a set of parameters that appeared in the closure
equations. Our aim here is to compute the heating rate in the plasma volume transported by
the wind, solving the primitive MHD equations, thus relying only on the initial conditions
of the plasma.

We will begin by considering the simplified case of 1D hydrodynamic simulations with
expansion. Then we give a copy of the paper we published in 2018 on turbulent heating of
slow winds. We then present the extension of these results to fast winds. To attack turbulent
heating, it will be necessary to consider rms Mach numbers close to unity, that is, larger
than the one considered in part II, so we will give an account of how spectral properties (in
particular anisotropy) are modified due to the increase of the Mach number.
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Part II

The Maltese Cross revisited
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Chapter 6

Parameters and initial conditions

We use here EBM simulations to study the generation of the spectral anisotropy in the
distance range [0.2,1] AU, which as seen previously (section 4.3.1) is different in the fast and
slow wind at 1 AU. All runs have a resolution of 5123 grid-points. The different parameters
are given in Table 6.1.3

6.1 Physical parameters and initial spectra

6.1.1 Expansion parameter, cross helicity, Mach number

We model the low frequency range anisotropy (around f = 6.6 10−3Hz) by adopting an
expansion parameter ε = 0.2. The simpler high frequency anisotropy around 10−1Hz should
in principle be modeled by using a much lower expansion rate. However, since this would
be highly demanding in computing time, we consider sufficient to consider zero expansion
simulations in this case.

Following the observations of the dependance of normalized cross helicity with wind
speed at the solar minimum of the 23rd solar cycle [22], we consider the slow wind to be
characterized by a zero initial cross-helicity (as defined in eq. (3.21)), and the fast wind to
be characterized by σ0

c ≈ 0.8. Note that in Dasso et al [23] the slow wind cross-helicity at 1
AU is mentioned to be ' 0.5 − 0.6. This is not contradictory as cross-helicity is known to
increase with heliocentric distance.

Simulations have a low Mach number to minimize the possible effects of compressible
fluctuations on the development of the anisotropies and enable to reach reasonably high
Reynolds numbers. Higher Mach numbers and their influence on spectral anisotropy will
be treated in part III. Since they do not show strong differences with respect to low Mach
simulations, they will not be considered here.

6.1.2 Initial spectra

We have chosen three initial spectral forms at 0.2 AU: (i) isotropic spectra (ISO simulations),
(ii) spectra perpendicular to the radial directions, that is in practice quasi-perpendicular to
the mean magnetic field B0 (gyrotropic or GYRO simulations) and finally (iii) a composite
spectrum we have called the Gyro-Alfvén spectrum (G+A simulations).

The G+A form has been inspired from [75]. It consist in the sum of the GYRO spectrum
and a 1D component along the radial direction made of Alfvén modes with maximum cross-
helicity, that is, propagating outward from the Sun. The relative amplitude of the 1D
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Figure 6.1: Initial total energy spectra, 2D slice of the angular spectrum in the plane kz = 0.
Left: Isotropic (ISO) initial spectrum; center: Gyrotropic (GYRO) spectrum; right: Gyro-
Alfvén (G+A) spectrum.

component fixes the cross-helicity of the whole spectrum: e.g., the 1D component energy
is equal to the GYRO component energy to build a global spectrum with negligible cross-
helicity σ0

c ≈ 0, while with an amplitude of the 1D component equal to 5 times the amplitude
of the GYRO component one obtains an initial σ0

c ≈ 0.8.
A 2D slice of the three dimensional spectra, i.e. E3D(kx, ky, kz = 0) is shown in fig. 6.1.

We want kinetic and magnetic energy equipartition with amplitude 1, divergenceless velocity
fluctuations, an initial 1D spectrum k−m0 and to set the initial cross helicity. This is obtained
by choosing randomly and independently z+ and z− in 3D Fourier space with an energy
scaling as k−

m0+2
4 and then reconstructing the u and b fields from the z+ and z− fields. It

is also worth noticing that, since the random number generator algorithm that we use is not
perfectly random, z+ and z− cannot be completely uncorrelated. This implies initial energy
equipartition is not perfect and also that the initial cross helicity is slightly different from
the value listed in table 6.1.3.

6.1.3 Domain aspect ratio

As explained in the introduction, the transverse sizes of the transported plasma volume
LY and LZ increase linearly with distance while the radial size remains constant. As a
consequence, the aspect ratio of the domain LX/LY decreases with distance as 1/R.

In a first numerical study of spectral anisotropy evolution between 0.2 and 1 AU, made
by [102] (VG16 from now on), the choice had been made of an initial aspect ratio at 0.2 AU
of Rx = LX/L

0
Y = 5, implying that the final domain aspect ratio LX/LY is unity. Such a

choice was made in part to satisfy the critical balance condition at large scales.
In homogeneous MHD simulations with mean magnetic field, it is generally admitted

that the standard strong cascade requires a (constant) aspect ratio with the size L‖ of the
domain parallel to the mean field B0 being larger than the perpendicular sizes L⊥ by the
“critical balance” ratio:

L⊥/L‖ = δB/B0 (6.1)

Satisfying to this condition at the beginning of the computation (0.2 AU) would require
L⊥/L‖ ' 1/2, i.e., an initial aspect ratio Rx = 2, as the initial mean field is close to the
radial direction. Note however that the critical balance condition cannot be satisfied during
the whole computation time. Indeed, at the end of the computation, the mean field has
rotated so as to be at 450 from the radial. There is thus no simple way to satisfy the critical
balance condition during the whole transport.
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Run Type Rx kmax kminx m0 σ0
c ε Mach B0 µ0

R1 ISO 5 64 0.2 5/3 0 0.2 0.3 (2, 2/5, 0) 2.5 10−4

R2 ISO 1 64 1 1 0 0.2 0.3 (2, 2/5, 0) 2.5 10−4

R3 ISO 1 64 1 5/3 0 0.2 0.3 (2, 2/5, 0) 2.5 10−4

R4 ISO 1 64 1 1 0.8 0.2 0.3 (2, 2/5, 0) 5.5 10−4

R5 ISO 1 64 1 1 0 0.4 0.3 (2, 2/5, 0) 2.5 10−4

R6 ISO 1 64 1 1 0.8 0.4 0.3 (2, 2/5, 0) 5.5 10−3

R7 GYRO 1 64 1 1 0 0.2 0.3 (2, 2/5, 0) 2 10−4

R8 GYRO 1 64 1 1 0.8 0.2 0.3 (2, 2/5, 0) 4 10−4

R9 G+A 1 64 1 1 0 0.2 0.3 (2, 2/5, 0) 6 10−4

R10 G+A 1 64 1 1 0.8 0.2 0.3 (2, 2/5, 0) 5 10−4

R11 ISO 5 64 1 5/3 0 0.2 0.3 (2, 2/5, 0) 2.5 10−3

R12 ISO 1 64 1 1 0 0 0.3 (2/
√

2, 2/
√

2, 0) 2 10−4

R13 ISO 1 64 1 1 0.8 0 0.3 (2/
√

2, 2/
√

2, 0) 4 10−4

Table 6.1: List of parameters for the initial conditions. Run: name of run; Type: class of
initial conditions (see figure 6.1); Rx: initial aspect ratio of the numerical domain; kmax: the
maximum wavenumber in directions perpendicular to radial; kminx : the minimum wavenum-
ber in the x direction (kminy =kminz =1 always); m0 : initial index of the reduced spectrum;
σc: initial cross-helicity; ε: initial value of the expansion parameter; Mach = urms/cs, with
cs the sound speed; B0: initial mean magnetic field; µ0 fixes the initial values of the three
diffusive parameters µ, η and κ (see eq. 2.30).

Another viewpoint consists in remarking that the aspect ratio of the domain controls
the proportion of available “local” triads (that is, quasi-equilateral triads) at a given time of
the simulation: an aspect ratio different from unity decreases the proportion of local triads,
thus somewhat inhibiting the standard strong cascade. So, choosing Rx = 1 will favor the
strong cascade at the beginning of the simulation, but not at the end (due to the expansion),
while the reverse is true if Rx = 5. So, in general, there is no very strong reason to prefer
Rx = 1 to Rx = 5.

However, in practice, this is not completely true. The choice of an initial aspect ratio
Rx can alter the distribution of the initial energy spectrum for Rx > 1 if no precaution is
taken beforehand. This will be discussed in detail later in the case of an initial isotropic
spectrum (see section 9.2).
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Chapter 7

Defining spectral properties in EBM
simulations

We consider first the procedures used to measure properties of the 3D spectra and then of
1D spectra.

7.1 Anisotropy of 3D spectra

We consider in this work the spectral aspect ratio A and spectral angle α with respect to
the radial axis as defined in [102] (VG16 from now on).

We take the same frame of reference than in section 2.2 with the x̂ axis in the direction of
propagation of the radial solar wind, pointing anti-sunward, ŷ axis orthogonal to x̂, coplanar
to it and to the mean magnetic field, and ẑ defined to complete the right-hand coordinate
system. Turbulent anisotropy will be shown qualitatively with a 2D slice of the 3D spectra,
E3D(kx, ky, kz = 0) at the end of the simulation, which corresponds to 1AU. Remark that
for all simulations, the mean magnetic field has an angle of 45◦ with respect to the radial at
the end of the simulation.

Let kmaj be the vector from the center of one isocontour to the most distanced point
from the center and kmin the vector from the center of the same isocontour to the closest
point from the center. We then define the aspect ratio of the isocontour as

A =
|kmin|
|kmaj |

(7.1)

and the characteristic angle of the main axis with respect the radial direction as

α = | arctan(
kmaj,y
kmaj,x

)| (7.2)

The anisotropy index A gives information about the shape of the isocontours, ranging from
0 to 1, that is, from a straight line when A=0 to isotropic isocontours for A=1 and taking
an ellipsoid shape for intermediate values. On the other hand, α ranges from 0◦, when the
isocontours are completely aligned to the radial, to 90◦, perpendicular to the radial. We
expect intermediate values for A and inclinations close to 0◦ or 45◦, the orientation of the
mean magnetic field axis at 1AU.

We remark that when the isocontours do not have a clear ellipsoidal shape, the method
used to define α is not able to accurately recover the major symmetry axis of the isocontour,
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Figure 7.1: 2D slice of the angular spectrum in the plane kz = 0 at the end of an ISO
simulation, i.e. E3D(kx, ky, kz = 0). The solid straight line corresponds to the largest vector
in modulus from the center to the isocontour of level 10−8, kmaj , while the dotted straight
line is the smaller vector in modulus from the center to the same isocontour, kmin. The
mean magnetic field axis (not showed) forms an angle of 45◦ with respect to the radial at
the end of all simulations.

as it can be seen in figure 7.1. Therefore, in order to complement the information provided
by α, we will also show the 2D slice of the 3D spectra along with the other information
about turbulence anisotropy.

We also signal two particularities that appear throughout several figures showing A and
α. On the one hand, for kmaj < 2 the isocontours just have a few points due to resolution
limitations. As a consequence, measurements of A and α below this threshold are not
trustworthy. On the other hand, for simulations with aspect ratio of 5, the isocontour tend
to reach the limit of the numerical box at about kmaj ≈ 10. Beyond this distance the
periodic boundary conditions at the limit of the numerical box open the isocontours, and
the computed A and α parameters loose all physical meaning for those isocontours.

7.2 1D spectral slopes

We now consider defining the reduced energy spectra in the radial direction and in the ẑ
direction (always perpendicular to the radial and to B0 by construction), where the cascade
is expected to develop. An example is shown in figure 7.2.

The time of the simulation is divided uniformly into into five intervals. Then, the reduced
spectra have been averaged on each of these intervals. Since we are interested on turbulent
anisotropy at 1AU, i.e., the end of the simulations, we focus on analyzing the reduced of the
last time interval, and use the others to check the stationarity of the inertial range. Note
that during the first non-linear times, the system has not yet entered the turbulent regime,
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so the first interval is not representative of a developed turbulent cascade. The difference
of amplitude between spectra shown in figure 7.2 does not represent the real decrease of
the amplitude of the fluctuations. For each averaged spectrum, the amplitude has been
multiplied by a constant to obtain a more or less constant separation between the spectra.

Due to the dissipation of energy, the amplitude of the fluctuations diminish with time,
so the lower spectra correspond to the last intervals of the simulation. To better perceive
the spectral slope, all reduced spectra have been compensated by k5/3. In the same spirit
of clarity for the spectral slope, we have normalized the wave-numbers in the abscissa axis
by an estimation of the dissipative wave-number already defined in equation (3.12),

kd = (
ν
∑

k k
2( û

2

2 + b̂2

2 )

ν3
)1/4 (7.3)

This normalization gives as a result the dissipative part of the spectra for the normalized
wave-numbers larger than 1 and the inertial range for values between zero and 1. A visual
inspection in figure 7.2 show that this normalization is not always optimal: part of the
dissipation ranges may lay in a range of normalized wave-numbers below of 1. Nevertheless,
this normalization gives a qualitative indication of the beginning of the inertial range that
is useful to compare the variation in time of the inertial range length.
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Figure 7.2: Temporal evolution of the 1D total energy spectrum in the x direction for an
ISO simulation. Each thin solid line correspond to the reduced spectra compensated by k5/3

and averaged over one fifth of duration of the simulation. The arrow indicates the temporal
evolution for the spectra: first time interval on top and the last one at the bottom. The
solid thick line below the spectra helps to signal the length of the inertial range at the last
time interval. Values in the vertical axis are arbitrarily chosen to help visualize the spectral
evolution and are not representative of the real decrease of the amplitude of the fluctuations.
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Chapter 8

Results

In the following, except explicitly mentioned, we fix the initial domain aspect ratio to be
most of the time Rx = 1, and the initial spectral index to bem0 = −1. We have checked that
after an initial phase, the spectra don’t depend on the choice of these initial parameters. In
the zero cross-helicity case, spectral anisotropy bas been analyzed by VG16. Our results will
be compared with those of VG16 in the discussion. We consider successively starting from an
isotropic spectrum (ISO), a spectrum with main axis perpendicular to the mean magnetic
field (GYRO), and a spectrum combining a GYRO symmetry with a radial component,
namely the Gyro-Alfvén spectrum (G+A).

8.1 Initially ISO spectrum: expansion and cross helicity ef-
fects

We study in this section how an isotropic spectrum transforms with time/distance, depend-
ing on the initial cross helicity σ0

c and expansion rate ε. We compare the evolution with
increasing values of the initial expansion rate ε and with low and large initial cross helicity
σ0
c . Then we consider the evolution of initially gyrotropic and Gyro-Alfvén spectra, with

fixed non zero expansion rate ε = 0.2.

8.1.1 Varying expansion at zero cross-helicity

Increasing the initial expansion rate corresponds physically to focusing on larger scales in the
solar wind turbulent spectrum. When doing so, one expects to observe growing departure
from the known properties of the standard turbulent cascade perpendicular to the mean
field ([25], VG16).

The evolution starting from the ISO symmetry with zero cross-helicity and initial spectral
index m0 = −1 is shown in fig. 8.1. The figure shows three runs with growing initial
expansion rates ε = 0, 0.2, 0.4 respectively in rows one, two and three (respectively runs
R12, R2, R5). The first three rows show the 1D spectra (first two columns, vs kx and kz,
with normalization by the dissipation wavenumber kd), and the last column shows energy
isocontours in 2D slices at kz = 0 of the final 3D energy spectrum. The properties of the
energy isocontours are summarized in the bottom row, which shows their aspect ratio A(k)
and the angle α(k) between the radial and the main axis: the solid line shows the case ε = 0,
the dotted line ε = 0.2, the dashed line ε = 0.4.
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Figure 8.1: Varying ε: ISO initial spectrum, σ0
c = 0, spectral evolution of runs R12 (ε = 0,

first row), R2 (ε = 0.2, second row), R5 (ε = 0.4, third row). Rows 1 to 3: left panel, 1D
energy spectra averaged in five time intervals, compensated by k−5/3, vs kx; mid panel, same
vs kz; right panel, 2D slices of the final 3D spectra E3D(kx, ky, kz = 0). Last row: spectral
aspect ratio A(k) and angle α(k) between main axis and radial (R12: solid line, R2: dotted,
R5: dashed).

With zero expansion, in the interval 3 ≤ k ≤ 20 (which encompasses the inertial range),
one sees a complete loss of the initial isotropy: one finds a perfect alignement of the energy
spectral isocontours with the perpendicular direction to the mean magnetic field. With ε =
0.2 or 0.4, one sees a partial loss of isotropy: the isocontour’s main axis adopt an angle α in
between the radial (0◦) and the mean field perpendicular (45◦), in average around 30◦. This
angle of 30◦ indicates a regime not far from the gyrotropic, which is in complete contrast
with the result of VG16 (Run C, with nearly the same initial conditions than R6), that
passed from an isotropic initial spectrum to energy isocontours aligned with the radial at
the end of the simulation. The cause of this discrepancy will be discussed in section 9.2.

8.1.2 Varying expansion at large cross-helicity

When initial cross-helicity is large, σ0
c = 0.8, the next fig. 8.2 shows a significantly different

result: while with zero expansion the angle α oscillates again around 45◦, the non zero
expansion rates lead to α ' 15◦ (for ε = 0.2) and α ' 10◦ (for ε = 0.4).
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Figure 8.2: Varying ε: ISO initial spectrum, σ0
c = 0.8, Rx = 1, spectral evolution of runs

R13 (ε = 0, first row), R4 (ε = 0.2, second row), R6 (ε = 0.4, third row). Same caption as
in fig. 8.1. Last row: R13: solid line, R4: dotted, R6: dashed line.

In summary, increasing σ0
c increases the basic effect of expansion, turning more the main

cascade axis from the direction perpendicular to the mean field to the radial axis.

8.2 Systematic comparison of zero vs large cross helicity

8.2.1 ISO

As it can be seen in figure 8.3, the value of the anisotropic index A is independent of σ0
c ,

giving an almost constant value of A = 0.4 for simulations R2 and R4. The angle α of
energy isocontours however, shows a dependence on σ0

c . Isocontours are more aligned with
the radial (α ≈ 15◦) with high initial cross-helicity, while when σ0

c = 0, one gets α ≈ 30◦.
Simulation R2 (σ0

c = 0) maintains low cross helicity values, |σc| < 0.1 during the whole
simulation. On the other hand, for simulation R4 (σ0

c = 0.8) cross helicity decreases slowly,
until it reaches σc = 0.7 at the end of the simulation. The evolution of cross helicity is
qualitatively the same for GYRO and G+A simulations: for the cases with high initial cross
helicity, σc decreases slowly and for low initial cross helicity, σc remains low during the whole
simulation.

All reduced spectra in figure 8.3 show a developed inertial range with a 5/3 slope,
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Figure 8.3: Varying σ0
c : ISO initial spectrum, Rx = 1, m0 = −1, ε = 0.2, spectral evolution

of runs R2 (σ0
c = 0, first row) and R4 (σ0

c = 0.8, second row); same caption as in fig. 8.1.
Left panel of the bottom row also shows the temporal evolution of the normalized cross
helicity. Last row: R2: solid line, R4: dotted line.

although its length depends on the initial cross-helicity, being larger for zero cross- helicity.
While for R2 the reduced spectra in the x and z directions have an inertial range from 0.015
to 0.06 kx/kd and from 0.05 to 0.2 kz/kd respectively, the corresponding inertial ranges when
the initial cross-helicity is σ0

c ≈ 0.8 spans from 0.025 to 0.05 kx/kd and from 0.05 to 0.15
kz/kd for the reduced spectra in the x and z directions.

8.2.2 GYRO

For GYRO runs, the effect of cross-helicity in turbulent anisotropy is not as remarkable
as for ISO simulations. In figure 8.4, runs R7 (σ0

c = 0) and R9 (σ0
c ≈ 0.8) show a small

difference in the isocontour aspect ratio A: for σ0
c = 0, it takes values closer to 0.4 for low

kmaj and slowly increases up to 0.55, whereas it stays at 0.55 for σ0
c ≈ 0.8. This is similar

to the ISO case (fig. 8.3). The angle α is also changed by cross helicity. For run R7, α takes
values between 30◦ and 35◦ with a peak of α = 75◦ for kmaj = 4.

The reduced spectra of figure 8.4 show a developed spectrum with a 5/3 for x and z
direction when the initial cross-helicity is zero. The inertial ranges spans from 0.015 to 0.04
kx/kd in the x direction and 0.04 to 0.1 kz/kd for the z direction. On the other hand, for
the high σ0

c , the reduced spectra in the x direction are steeper, with m = −2.

8.2.3 Gyro-Alfvén model

For Gyro-Alfvén runs (see figure 8.5 ), high cross-helicity simulations become strongly aligned
with the radial. For the σ0

c = 0 run, R9, the spectral aspect ratio A ≈ 0.6, while the runs
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Figure 8.4: Varying σ0
c : GYRO symmetry, Rx = 1, m0 = −1, ε = 0.2, spectral evolution of

runs R7 (σ0
c = 0, first row) and R8 (σ0

c = 0.8, second row); same caption as in fig. 8.3; last
row: R7: solid line, R8: dotted line.
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Figure 8.5: Varying σ0
c , Gyro+Alfvén model, Rx = 1, m0 = −1, ε = 0.2, spectral evolution

of runs R9 (σ0
c = 0, first row) and R10 (σ0

c = 0.8, second row): same caption as in fig. 8.3;
last row: R9: solid line, R10: dotted line.
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with σ0
c ≈ 0.8, the spectra become very flat, with A ≈ 0.4. For σ0

c = 0, α ≈ 30◦, while for
large σ0

c , it lies between 0◦ and 10◦. Reduced spectra in the x direction show slopes steeper
than 5/3, k−2 for R9 and k−3 for R10, low and high cross-helicity respectively. In the z
direction, reduced spectra are closer to k−5/3, with inertial ranges from 0.08 to 0.15 kz/kd
for R10 to 0.02 to 0.07 kz/kd for R10.
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Chapter 9

Discussion

9.1 Summary

In conclusion, we find again, as in VG16, two final stable attractors: the GYRO and the
R-SLAB.

The main factors that lead to the R-SLAB geometry, with the main axis closest to the
radial are: first expansion, then cross helicity, and last the initial geometry. This is at
variance with the VG16 results in which expansion and an ISO initial geometry with zero
cross helicity were sufficient.

The case of the initial ISO geometry is a good example (see fig. 9.1): (i) with zero
expansion, the ISO spectrum transforms into a gyrotropic spectrum, namely with α = 45◦,
whatever the value of cross helicity; (ii) with finite expansion, the main spectral axis starts
turning towards the radial, the larger the cross-helicity, the better the alignement with the
radial.

9.2 Explaining the discrepancy with VG16

As explained in section 8.1.1, the spectral anisotropy obtained for run C in VG16 differs
from the one obtained in the mentioned section for R5, despite the apparent similarity in
their initial conditions. Recall that the 30◦ inclination of the isocontours for run R6 is in

Figure 9.1: ISO initial conditions, summarizing how the final spectral main axis varies with
ε and σ0

c : passing from the GYRO structure perpendicular to the mean field (when ε = 0)
to the R-SLAB (quasi-radial) structure (when both ε and σ0

c are large).
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complete contrast with the result of VG16 (Run C, with nearly the same initial conditions
than R6), that passed from an isotropic initial spectrum to energy isocontours aligned with
the radial at the end of the simulation. The cause of this discrepancy will be discussed in
section 9.2. .We found that the origin of the difference between our work and VG16 comes
from the fact that the ISO initial geometry in VG16 is not truly isotropic.

Indeed, in VG16, the initial domain aspect ratio is larger than unity (Rx = 5). In that
case, there is a large scale range 0.2 ≤ kx ≤ 1 which does not exist in the two other directions
ky,z for which the excited range is ky,z ≥ 1. In VG16, this range was initially excited, while
in our simulations, it is not, precisely to obtain true isotropy at all scales.

In VG16, the large scales are not at all isotropic in the range 0.2 ≤ k ≤ 1: only radial
wave vectors are excited in this range. Since this is a large scale range, it contains much
energy, so this may trigger a large parallel component in the whole wave number range after
some time. This is indeed what happens, leading to an exaggerate dominance of the radial
scales at the end. In the following, we denote by kminx the smallest excited wavenumber in
the radial direction (see table 6.1.3).

Our argument is illustrated in fig. 9.2 by three runs: runs R11, R3 and R1. They all
have an initial spectral index m0 = −5/3. Runs R11 and R3 are Isotropic runs already
considered here, with respectively Rx = 5 and Rx = 1, with kminx = 1 (see table 6.1.3). Run
R1 has Rx = 5, but now with kminx = 0.2, i.e., non isotropic in the range 0.2 ≤ k ≤ 1. One
sees that, while runs R11 and R3 exhibit the same main symmetry axis rather far from the
radial axis, run R1 main axis is seen to be close to the radial. than the others, actually close
to what we have obtained in our previous results by adding a large cross helicity from start
to our ISO initial pattern.

70



(r)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(r)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(r)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(r)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(r)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(p)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(p)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(p)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(p)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(p)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

-15-10 -5 0 5 10 15
kx

-15

-10

-5

0

5

10

15

k
y

(d)

1
0

-9

1
0

-9

(d)

-15-10 -5 0 5 10 15
kx

-15

-10

-5

0

5

10

15

k
y

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

-15-10 -5 0 5 10 15
kx

-15

-10

-5

0

5

10

15

k
y

(d)(d)

-15-10 -5 0 5 10 15
kx

-15

-10

-5

0

5

10

15

k
y

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(f)

0.01 0.10 1.00
kx/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

(h)

0.01 0.10 1.00
kz/kd

0.01

0.10

1.00

10.00

100.00

E
to

t 
k
^(

5
/3

)

-15-10 -5 0 5 10 15
kx

-15

-10

-5

0

5

10

15

k
y

(e)(e)

-15-10 -5 0 5 10 15
kx

-15

-10

-5

0

5

10

15

k
y

(a)

0 5 10 15 20
k_maj

0.0

0.2

0.4

0.6

0.8

1.0

A

(b)

0 5 10 15 20
k_maj

0

15

30

45

60

75

α

Figure 9.2: Comparing runs with complete and incomplete initial isotropy, σ0
c = 0, spectral

evolution of runs R11 (Rx = 5, kminx = 1, top row), R3 (Rx = 1 and kminx = 1, second row),
and R1 (Rx = 5 and kminx = 0.2, third row). Same caption as in fig. 8.1. Last row: R11:
solid line, R3: dotted, R1: dashed line.
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Part III

Can the Maltese Cross heat?
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In this third part of the thesis, we simulate the turbulent evolution of the plasma and
measure the visco-resistive dissipation of turbulence via the turbulent cascade, following the
plasma between 0.2 and 1 AU. Measuring the visco-resistive dissipation allows us to bypass
our ignorance of the exact mechanism that dissipates turbulent energy in the solar wind.
Indeed, inasmuch as the Reynolds number is large enough, the energy flux flowing from
large to small dissipative scales leads in principle to a universal measure of the dissipation,
independent of the precise value of viscosity and resistivity. Moreover, since equations
transmit the amount of energy lost by visco-resistive dissipation to the internal energy, we
will then be able to measure the true cooling rate of the plasma.

We first report in the following a study of the heating produced by 1D shocks transported
by the wind. The numerical and analytical results obtained with this first model will give
us hints to understand the results of the more complex 3D MHD case.

We then consider the 3D MHD in the case of the slow wind, published in an ApJ paper
on 2018, and finally the case of the fast wind.
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Chapter 10

1D turbulent heating

We consider here the evolution of a 1D spectrum in the expanding (radial) wind, that is,
with wavevectors all aligned in a given direction. We consider two cases: wavevectors in the
radial direction, and wavevectors in a transverse direction (perpendicular to the radial).

10.1 1D HD equations with expansion

The code used in this section, BOX1D from now on, solves a hydrodynamic version of the
EBM equations (eqs. 2.26):

∂tρ+
(ρu)′

aα
= −2ρ

ε

a

∂tu+
uu′

aα
+

1

ρ

P ′

aα
=
µ

ρ̃
u′′ − αu ε

a

∂tP + u
P ′

aα
+ γP (

u′

aα
) = −2γP

ε

a
+ ρ̄κT ′′

P = ρT

(10.1)

where u′ = ∂xu, u′′ = ∂xxu, α = 0 for wave vectors in the radial direction and α = 1 for wave
vectors in a transverse direction. We have used the same notations as for the EBM equations
(see section 2.2), including the units used to measure space, time, velocity, temperature and
density.

There are three different time-scales in this system: the expansion time, texp = R0/U0,
the non-linear time, tNL = 1/(ku) and the acoustic time tL = 1/(kcs). Note that if we
assume a Kolmogorov’s scaling for the velocity fluctuations, we can write down how the
characteristic times scale with wave numbers: tL ∝ k−1, texp ∝ 1, tNL ∝ k−2/3. (see
fig. 10.1).

Consider first the case where expansion dominates all other terms (Section 3.2.2), i.e.
texp < (tL, tNL), then, for the particular case of a wave in the radial direction:

δρ/ρ ∝ 1 (10.2)

δu/cs ∝ R2/3 (10.3)

cs =
√
γT ∝ R−2/3 (10.4)

(10.5)
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Figure 10.1: Scheme of the different characteristic times for the Hydrodynamic expanding
Box as fonction of the wave-number. The characteristic time of propagation of linear sound
waves is denoted by tL, the characteristic time for non-linear interactions is defined by tNL
and the characteristic expansion time by texp.

This we will call the non-WKB regime. It can be easily seen that the former relations
are obtained by neglecting all terms of equations 10.1 with the exception of the temporal
variation and the linear damping terms proportional to ε/a.

If instead the acoustic term dominates in a particular range of scales, tL < (texp, tNL),
the scaling laws change along; this is the so-called WKB regime which reads:

δρ/ρ = δu/cs ∝ R1/3 (10.6)

cs ∝ R−2/3 (10.7)

δu ∝ R−1/3 (10.8)

These equations can be obtained analytically from the conservation of wave-action1, an
invariant in the WKB regime. Similar equations can be derived for the case of a wave with
wavevector perpendicular to the radial.

Finally, when non-linear interactions dominate, tNL < (tL, texp), the WKB-theory cannot
predict the evolution of variables.

10.1.1 Modified Burgers equation and semi-analytical solutions

We now derive a simplified model (a modification of Burgers’ equation [46]) equation with
non-linear terms taken from the HD 1D equations at zero pressure, but depending only on

1Wave-action is defined as the energy of a wave over the frequency of the wave, E/ω. In the case of sound
waves, E = ρδu2 and ω = kcs = ω0cs/(U0 + cs). Note that in the absolute frame of reference, the sound
waves transported in a fluid with mean velocity U0 have a frequency ω0 = k(U0 + cs).
The conservation of wave-action states

∂t(E/ω) +∇ · ((U0 + cs)(E/ω)) = 0 (10.9)
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the variable u, the amplitude of the velocity perturbation [33]. In order to do so, we assume
the WKB limit. We thus obtain an equation similar to the well known Burgers equation,
but with a new linear term that accounts for damping due to expansion:

∂tu+
1

aα
uu′ = νu′′ − nu ε

a
(10.10)

The pair (α, n) is determined by the direction of propagation of the modes: α = 0 and
n = 1/3 for radial propagation; α = 1 and n = 5/6 for the case of perpendicular propagation.
These parameters are recovered from the WKB solutions of equations 10.1. Neglecting the
viscous and nonlinear terms of the equations and imposing the WKB predictions (see eq. 10.8
for the radial case), the values of α and n are obtained.

It is worth noticing that in the radial direction, although the plasma doesn’t expand
in this direction, linear modes are still affected by the damping caused by expansion. The
cause of this counter-intuitive phenomenon is that expansion always acts to damp average
quantities as density and sound speed, which has an effect on fluctuations as well.

The WKB term in the modified Burgers equation makes difficult the analytical treatment
of equation 10.10. However, a change of variables allows to recast the equations in the form
of a standard Burgers’ equation. This is done by adopting a new time variable, τ , and
amplitude, v:

u =
v

an
(10.11)

εt = [1 + (1− β)ετ ]1/(1−β) − 1 (10.12)

with n = α + β. Using the new variables v and τ , equ. 10.10 takes the form of a standard
Burgers equation:

∂tv + v∂xv = ν∂2
xv (10.13)

We can now predict the evolution of the amplitude. To do so, we assume that an inertial
range has developed, starting from the largest scales. We then derive from eq. 10.15 an
equation for the evolution of the average energy content in the domain, integrating the
kinetic energy in the periodic domain of length L = 1/k0. Assuming periodic boundary
conditions, this reads:

∂t

(
(1/L)

∫ L

0

v2

2
dx

)
= −ν(1/L)

∫ L

0
v′2dx (10.14)

The nonlinear term doesn’t appear, as it is the average of a total derivative, which is zero
in the periodic case. We obtain (eg, [8]), changing notation as

√
< v2 >→ v:

∂t
v2

2
= −k0v

3 (10.15)

The contribution of the dissipative term in eq. 10.14 has been transformed into the term
−k0v

3 by evaluating the shock width in terms of the viscosity and wave amplitude as l ' ν/v.
The solution for the amplitude in terms of the new variables is:

v =
v0

1 + k0v0τ
(10.16)
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We express the solution in terms of the original variables using

v0 = u0 (10.17)

τ =
a1−β − 1

ε(1 + β)
(10.18)

where we recall that a(t) = R/R0 = 1 + εt (eq. 2.23).
Thus, the general evolution for the amplitude of the fluctuations in terms of the original

variables is
v =

u0

1 + k0u0(a
1−β−1
ε(1+β) )

(10.19)

It is worth to express separately the parallel and the perpendicular cases. For the parallel
case, α = 0, β = n = 1/3

u =
v

an
=

u0

a1/3[1 + k0u0(a
2/3−1
ε4/3 )]

(10.20)

For the perpendicular case, α = 1, β = −1/6, n = 5/6:

u =
v

an
=

u0

a5/6[1 + k0u0(a
7/6−1
ε5/6 )]

(10.21)

Note that in the limit of a = R/R0 � 1 we have u ∼ ε
a ∝ 1/R for the parallel case and

u ∼ ε
a2
∝ 1/R2 for the perpendicular one. As expected, the amplitude of the fluctuations

decreases faster in the direction transverse to the radial, but it also decreases in the radial
direction, thanks to the couplings of magnitudes in the WKB regime.

From this point onwards, we have to present several remarks. First, the amplitude of the
fluctuations diminishes in both cases as a power law of the heliospheric distance. Second,
from 10.12 it can be seen that the formation of a shock wave, or, what is the same, the
beginning of the turbulent cascade, t∗, depends on the direction and the value of ε. In the
standard Burger’s equation, this critical time can be estimated by τ∗ ≈ 1/(k0v0) = 1. Thus,
for the original variables,

εt∗ = [1 + (1− β)ε]1/(1−β) − 1 (10.22)

In the parallel direction, even in the limit of high expansion parameter, ε� 1, the critical
time can be estimated by t∗ ≈ ε

β
1−β . On the contrary, in the perpendicular direction, there

is an upper limit for the expansion parameter, beyond which the critical time takes negative
values. In those cases, no shock is developed and the system is completely dominated by
expansion.

10.2 Simulations of shock turbulence with transverse waves

10.2.1 Initial conditions

Numerical simulation will be performed for both radial and perpendicular directions using
a monochromatic wave as initial condition, u = 10−2 cos(x) in real space, or an initial
spectrum with scaling in k−1. In this way, we pretend to observe the effects that expansion
applies on a particular mode and what happens in a more realistic situation when several
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Run Spectrum ε kmax x/y (α, n) µ0

RB1 δ(k − 1) 0 1 (0, 0) 5 · 10−4

RB2 k−1 0 16 (0, 0) 5 · 10−4

RB3 δ(k − 1) 100 1 Radial (0, 1/3) 5 · 10−4

RB4 k−1 100 16 Radial (0, 1/3) 5 · 10−4

RB5 δ(k − 1) 0.5 1 Transverse (1, 5/6) 10−4

RB6 k−1 0.5 16 Transverse (1, 5/6) 10−4

Table 10.1: Run column contains the names used for the simulations; Spectrum designates
the initial energy spectrum; ε = (U0/R0)/(k0urms) denotes the expansion parameter; kmax
stands for the maximum wave-number containing energy at the beginning of the simulation;
x/y defines the direction of the wavevector, radial or transverse; the pair (α, n) varies,
depending on the wavevector direction: (0, 1/3) for the radial direction, (1, 5/6) for the
transverse direction and (0, 0) without expansion; µ0 is the common initial value of the
diffusive parameters (viscosity and conduction).

modes interact with each other. The choice of a k−1 scaling is made by reference to the
large-scale 1/f spectrum in the solar wind (see fig. 4.1). For each initial conditions, we will
vary the expansion parameter, in order to show three different cases: first the case with zero
expansion (ε = 0), one where the expansion effects dominate non-linear couplings (ε = 100),
and a last run with (ε = 0.5).

Simulations initial conditions are presented in table 10.1. In all cases, the space resolution
is Nx = 512 and initial temperature is T=15. Numerical simulations will be performed for
both radial (α = 0) and perpendicular directions (α = 1). For each direction, we take two
types of initial energy distribution: either a monochromatic wave of the form u = 10−2cos(x)
or a spectrum with an initial scaling in k−1. The expansion parameter is taken according to
the direction: ε = 100 for the radial direction, ε = 0.5 for the perpendicular one and ε = 0,
that is common to both of them. These values of the expansion parameter have been taken
so turbulence can develop according to the predictions made in the previous section.

10.2.2 Results

In the figures of this section, we show the evolution in time of the energy spectra compensated
by k−2 (the scaling expected for a shock) and the evolution of the energy dissipation of
the complete system described by equations (10.1) compared to the right-hand side terms
(damping and viscous terms) of equation (10.10). The evolution in time of the energy
spectra show the energy spectra at six instants, equally spaced in the simulation, beginning
by the thin solid line and ending by the dashed triple-dotted line. For what concerns
the dissipation curves, we also compare them to the energy cascade rate predicted by the
expression k0u

3/aα, directly obtained from Burgers’ equation. We expect that the energy
cascade rate equals the dissipation term ν(∂xu)2 once turbulence is fully developed.

In figure 10.2 we see the results corresponding to single mode initial conditions. For the
non expanding case, turbulence develops an inertial range characterized by a spectral index
of 2, as expected. The dissipation terms show that the energy dissipation from the BOX1D
equations and ν(∂xu)2 match perfectly, since in the absence of expansion this is the only
term responsible for energy dissipation. The energy cascade rate converge towards both of
them at the peak of dissipation, t∗ ≈ 100 that corresponds to the shock formation time,
which is nicely given also by the nonlinear time which reads tNL ≈ 1/(k0u0) = 100.
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When the initial expansion parameter is ε = 100 and modes propagate in the radial di-
rection, we again observe a well developed inertial range in k−2. However, energy dissipation
becomes remarkably different with respect the non-expanding case: during the first half of
the simulation the main contribution to the total dissipation is given by the damping term
due to expansion (2/3) εau

2, while during the second half the damping term contributes as
much as ν(∂xu)2. It is during this second half that shocks are formed, approximately at
t∗ ≈ 600 (as indicated by the local peak of energy dissipation) and the energy cascade rate
k0u

3 converges with the viscous dissipative term from this moment onwards. We remark
that the shock formation time does not match anymore with the estimation of the non-linear
time obtained from Burgers’ equation, tNL ≈ 100. Instead, it is closer to t ≈ 555.7, the
value given by equation (10.12), which is derived from the burgers-like model (eq. 10.10).

It is also worth mentioning the fluctuations in the energy dissipation appearing in the
second half of the simulation, which can also be observed in the energy dissipation of run
RB4 (see figure 10.3). In both cases, the energy damping due to expansion predicted by
the WKB theory (dotted line in the bottom panels of figures 10.2 and 10.3) match well the
dissipation of energy during the first half of the simulation (before we enter the turbulent
regime). As it is indicated by equation 10.7, the WKB theory predicts an increase with
time of the Mach number as M =

√
δu/cs ∝ R1/6, close to the Mach evolution in the

simulations (not shown). Hence, compressibility in the simulation increases with time2.
As a consequence, kinetic energy is no longer a proper approximation for the second order
invariant (instead of the sum of kinetic and magnetic energy) and energy exchanges between
the kinetic and the internal energy are produced. The fluctuations of the kinetic energy
are then amplified when its derivative is computed. Since we are interested in the trend of
energy dissipation we have smoothed the energy dissipation curve taking local averages of
the function on a four points width.

Seemingly to the two previous cases, when ε = 0.5 and the mode propagates in the same
direction of expansion, the spectral index tends to 2, but in this case the inertial range is
about one wave-number decade larger than in the previous case. This can be explained by
the choice of a smaller viscosity and the subsequent shift of the dissipative region to higher
wave-numbers.

On the other hand, the main contribution to total energy dissipation comes from the
damping due to expansion (5/3) εau

2 during the whole simulation. Contrary to the radial
case, for which the shock was formed after the time interval during which expansion domi-
nates the dissipation, now the shock is formed during this time interval at t∗ ≈ 200. From
that moment onwards, viscous dissipation and the energy cascade rate prediction converge,
although the latter has been modified to account for the expansion of the domain, becoming
k0u

3/a. Again, we remark that this does not match the Burgers’ equation prediction of
tNL ≈ 100, but it is closer to the value given by equation (10.12), that is, t ≈ 123.3.

In figure 10.3 we observe that when several modes are initially involved in the develop-
ment of turbulence, we obtain similar results to the ones obtained with a single mode. There
are however three differences. First, spectra is more irregular; however, despite that, when
averaged over long times, they conserve a scaling in k−2. Second, there is no clear peak
of viscous dissipation that can point to the shock formation time, t∗. Third, the predicted
energy cascade rate k0u

3/aα does not converge as well toward the viscous dissipation but
their values stay close. Dissipation due to the expansion terms 2n εau

2 behave in the same
2The opposite happens for the transverse propagating waves, as the WKB theory predicts a decrease of

Mach number as M =
√
δu/cs ∝ R−1/12. In the non-expanding simulations compressibility also decreases

in time, as velocity fluctuations are dissipated by the viscous terms
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Figure 10.2: Runs with monochromatic sinusoidal initial conditions: (a,b): RB1, ε = 0;
(c,d) RB3, ε = 100; (e,f) RB5, ε = 0.5. The top row (a,c,e) shows the evolution of the
energy spectra compensated by k−2, line styles vary according to the increase in time,
from a thin solid line at t = 0, followed be the dotted and dashed line and so on. The
bottom row (b,d,f) shows the evolution of the dissipation terms: total dissipation dE/dt
(solid line), viscous dissipation ν(∂xu)2 (dotted line), damping due to the expansion 2n εau

2

(dashed line), prediction for turbulent dissipation k0u
3/aα (dot-dashed line). The turbulent

dissipation always matches the viscous dissipation term after a nonlinear time (see text).
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Figure 10.3: Runs with non monochromatic initial conditions: (a,b): RB2, ε = 0; (c,d)
RB4, ε = 100; (e,f) RB6, ε = 0.5. Same caption as previous figure.

way as their single mode counterparts: when modes propagate in the radial direction, the
expansion term contributes the most to the total dissipation only during the first half of the
simulation, whereas when the modes propagate in the transverse direction, the expansion
term dominates all the time.

10.3 Discussion

From the simulations aforementioned we can state that the approximate expression for the
cascade rate k0u

3/aα is a good approximation of the viscous dissipation for the monochro-
matic mode simulations. For runs with a fully excited spectrum at t = 0, the previous
expression for the energy cascade rate can still be used as an approximation of the viscous
dissipation, but it is less reliable.

Let us try to extrapolate the results of this section to have an idea of what we are going
to see in EBM. We expect that expansion-driven damping will be the maximum contributor
to total energy dissipation, even for low values of the expansion parameter, as it is shown by
runs RB5 and RB6. The runs in the present chapter confirm that the effect of expansion on
the modes propagating in the perpendicular direction is more important than in the parallel
direction. This is because the damping due to expansion dominates the simulation a longer
time with transverse waves, although the value of ε is three orders of magnitude lower than
the one used for the run with parallel wave. From the runs with a continuous spectrum
as initial condition we can also infer that the time at which turbulence develops, t∗ will
not be observed as a clear maximum of the local dissipation. This could be caused by the
development of the cascades for the modes with higher wave-number before the ones with

81



lower k, leading to multiple instants at which viscous dissipation could increase.
For what concerns the predictions done with the Burgers-like model of equation (10.10),

we have seen that they provide a good approximation of the time needed to trigger turbulence
for the initially monochromatic simulations. We have not been capable to predict this time
for the simulations with a continuous spectrum as initial condition, as there is no clear peak
for the viscous dissipation.
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Abstract

The heating of the solar wind is key to understanding its dynamics and acceleration process. The observed radial
decrease of the proton temperature in the solar wind is slow compared to the adiabatic prediction, and it is thought
to be caused by turbulent dissipation. To generate the observed 1/R decrease, the dissipation rate has to reach a
specific level that varies in turn with temperature, wind speed, and heliocentric distance. We want to prove that
MHD turbulent simulations can lead to the 1/R profile. We consider here the slow solar wind, characterized by a
quasi-2D spectral anisotropy. We use the expanding box model equations, which incorporate into 3D MHD
equations the expansion due to the mean radial wind, allowing us to follow the plasma evolution between 0.2 and
1 au. We vary the initial parameters: Mach number, expansion parameter, plasma β, and properties of the energy
spectrum as the spectral range and slope. Assuming turbulence starts at 0.2 au with a Mach number equal to unity,
with a 3D spectrum mainly perpendicular to the mean field, we find radial temperature profiles close to 1/R on
average. This is done at the price of limiting the initial spectral extent, corresponding to the small number of modes
in the inertial range available, due to the modest Reynolds number reachable with high Mach numbers.

Key words: magnetohydrodynamics (MHD) – methods: numerical – solar wind – Sun: heliosphere – turbulence

1. Introduction

The radial evolution of the proton temperature in the solar
wind has not yet been fully explained. From 0.2 to 1 au, the
wind expands radially and with a low-varying mean velocity.
Observations have shown that the rate at which the proton
temperature decreases in this interval does not correspond to an
adiabatic cooling of a spherically expanding flow; instead of a
temperature evolution given by T R 4 3µ - , a slower cooling
rate is observed, T Rµ x- for 0.8, 1x Î [ ] (Totten et al. 1995).
The origin of this extra heating may be attributed to the
development of a turbulent regime in the wind that generates
substantial heating (e.g., Vasquez et al. 2007; Carbone
et al. 2009; Matthaeus & Velli 2011; Coburn et al. 2012; but
see also Hellinger et al. 2013 and Scudder 2015 for an
explanation not based on the turbulent cascade origin).

We know that in quasi-stationary incompressible turbulence, the
turbulent energy (i.e., the sum of the kinetic and magnetic energies)
cascades along the inertial range without being dissipated. When
energy reaches the dissipation scales, it is transformed into heat. If
the process is quasi-stationary, the heating rate can be obtained
either from the dissipation rate (if the small-scale dissipation
process is known) or via the energy cascade rate. The dissipation
mechanisms take place at sub-ion scales that are not yet reachable
by current measurements; therefore, little can be said about
the associated heating. On the contrary, the cascade rate can be
computed at much larger (inertial range) scales, and this is the
approach commonly used in analyzing solar wind data to obtain
the turbulent heating.

To understand if turbulent heating is responsible for the
nonadiabatic decrease of temperature in the solar wind, one
needs to compute the heating rate required to produce the
observed temperature profile. Such heating is obtained by
exploiting an argument based on the internal energy equation
(e.g., Vasquez et al. 2007; see Section 2.3 below). In particular,
it shows that the existence of a radial power law implies a direct
relation between the energy cascade rate Q, wind velocity U,

proton temperature Tp, and heliocentric distance R,

Q k m UT R1 2 , 1B p= ( )( ) ( )
the coefficient 1/2 being associated with the scaling T R1p µ ,
which we adopt here as a representative scaling. Equation (1)
expresses a balance between two decaying quantities: the
energy cascade rate, which is a turbulent quantity, and the
proton temperature, which is not.
The most accurate measurements of the cascade rate are

obtained by computing third-order moments of the distribution
of the magnetic field (Politano & Pouquet 1998). Such
measurements have shown that Equation (1) holds at 1 au
(Stawarz et al. 2009; Coburn et al. 2012) and at larger distances
(Marino et al. 2008), although the precise value of the cascade
rate somewhat depends on the hypothesis made on the 3D
geometry of the angular spectra (Verdini et al. 2015).
The existence of the 1/R profile between 0.3 and 1 au suggests

that the balance in Equation (1) is also realized during this whole
distance range, but there is presently no measure of the cascade
rate and no proof (either theoretical or numerical) that such an
equilibrium is indeed achieved in the inner heliosphere. In fact,
previous attempts to verify Equation (1) used models of solar
wind turbulence with simplified nonlinear couplings (Tu 1988; Tu
& Marsch 1997; Smith et al. 2001; Breech et al. 2009). These
models actually managed to reproduce the wind temperature
decrease; however, they relied on the choice of free parameters to
fit their results to the observations.
We aim here to examine at what conditions such a relation

between turbulent heating and temperature, as well as the
associated temperature profile, can be found using direct
numerical simulations. It is indeed most probable that not all
turbulent conditions close to the Sun are able to generate such a
close adjustment between the turbulent cascade rate and the
temperature in the distance range 0.3–1 au, so that the
numerical solution to this problem will provide constraints on
turbulent properties close to the Sun.

The Astrophysical Journal, 853:153 (10pp), 2018 February 1 https://doi.org/10.3847/1538-4357/aaa1ea
© 2018. The American Astronomical Society. All rights reserved.

1



We directly compute the temperature and heating evolution
versus distance, adopting successively different initial states of
the plasma at the minimum heliocentric distance (here 0.2 au).
We use the MHD equations modified by expansion, as given
by the expanding box model (EBM; Grappin et al. 1993). We
study in this work the case of the slow solar wind, where
turbulence is mainly in a 2D geometry (Dasso et al. 2005;
Verdini & Grappin 2016). The initial conditions found to lead
to Equation (1) between 0.2 and 1 au will be characterized by
(i) spectral properties and (ii) global plasma properties such as
expansion parameter, Mach number, plasma β, and mean
magnetic field angle with radial.

2. Equations, Control Parameters, Diagnostic Tools, and
Initial Conditions

2.1. EBM Equations (Ideal)

We give here a short description of the EBM equations
(Grappin et al. 1993; Grappin & Velli 1996; Dong et al. 2014)
that allow us to follow the turbulent evolution transported by
the radial wind. Let us denote by U eU r0 0= ˆ the mean wind
velocity.

The wind is assumed to be radial and have a uniform speed
(U0=const). The radius R at which the numerical domain is
located varies with time τ as

R R U , 20 0t t= +( ) ( )
where R0 is the initial position of the box. Space, time, velocity,
temperature, and density are measured in the following units:

L 2 , 30 p( ) ( )
t L u2 , 4NL

0
0 rms

0p= ( ) ( )
u , 5rms

0 ( )
m u k2 , 6p Brms

0 2( ) ( ) ( )
and

, 70r ( )
where 0r is the initial average density of the plasma, urms

0 is the
initial rms velocity of the fluctuations, tNL

0 is the initial
nonlinear time based on the initial rms velocity, and L0 is the
initial size of the numerical domain perpendicular to the radial
direction.

The EBM approach relies on the idea that a simple change of
Galilean frame is not sufficient to eliminate the expansion.
After such a frame change, the plasma still expands: it is
stretched in directions perpendicular to the radial. In other
words, a systematic velocity field perpendicular to the mean
radial direction remains. To recover the usual theoretical setup
where the fluctuating quantities are homogeneous (i.e., have
zero average) in the plasma volume, we need to subtract this

transverse expansion. This is done by using coordinates
comobile with this transverse expansion:

t , 8t= ( )
x X U a , 9x0t= -( ) ( )

y Y a t , 10= ( ) ( )
and

z Z a t . 11= ( ) ( )
The parameter a L L L L 5x x y x z= = = is the initial aspect
ratio of the domain. The parameter a is defined as the
normalized heliospheric distance,

a R t R t1 , 120 = = +( ) ( )
where da dt = is the expansion parameter defined as the
initial ratio between the characteristic expansion and turnover
times in the transverse directions (perpendicular to the radial),

U R

k u
, 13NL

exp

0 0

0 rms
 t

t
= = ( )

with k0 the minimum wavenumber in the transverse direction.
At a given distance R(t), the domain thus has an aspect
ratio L L a t axradial =^ ( ) .
The EBM equations with dissipation terms omitted (but see

Equations (20) and (21) below) read

u a2 , 14t r r r¶ +  = -( ) ( ) ( )
u uP P P P a. . 2 , 15t g g¶ +  +  = -( ) ( ) ( )

u u u B BP B a. 2 . ,
16

t
2 r r¶ +  +  + -  = -

( ) ( )
( )

B u B B u B u a. . . , 17t ¶ +  -  +  = -
 ( ) ( )

and

P T. 18r= ( )
In these equations, ρ is the density, P is the total pressure, B is
the magnetic field, and u is the velocity fluctuation
u U U er0= - ˆ , U being the total velocity. The pressure
equation with 5 3g = is the perfect gas equation, and
T T Ti e= = is the proton (and electron) temperature, mp being
the proton mass.
The above equations are standard MHD equations with,

however, two modifications. First, additional linear terms
involving the constant average speed U0 appear on the right-
hand side: u u0, ,y z = ( ) and B B B2 , ,x y z = ( ). Hence,
depending on the component, the right-hand side damping
term differs, as is well known. Note that in the following, we
will sometimes use the dimensional form of these damping
terms, namely, with a t U R t0 ( ) ( ). Second, a new
expression for the gradients is used, accounting for the
increasing lateral stretching of the plasma volume with time/
distance:

a a t a t1 , 1 , 1 , 19x x y z = ¶ ¶ ¶(( ) ( ( )) ( ( )) ) ( )
With Ox being along the radial, expansion acts only in the other
two directions.
All fields x y z, ,r ( ), u x y z, ,( ), etc. are then considered to be

periodic in all three directions of the domain comobile with the
mean expansion. This allows to use a pseudo-spectral method

Figure 1. Initial and final domains of simulation (and plasma volume) in the
ecliptic plane. Thin lines: direction of mean magnetic field. For all runs, the
aspect ratio of the domain varies from 1/5 to unity. In the figure, the mean
magnetic field angle with the radial varies varies from tan 1 5 11 . 31 - ( )
to tan 1 41 p=- ( ) .
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for the spatial scheme, as in the standard Lagrangian approach.
The temporal scheme is a third-order Runge–Kutta method.

2.2. Defining Visco-resistive Terms and Dissipation Rate

The diffusive terms read

u u u1 3 , 20t dis
2m r¶ = ~ 

~
+ 

~

~∣ ( )( ( ) ( · )) ( )

B B, 21t dis
2h¶ = ∣ ˜ ( )

and

P T , 22t dis rk¶ = D∣ ¯ ˜ ( )
where r̃ is the density normalized by its average,

a , 232r r r r= =˜ ¯ ( )
and a1 2r =¯ is the average density of the plasma. Note that
the normalized density r̃ is unity, on average. Note that density
enters in two different ways in the dissipative terms: as the
normalized density r̃ in the momentum equation and as the
average r̄ in the pressure equation. In the homogeneous
(nonexpanding) case, the dissipative terms given by
Equations (20) and (21) are identical to the standard ones in
MHD. In the expanding case, these dissipation terms have two
specific differences. First, the ∇ operator components are
comobile derivatives, without the anisotropic prefactors

a a a1 , 1 , 1x( ):
, , . 24x y z = ¶ ¶ ¶˜ ( ) ( )

This allows the dissipation to be isotropic in comobile
coordinates, that is, to use the available Fourier domain most
efficiently. Second, we impose that viscosity, resistivity, and
conductivity κ decrease as time/distance increases (see
Equation (12)):

a. 250k m h m= = = ( )
This choice allows us to somewhat moderate the decrease of
the Reynolds number associated with the fast damping of the
turbulent amplitude.

From Equations (20) and (21), one derives the contribution
of dissipative terms to the turbulent energy evolution,

u B Q F2 2 , 26d

dt
2 2

dissr r+ = - + n( )∣ ¯ ˜ · ( )

where F is a flux that does not change the average turbulent
energy. The turbulent heating is given by the visco-resistive
damping term Qν, which is always positive,

Q u J4 3 , 272 2 2m w h= +  +n ( ˜ ( ˜ · ) ) ˜ ( )
where uw =  ´˜ ˜ and J B=  ´˜ ˜ .

Finally, what is lost by turbulent energy is transmitted to
internal energy; this reads

u uP P P

P a T Q

. .

2 1 , 28

t


g

g rk g r

¶ +  + 

+ = D + - n

( )
( ) ¯ ˜ ( ) ¯ ( )

where κ is the thermal conductivity. Since we are in the
following more directly interested in the temperature T, we also
write down its equation:

u uT T T T a

T Q

. 1 . 2 1

1 . 29

t g g

k r g r

¶ +  + -  + -

= D + - n

( ) ( ) ( ) ( )
( ˜ ) ˜ ( ) ˜ ( )

2.3. Critical Heating, Cascade Rate, and Parameter M2 

We here rederive Equation (1), which expresses the critical
heating leading to a temperature decrease as T R1p µ . For this,
we need to take the spatial average of Equation (29), so
eliminating the thermal conductive term. The other terms are
checked to be negligible, e.g., using the dimensional factor
U R0 instead of a t ( ),

u uT T TU R. . 2 , 300d g =   ¯ ( )
which gives for the average temperature (the spatial average
being denoted either by a bar or by angular brackets)

T T a Q Q2 1 1 1 ,
31

t g g r g¶ + - = - á ñ -n n( ) ( ) ( ) ˜ ( )
( )

where the last equality is obtained assuming 1dr r  . Now
we replace the temporal derivative by the radial derivative,

Ul R0¶  ¶ , and the damping term a by its dimensional
expression U R t0 ( ),

U T T U R Q2 1 1 . 32R0 0g g¶ + - - n( ) ( ) ( ) ( )
We now define Qα as the heating necessary to obtain a
temperature profile of the form T R1= a. Thus, we replace in
Equation (32) U dT dR U T R;0 0a= -¯ ¯ this gives

Q TU R. 334 3

2 0=a
a- ( )

In the following, we will insist on the special value 1a = ,
which leads to what we will call the critical heating Qc:

Q Q TU R1 2 . 34c 1 0= = ( ) ( )
Using simple phenomenology, we now derive a condensed
formula for such a critical heating involving basic parameters
of the turbulent wind: the Mach number and the expansion
parameter ò. We first define the Kolmogorov cascade rate,
generalized to MHD, in two ways. A first definition (Vasquez
et al. 2007) is given by

Q k u B ku3 , 35K41
2 2 3 2 3d r+ ( ) ( )

with B B Bd = - á ñ being the magnetic field fluctuation and
both u and Bd being evaluated at the Taylor’s scale, thus in the
inertial range. In Equation (35), u2 and B2d r are, respectively,
the kinetic and magnetic energy content in the wavenumber
range k k2 , 2[ ], where k lies in the inertial range. Note that
to derive the last approximate equality, we have assumed
equipartition between kinetic and magnetic energy.
When analyzing our simulation results, we shall use the

equivalent but more precise definition,

Q E k k , 36K41
3 2 5 2= l l( ) ( )
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where E kl( ) is twice the 1D total (kinetic+magnetic) energy
spectrum, integrated on directions perpendicular to the radial
and depending on the radial wavenumber, evaluated at the
Taylor’s wavenumber kλ. The Taylor wavenumber is defined as

k
k E k dk

E k dk
. 37

x x x

x x

0
2 1 2

0

ò

ò
=l

¥

¥
( )( )

( ) ( )

More precisely, kl marks the middle of the inertial zone of the
reduced spectrum in the radial direction.

Now, we know from Vasquez et al. (2007) that in cold
winds, the Kolmogorov cascade rate QK 41 overestimates by a
factor of 10 the true average dissipation rate Qn :

Q Q10 . 38K41 n ( )
From the latter equation, Equations (33) and (35), we rewrite
the critical condition Q Q=n a to produce a R1 a temperature
profile as

ku TU R3 10 . 393 4 3

2 0
a- ( )

We want to express this condition in terms of the rms turbulent
Mach number,

M u c , 40srms= ( )
where c Ps

1 2g r= ( ) is the sound speed and the expansion
parameter ò (Equation (13)), which also includes the rms
velocity in its definition. Assuming that the inertial range
begins at the largest scale, we evaluate the kinetic energy
content at the largest scale u 20

2 and the total energy content
u 22 by integrating a Kolmogorov spectrum k 5 3µ - on,
respectively, the interval range k k, 20 0[ ] and k ,0 ¥[ ]. This
leads to a ratio u u 4.4rms 0

3 =( ) , which allows us to express
Equation (39) in terms of quantities based on rms velocity
amplitude, namely the Mach number M and expansion
parameter ò. One finds

M 4.4 4 3 412  a- ( ) ( )
and, for the particular value 1a = ,

M 4.4. 422   ( )
Equation (42) will guide us in selecting “critical” couples of
initial Mach number and expansion parameter in our
simulations.

2.4. Turbulent Energy, Expansion, and Viscous Damping

We define the average turbulent energy per unit mass:

e u B
1

2
. 432 2r d r= á + -ñ˜ ¯ ( )

From Equations (16) and (17), one finds the expression of the
energy damping rate due to expansion,

Q u u B a
1

2
2 , 44y z xexp

2 2 2 r d r= á + + ñ˜( ) ¯ ( ) ( )

or, in dimensional terms,

Q u u B U R
1

2
2 . 45y z xexp

2 2 2
0r d r= á + + ñ˜( ) ¯ ( ) ( )

The two main terms leading to the damping of turbulent energy
are thus (i) the small-scale diffusive (viscous and resistive)
damping term Qν, which is fed by the nonlinear turbulent
energy cascade, and (ii) the expansion damping term Qexp.
However, here turbulent energy conservation is subject to
further effects: (i) compressibility breaks the turbulent energy
invariance, the remaining invariant being the sum of turbulent
energy and internal energy; and (ii) expansion modifies the
nonlinear terms as well, thus breaking down all inviscid
invariants of homogeneous MHD. These two additional effects
are gathered in a single term denoted by QNL. It is found by
subtracting turbulent dissipation and linear expansion decay
from the time derivative of turbulent energy:

de dt Q Q Q . 46exp NL= - - -n ( )
In the previous equation and from now on, Qν (without
average) denotes the spatial average Qá ñn . Note that the very
existence of a Kolmogorov-like spectral scaling k 5 3- implies
that the term QNL should be subdominant compared to Qν.

2.5. Numerics, Initial Conditions, and Parameters

All simulations are computed in a numerical box with
resolution N N N 512x y z= = = . We start at 0.2 au with a
numerical box elongated with an aspect ratio ax=5 along the
radial of dimensions L L L5 5 5 2x y z p= ´ = ´ = ´ . The
domain is then stretched by expansion in directions perpend-
icular to the radial so that at 1 au the domain becomes a cube,
and the mean field rotates accordingly (Figure 1).
We set up energy equipartition: u b 1rms rms= = and about

zero correlation between magnetic and velocity fluctuations
(zero cross-helicity). Energy isocontours are spatially aniso-
tropic, having the same aspect ratio as the numerical box. As
the mean magnetic field in all runs makes a small angle θ with
the radial (between 11° and 20°), the initial spectrum has
isocontours not far from perpendicular to the radial direction
with an aspect ratio equal to 5 (see Figure 9(a)). This
corresponds to the so-called “2D” configuration characteristic
of slow winds (Dasso et al. 2005; Verdini & Grappin 2016).
The parameters of the simulations are listed in Table 1, which

lists all runs described here. The main parameters are the Mach
number and expansion parameter ò. In Table 1, ò goes from 0.12
to 0.4,M from 0.3 to 1, and M2  from 0.45 to 5. Varying ò by a
factor of 2 as done here corresponds to varying the initial
turnover time of the largest scale by such a factor, so the
wavenumber by a factor of 22 3, adopting a k 5 3- scaling for the
initial spectrum. Also, the simulation duration is longer when ò is
smaller, as the transport distance (from 0.2 to 1 au) is fixed.
Each simulation provides a test window of wavenumbers

(reduced to a little more than two decades) on the much larger
solar wind inertial range. When choosing the couple M, ( ) for
a given run, we choose a wind regime, and at the same time we
place our simulation range on the solar wind wavenumber
range. Typical values, as taken in the runs A, B, C, and E, are
M=1 and 0.2 = . Such values are not far from the values
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found in cold winds in Helios data at the scale of several hours
(Grappin et al. 1991).

As seen in Section 2.3, the expression M2  was found to be
approximately 4.4 in the inertial range at 1 au by Vasquez et al.
(2007) for cold/slow winds. This is in the middle of the range
of values listed in Table 1.

Other parameters appearing in Table 1 are the plasma β,
P P c v2B s ath

2b g= = ( )( ) , which is varied from 0.29 to
1.48, and the mean field B0, which varies between 0.86 and
2.04, meaning that, since b 1rms = , b Brms 0 varies from 1.2 to
0.5. The initial viscosity 0m is about the same in all calculations
except for run Z: the origin of this exception will be discussed
in Section 4.2. The parameters kmax and m are, respectively, the
extent of the initial spectrum and its 1D spectral slope.

3. Results

3.1. Run A: Extended Initial Spectrum

We start with the case of run A, with M=1, 0.2 = , and
thus M 52  = . The initial spectral extent in the direction
perpendicular to the radial is k 64max = , and the spectral slope
is m 5 3= .

Figure 2 shows the evolution of several quantities versus
heliocentric distance. Panel (a) shows the evolution of the rms
turbulent quantities urms, Brms

1 2d r̄ , and ucrms, where u
c is the

compressible part of the velocity field. The quantities shown
are multiplied by R R0

0.6( ) . One sees that the compensated
profiles of velocity and magnetic field (in velocity units) are
close to a plateau, indicating a decay close to R1 0.6, somewhat
faster than the Wentzel-Kramers-Brillouin (WKB) prediction
u b R1rms rms

1 2 1 2r ¯ . The compressive rms velocity
amplitude, initially zero, rapidly reaches about half that of
the total rms velocity and then becomes closer to 1/3 of it.
Panel (b) shows the average turbulent dissipation of total (solid
line), solenoidal kinetic ( 2mw̃ ; dotted line), magnetic ( J 2h ˜ ;
dashed line), and compressible ( u4 3 2m 

~( · ) ; dot-dashed line)
energy. While the kinetic and magnetic dissipation are

comparable as expected, the compressible dissipation decreases
rapidly and becomes 1/10 of the total dissipation at the end.
Panel (c) of Figure 2 shows the total energy (Equation (43))

decay rate de dt∣ ∣ (solid line) and its components: the
expansion decay rate Qexp (dotted line), the turbulent decay rate
Qν (dashed line), and the residual term QNL (dot-dashed line).
One can distinguish two phases: (a) a short initial transient,
during which the turbulent dissipation dominates the expansion
decay, in agreement with the small value of the expansion
parameter 0.2 = and a very large residual term comparable to
the turbulent dissipation, Q Q Q ;exp NL< n  and (b) the rest
of the evolution, during which the turbulent decay is smaller
than the expansion decay, and the residual decay is the
smallest, Q Q QNL exp< <n . These two points will be clarified
in the discussion. We also remark that the sign of QNL varies: it
is an energy loss (thus increasing de dt∣ ∣), denoted by a thick
line, but during the beginning phase ( R R1 20  ; thin line),
it is an energy gain, thus decreasing de dt∣ ∣.
Finally, panel (d) gives the resulting temperature curve,

compensated by a 1/R law. One sees that a power-law regime
appears for R 0.5 au , with an index between 4/3 and 1. The
turbulent energy reservoir is clearly used in two phases: (i) an
early phase with rapid and strong dissipation that almost stops
the plasma cooling and (ii) a long-lasting phase with reduced
dissipation that only mildly delays the cooling of the plasma.

3.2. Varying Spectral Extent

Is the set of initial conditions made for run A the most
efficient in terms of resulting temperature curve, or can we
achieve a resulting curve closer to the observed 1/R decrease?

Table 1
List of Parameters for the Initial Conditions

R M ò
M2

 B0 β kmax m 0m

A 1 0.2 5 2.04 0.29 64 5/3 2.4 10−3

B 1 0.2 5 2.04 0.29 64 3 1.7 10−3

C 1 0.2 5 2.04 0.29 4 5/3 2.1 10−3

D 0.77 0.2 3 2.04 0.49 4 5/3 1.8 10−3

E 1 0.2 5 2.04 0.29 4 2.2 1.7 10−3

F 0.77 0.12 5 2.04 0.49 4 2.2 1.8 10−3

G 0.6 0.14 2.6 2.04 0.8 4 2.2 1.5 10−3

H 1 0.4 2.5 2.04 0.29 4 2.2 1.3 10−3

K 0.77 0.2 3 2.04 0.49 4 2.2 1.8 10−3

M 0.77 0.2 3 0.86 2.75 4 2.2 1.8 10−3

N 0.77 0.2 3 1.17 1.48 4 2.2 1.8 10−3

Z 0.3 0.2 0.45 2.04 0.29 64 5/3 1.5 10−4

Note. In the table, R is the name of the run; M u csrms= , with cs the sound
speed; ò is the initial expansion parameter; M 2  , see Section 2.3; B0 is the
initial magnetic field amplitude (and Alfvén speed); β is the ratio of thermal
over magnetic pressure; kmax is the maximum wavenumber in directions
perpendicular to radial (nota bene largest perpendicular scale corresponds to
unit wavenumber); m is the 1D spectral slope; and 0m is the initial value of the
diffusive parameters (viscosity, resistivity, and conduction).

Figure 2. Run A: evolution of basic quantities vs. heliocentric distance R R0.
(a) Velocity amplitude urms (solid line), compressible velocity u c

rms (dotted
line), and magnetic field fluctuation brms

1 2r̄ (dashed line). (b) Visco-resistive
dissipation Qν (solid line) decomposed as the sum of u 2m  ´∣ ˜ ∣ (dotted line),
j 2h˜ (dashed line), and u.4

3
2n ∣ ˜ ∣ (dot-dashed line). (c) Dissipation rates per unit

mass: dE/dt (solid line), expansion-driven damping Qexp (dotted line), visco-
resistive dissipation Qν (dashed line), and nonlinear loss during cascade QNL

(dot-dashed line, thick when increasing the decay rate and thin when
decreasing the decay rate). (d) Temperature compensated by 1/R decrease.
Distance is normalized by the initial distance R0=0.2 au.
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As we will see later in the discussion, an important
characteristic of run A is the exaggerated importance of small
scales, compared to the one found in the quasi-stationary
turbulent state. This is at the origin of the excessive heating
occurring in the early phase of the run. To reduce the energy of
small scales, we now change one or two of the following
parameters: (i) the initial spectral slope m and (ii) the initial
power-law extent, as measured by kmax.

In Figure 3, we compare runs A (solid line), B (dotted line),
C (dashed line), and E (dot-dashed line) with the following
values of m and kmax: m 5 3= and k 64max = for run A,
m=3 and k 64max = for run B, m 5 3= and k 4max = for run
C, and m=2.2 and k 4max = for run E. Panel (a) shows the
critical heating ratio Q Qcn that in principle reveals how close
we are from critical heating; panel (b) shows the temperature
curve compensated for a 1/R decrease.

Run A shows an initial large overheating phase with
Q Q 10cn  , followed by insufficient heating Q Q 1c <n for
R 0.3 au> (panel (a), solid line). This explains the different
phases of temperature evolution considered earlier: a large part
of the turbulent energy is lost during the first phase; so, in the
second phase, the remaining turbulent energy is too small to
substantially heat the plasma, leading to a temperature decrease
between adiabatic and 1/R (panel (b), solid line).

Due to the reduced importance of small scales, runs B, C,
and E show a different behavior. Initially, for R 1.2 , all of
them show comparable critical heating ratios (panel (a)), too
small to lead to observable heating. This phase corresponds to a
quasi-adiabatic decrease of temperature (panel (b)). This is
followed by a quasi-stationary regime (R 1.2 ) in which the
heating is close to critical and leads to a common temperature
decrease, with all three temperature curves showing a quasi-
plateau, thus close to a 1/R decrease (panel (b)).

Decreasing the importance of small scales in the initial
spectrum thus succeeds in suppressing the too-large energy loss
of the first phase. Note that run E shows the profile closest to
1/R during the whole nonadiabatic phase. In the following
runs, we thus fix the spectral parameters as in run E: spectral
slope 2.2 and a short spectral extent with k 4max = .

3.3. Mach Number, ò, and M2 

Decreasing the initial Mach number intuitively decreases the
turbulent energy reservoir compared to the internal energy, so it

should also decrease the heating ratio Q Qcn . In order to check
this conjecture, we compare two runs, C and D, both with
k 4max = , 0.2 = , and, respectively, M=1 and M=0.77.
Figure 4(a) shows that our conjecture for the heating ratio is
correct. As a consequence, the average radial slope of the
temperature profile changes substantially (Figure 4(b)). Note,
however, that the temperature curve shows a break and
decreases at a faster rate in the end.
The expansion parameter ò measures the expansion rate

normalized by the nonlinear shearing rate. Intuitively again, a low
expansion parameter should favor heating to the detriment of
cooling. In order to check this second conjecture, we compare
two values of the expansion parameter, 0.12 = (run F) and

0.2 = (run K), with M=0.77 in both cases. The result is as
expected (Figure 5); i.e., the heating is larger for the run with
lower ò during the first part of the transport for R 0.6 au<
(R R 30 < ). However, the reverse is true for the second half of
the travel. This happens because, for smaller values of ò (run F,
solid line), the same travel distance corresponds to a larger
number of nonlinear times (i.e., larger “age”; see Grappin et al.
1991), which may easily result in a too-fast decrease of the
energy reservoir and thus of the heating rate.
Last, we test the parameter M2  as a possible control

parameter for the heating and temperature profile (see
Section 2.3). We choose two pairs of runs: E and F have the
largest parameter value, M 52  = , and G and H have the
lowest one, M 2.52   (see Table 1).
Figure 6(a) shows that the ordering of critical heating by

M2  is approximately verified for R 0.5 au< but not at larger
distances. Nevertheless, the temperature curves (Figure 6(b))

Figure 3. Heating ratio Q Qcn and temperature profiles, all with M 1,=
0.2 = but varying small-scale initial excitation. Runs A (solid line), B (dotted

line), C (dashed line), and E (dot-dashed line). (a) Heating ratioQ Qcn vs. heli-
ospheric distance R. (b) Average temperature (normalized by its initial value)
compensated by R R0 . Distance is normalized by the initial distance R0 =
0.2 au. The thin solid line in panel (b) corresponds to T T R R0 0

4 3= -( ) .

Figure 4. Heating ratio Q Qcn and temperature profiles, with same 0.2 = but
varying initial Mach number, for runs C (M=1; solid line) and D (M=0.77;
dotted lines). Same caption as Figure 3.

Figure 5. Heating ratio Q Qcn and temperature profiles, with same M=0.77
but varying expansion parameter, for runs F ( 0.12 = ; solid line) and K
( 0.2 = ; dotted line). Same caption as Figure 3.
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appear to be gathered in two groups according to the parameter
value.

3.4. Varying the Plasma b and Angle VBq

Due to variations of the initial temperature, with the mean
initial magnetic field remaining constant, the β of the different
runs considered up to now (runs A to K) has been varied in the
interval 0.3 0.8 b (Table 1). Since, in the slow solar wind,
the β of the plasma can be larger than unity, we now consider
runs with larger values, 2.75, 1.48b = (runs M and N), and
compare with run K with 0.49b = . The Mach number is 0.77
in the three runs. The overall effect of the β variation appears to
be small (Figure 7), with, however, a slight advantage (stronger
heating) to the two runs with larger β (runs M and N; solid and
dotted lines with quasi-superposed curves).

A last parameter is of interest: it is well known that, although
the angle VBq between the magnetic field and the radial
direction is, on average, 45° at 1 au (which corresponds to

11q =  at 0.2 au), its distribution actually varies widely
around the average. To test the effect of small-angle variation,
we considered doubling the initial angle VB

0q . We found that
when passing from 11VB

0q =  to 20VB
0q = , the critical heating

ratio, as well as the temperature profile, shows no variation at
all (not shown).

4. Discussion

4.1. Summary

Our numerical results support the possibility that MHD
turbulence can drive a proton temperature profile that is
decreasing significantly more slowly than the adiabatic
prediction in the distance range R0.2 1 au< < . We started
with a spectrum initially having a 2D configuration, corresp-
onding in principle to the slow wind regime as observed by
Dasso et al. (2005). This led, with an rms Mach number close
to unity and expansion parameter 0.2 = , to a temperature
profile significantly steeper than observed; however, when
considering a strong reduction of the initial spectral inertial
range, we obtained a temperature profile close in average to a
1/R law, thus not far from the average R1 0.9 profile measured
by Totten et al. (1995).

We found that the parameters regulating the heating rate are
the rms Mach number and the expansion parameter ò,
combined as M2  , while other parameters, such as plasma
β and angle VBq between the mean field and the radial (for small
initial values) have a minor effect.

4.2. Spectral Properties versus Mach Number

To understand the necessity of reducing the initial small-
scale energy content, we examine here the spectral evolution.
We first examine the spectral anisotropy. Figure 8 shows the

case of run E; it is representative of the other runs that all show
comparable evolutions. The 2D spectra shown are cuts though
the plane kz=0 of the 3D spectrum for total energy
u B2 2d r+ . As explained in Section 2, the initial energy
isocontours (panel (a); R=0.2 au) are quasi-perpendicular to
the mean field direction (straight line), which is close to the
radial direction. At 1 au, however (panel (b)), the mean
magnetic field has an angle of 4p with the radial, and the
main symmetry axis of the isocontours is now quasi-
perpendicular to this mean field. In other words, the cascade
is not only initially perpendicular to the mean field, it remains
so during transport, following the rotation of the mean field.
This corresponds nicely to the so-called 2D spectrum dominant
in the slow wind (Dasso et al. 2005), which was first found
numerically in Verdini & Grappin (2016) to be one of the two
robust attractors in the wind.
We now consider the 1D reduced total energy spectra at 0.2

and 1 au for runs A, B, C, and E, shown in Figure 9. The initial
spectra have dotted lines, and the final ones have solid lines
(1 au). The final spectra depend on either radial (thick solid
line) or perpendicular (thin solid line) wavevectors. The
wavenumber is normalized by the Kolmogorov dissipation
wavenumber k Qd

3 1 4m= n( ) , where the dissipation rate Qn is
defined in Equation (27). Each final spectrum is then obtained

Figure 6. Heating ratio Q Qcn and temperature profiles, with varying M 2  ,
for runs E (solid line), F (dotted line), G (dashed line), and H (dot-dashed line).
Same caption as Figure 3.

Figure 7. Heating ratio Q Qcn and temperature profiles, with M=0.77,
0.2 = , and varying β, for runs M (solid line; β=2.75), N (dotted line;

β=1.48), and K (dashed line; β=0.49). Same caption as Figure 3.

Figure 8. Run E: rotation of the energy spectrum (kinetic + magnetic) with the
mean magnetic field. The angular energy spectrum E(kx, ky) is in the plane
kz=0. (a) At R=0.2 au. (b) At R=1 au. The mean magnetic field direction
is represented by a straight line in each panel.
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by averaging the spectra so normalized in the distance
interval R0.6 1  .

The four final spectra are all comparable (either along the
radial or transverse direction), showing a very reduced spectral
extent of about half a decade with a slope m 5 3 .

The origin of the small extent of the inertial range in the final
spectra actually lies in the high Mach number (M=1) adopted
in these runs. A high Mach number leads to large intermittent
variations of density associated with shocks, thus requiring
large viscosities to prevent the occurrence of unresolved
gradients in high-density regions. As a matter of comparison,
when dealing with run Z (M=0.33), we could use a viscosity
10 times smaller than that used for runs with M=1 (see
Table 1). Due to its much lower viscosity, run Z follows a k 5 3-

scaling on more than one decade, thus significantly larger than
that for run A (Figure 10).

The short spectral extent seen previously for runs with
M=1 thus results from the necessity to increase the viscosity
with such large Mach numbers to prevent a catastrophic
(unphysical) evolution of the run at a given numerical
resolution. This also explains why it is necessary to start with
a small spectral extent: otherwise, during a transient phase, one
obtains excessive heating produced by the artificial initial
excess of energy at visco-resistive scales (see the evolution of
Q Qcn for run A in Figure 3(a)).

4.3. Dissipation Rate and Kolmogorov Rate

The parameter M2  (Equation (42)), derived in Section 2.3,
has been used to specify conditions allowing us to approach
critical heating. In particular, in runs B, C, and E, the value
M 52  = (not too far from the nominal value of 4.4 derived in
Equation (42)) allowed us to obtain temperature profiles with a
power law close to 1/R.

The argument used in Section 2.3 leading to this prescription
relies on the assumption that the ratio R Q QV K 41= n is 0.1 .
This very low value of RV (corresponding to an effective very
high Kolmogorov constant) has been found to hold in cold
winds by Vasquez et al. (2007). It would be satisfying to check
whether or not the runs studied in this paper show the same low
value of RV.
Figure 11(a) gives RV versus distance in runs A, B, C, and E.

The curve varies wildly for run A, with RV passing from larger
than 1 to lower than 0.1, while runs B, C, and E all show a ratio
clustering around the value 0.1 on the whole distance range.

Figure 9. Runs A, B, C, and E: evolution of the 1D energy spectrum (kinetic +
magnetic), compensated by the Kolmogorov scaling k 5 3- . Abscissa:
wavenumber normalized by the Kolmogorov wavenumber k Qd

3 1 4m= n( ) .
Dotted line: R R 0.2 au.0= = Solid lines: R 1 au.= Thick solid line: radial
1D spectrum. Thin solid line: 1D spectrum perpendicular to radial (ẑ direction).

Figure 10. Runs Z (solid line) with M=0.3 and A (dotted line) with M=1.
The total 1D energy spectrum is averaged during the last phase of transport,
compensated by the k 5 3- scaling. Abscissa: radial wavenumber normalized by
the Kolmogorov wavenumber.

Figure 11. Checking the Vasquez law and consequences. (a) Ratio Q QK41n
between visco-resistive dissipation and Kolmogorov’s energy cascade rate
(Equation (36)). (b) Radial Taylor wavenumber. (c) Ratio Q Qexpn between
visco-resistive dissipation and expansion decay rate. (d) Turbulent rms
amplitude Z u B2 2 1 2d r= +( ) evolution compensated by R1 0.6. Shown
are runs A (solid line), B (dotted line), C (dashed line), and E (dot-dashed line).
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Panel (b) shows the evolution of the Taylor wavenumber
(Equation (37)) for the four runs, summarizing the spectral
width evolution for the different runs. By comparing panels (a)
and (b), one sees again that the initial oversized spectral width
of run A leads to an anomalously large value of RV. In contrast,
runs B, C, and E, which have a spectral width adapted to their
viscosity, show RV values clustering around 0.1.

The fact that in our simulations B, C, and E leading to a
critical heating, we find a value for Q QK 41n close to that
observed indicates that our numerical setup, in spite of the
previous remarks on the limited spectral range, leads to
turbulent properties close to those of the actual solar wind
turbulence.

This small value of RV means that the characteristic turbulent
decay time is about 10 times longer than the plain nonlinear
time t ku1NL = . This allows us to interpret the relative
importance in our runs of the expansion decay rate and
turbulent decay rate. Indeed, with an expansion parameter

0.2 = , as in runs A, B, C, and E, one expects a priori an
expansion decay rate Qexp smaller than the turbulent dissipation
rate, since ò is the expansion rate normalized by the inverse of
the turnover time at large scales (Equation (13)). However, due
to RV being 0.1, the effective turbulent decay timescale is
10 times longer than the nonlinear turnover time. The effective
expansion decay rate is thus finally not smaller, but rather
larger than the turbulent dissipation rate, in spite of 0.2 = .
This is true in the whole distance range [0.2, 1] au for runs B,
C, and E, and also for run A, except during the early transient
where RV is close to unity.

A corollary to the overall dominance of expansion damping
in runs A, B, C, and E should be that the turbulent fluctuation
amplitude decays close to the WKB prediction, which is, for
Alfvén waves,

Z u B R1 . 472 2 1 2 1 2d r= + ( ) ( )
This is indeed the case: Figure 11(d) shows that the turbulent
amplitude in runs A, B, C, and E decays as Z R1 0.6 , thus
close to the WKB prediction.

4.4. Loss of Energy Conservation during Cascade

The deviation from turbulent energy conservation during
cascade has been measured by the residual term QNL, defined
as the difference between the total turbulent energy decay and
the sum of turbulent dissipation Qν and linear expansion decay
Qexp (Equation (46), run A, Figure 2(c)). Other runs show that
with a fixed Mach number, the residual term QNL is
proportional to the expansion parameter ò. In order to eliminate
the contribution of compressibility and so to determine without
ambiguity the contribution of expansion alone, we consider the
deviation of total energy conservation instead of just turbulent
energy. We denote the new residual term by QNL¢:

d dt e T Q T a Q1 2 .

48
exp NLr g g r+ á ñ - = - - á ñ - ¢( ˜ ( )) ˜

( )
Figure 12 shows the total (turbulent + internal) energy time
derivative and the associated residual term QNL¢ for run A. The
residual dissipation is limited to 1% or 2% of the total
variation. This is substantially smaller than QNL (see
Figure 11(c)). It shows that compressible exchanges between
turbulent and internal energy are the dominant contribution to

the deviation of turbulent energy conservation during the
cascade, especially during the beginning of the evolution. The
same remarks can be made for the other runs in Table 1.
However, in run H, with a larger expansion parameter
( 0.4 = ), we find that compression and expansion contribute
more equally (not shown).

4.5. Conclusion

In conclusion, using complete nonlinear couplings of MHD
equations, we have shown that radial temperature profiles as
1/R simply result from the combination of adiabatic decrease
and turbulent dissipation. This has been done starting at 0.2 au
with an rms Mach number 1 and an expansion parameter

0.2 = . With these parameters, the decrease of rms turbulent
amplitude is not much faster than the Alfvén WKB prediction,
actually as R1 0.6. This demonstration has been done by
starting with a spectral anisotropy characteristic of slow winds,
namely mainly perpendicular to the mean magnetic field. This
included showing that the Q QK 41n ratio is close to 0.1 in our
simulations, as in the solar wind. Finally, we measured the
deviation from the conservation of turbulent energy during the
cascade (residual energy loss QNL). We found that expansion
was a minor cause of deviation, the main cause being
compressible exchanges between turbulent and internal energy.
Future work includes (i) providing a clearer signature (i.e.,

with larger Reynolds) of the 5/3 power-law index character-
istic of slow winds by lowering the Mach number and the
expansion parameter and (ii) considering the case of fast winds,
which, despite having a different spectral anisotropy, produce a
similar radial dependence of the temperature.

This work was performed using HPC resources from
GENCI-IDRIS (grant 2017-040219). It has been supported
by Programme National Soleil-Terre (PNST/INSU/CNRS).
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Figure 12. Run A: deviation from total (turbulent + internal) energy
conservation during cascade. Solid line: time derivative of total energy
(turbulent + internal, Equation (48)). Dot-dashed line (thick when increasing
the decay rate, thin when decreasing the decay rate): residual term QNL¢
measuring the deviation from total energy conservation during the cascade
apart from linear effects.
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Chapter 12

Heating fast winds

In the previous chapter we saw that under reasonable initial conditions at 0.2 AU it is
possible to generate a proton temperature profile close to R−1 in the [0.2, 1] AU interval,
solely from the contribution of turbulent heating, starting with a gyrotropic initial spectrum
with M = 1, ε = 0.2. This spectral geometry is robust: it remains gyrotropic at 1 AU. It is
thus interesting to generalize this first study by examining whether one can reproduce the
1/R temperature profile also when starting with different spectral geometries, in particular
the one specific of fast winds.

Since wind heating probably needs as well are characterized by a large cross helicity, we
will introduce the initial cross helicity as a parameter.

12.1 Initial conditions

The parameters are listed in table 12.1. Runs all have a resolution of 5123 grid-points, an
initial expansion parameter of ε = 0.2, initial spectral slope m0 = −5/3, an initial mean
magnetic field close to the radial direction, B0 = (2, 2/5, 0). The initial spectra and the
initial cross helicity have been constructed as described in section 6.1.2.

The Mach number does not differ substantially in average in fast and slow winds (cf
fig. 13.1), thus we adopt M = 1 initially in our fast solar wind simulations. We wish to
obtain the R-slab geometry characteristic of the fast winds, so starting with an isotropic
energy spectrum is appropriate (see part II); nevertheless, we will also, for completeness,
consider starting with Gyro of Gyro-Alfvén initial conditions (see section 6.1.2). We consider
either σ0

c = 0 or a large initial cross helicity. The initial domain aspect ratio is Rx = 1 or
Rx = 5. (See table 12.1)

As already remarked, a Mach number M = 1 demands a high viscosity, which shifts the
dissipation wave-numbers to large values. An initial spectrum with a large part of the initial
turbulent energy attributed to quasi-dissipative wave-numbers would be a waste of energy,
probably leading to a high heating in a first phase, thus spoiling the temperature profile (see
Chapter 11). For this reason, a strong truncation kmax = 8 is adopted. The only exception
has been run RC7, with a stronger truncation of kmax = 4.
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Run Type Rx kmax m0 σc ε M µ0

RC1 ISO 1 8 -5/3 0 0.2 1 2.5 10−3

RC2 ISO 1 8 -5/3 0.8 0.2 1 2.5 10−3

RC3 GYRO 1 8 -5/3 0 0.2 1 2.5 10−3

RC4 GYRO 1 8 -5/3 0.8 0.2 1 2.5 10−3

RC5 G+A 1 8 -5/3 0. 0.2 1 3 10−3

RC6 G+A 1 8 -5/3 0.8 0.2 1 3 10−3

RC7 G+A 5 4 -1 0.6 0.2 1 3 10−3

Table 12.1: List of parameters for the initial conditions. Run: name of run; Type: class
of initial conditions (see figure 6.1); Rx: initial aspect ratio of the numerical domain; kmax:
the maximum wavenumber in directions perpendicular to radial; m0 : initial slope of the
reduced spectrum; σc: initial cross-helicity; ε: initial value of the expansion parameter;
M = urms/cs, with cs the sound; ν0: initial value of the kinematic viscosity (equal to η and
κ).

12.2 Results

12.2.1 Spectral anisotropy with Mach=1

In this section we present the spectral evolution of runs with large starting turbulent Mach
number (M = 1), thus complementing the results of part II which was dealing with lower
initial Mach number (M = 0.3). The three figures in this section start with successively
Gyrotropic, Isotropic and Gyro-Alfvén geometries. For each initial model, we vary the initial
cross-helicity, comparing σ0

c = 0 and 0.8 and also as well 0.6 for the G+A model.
Figure 12.1 shows the case of the ISO model. The spectral anisotropy is similar to that

observed in M = 0.3 runs in part II: gyrotropic or 2D for the zero cross helicity run, and
R-slab for high cross helicity. The isocontours’ aspect ratio does not differ much between
the former series and the present one, with values ranging between 0.4 and 0.6. The tilt
angle α is evaluated in the range kmaj = 2 and kmaj = 10: |α| ≈ 30◦ for run RC1, whilst
for RC2, |α| ≈ 15◦. This is close to the results shown in figure 8.3.

The 1D spectra in figure 12.1 are best developed in the direction z, namely perpendicu-
larly to the mean magnetic field: this is true whatever the initial cross-helicity. The inertial
range in the radial direction is very short, with an approximate index m = −2, while it is
m = −5/3 in the z direction.

The initial gyrotropic anisotropy of RC3 and RC4 is robust, whatever the cross helicity,
(no figure is shown).

For the G+A simulations RC5, RC6 and RC7, the differences in anisotropy between the
low and high cross-helicity are largest. Figure 12.2 shows that for the zero cross helicity
run, RC5, the anisotropic index A takes values around 0.7 below kmaj = 5 and then de-
crease continuously until A = 0.4. For the high cross-helicity run, RC6, A shows a smaller
variations, ranging from 0.2 to 0.3. On the other hand, RC7 stays around A = 0.6, with a
sudden increase beyond 10kmaj . As it is explained in chapter 7, this increase is just caused
by the isocontours reaching the boundaries of the domain and opening. Thus, the increase
is just an artifact of the boundary conditions.

The tilt α stays below 10◦ for the high cross-helicity run. On the other hand, for zero
cross helicity σ0

c , α also stays below 10◦ only for kmaj > 5. Below this mark, the inclination
varies between 30◦ and 60◦, as the rectangular shape of the isocontours forces to take the
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Figure 12.1: Spectral evolution with initial ISO symmetry and Mach=1, varying σ0
c : RC1

(σ0
c = 0, first row) and RC2 (σ0

c = 0.83, second row); same caption as in fig. 8.1; last row:
RC1: solid line, RC2: dotted line.

inclination of one diagonal of the rectangle or the other.
The reduced energy spectra scale as k−3 in the radial direction indenpently of cross-

helicity. In the z direction however, the reduced spectra for zero cross helicity shows a
spectral index m ' −2 from 0.05 to 0.2 kz/kd. For high cross-helicity σ0

c , a short inertial
range with the same index spans from 0.1 to 0.2 kz/kd.

12.2.2 Turbulent heating

In figure 12.3, one sees the evolution with distance of some important properties of the
simulations listed in table 12.1. First the rms Mach number, then the cross helicity, the
heating normalized to critical heating Q/Qc, then the compensated temperature. Heating is
generally subcritical in the beginning, then reaches a maximum at about R/R0 = 1.5. After
that, both ISO behave alike in terms of heating and independently of the initial cross-helicity,
the ratio Q/Qc decreasing slowly. For both runs, Q/Qc ' 1 at R/R0 = 3.

Mach numbers decrease for both isotropic runs (RC1 and RC2) and for the gyro both
gyro-Alfvén runs with non-zero initial cross helicity (RC6 and RC7). The decrease is faster
for both isotropic runs and for the gyro-Alfvén run with the highest cross helicity (RC6),
taking values around 0.6 at the end of the simulation. The other runs, maintain the Mach
number around 1 during the hall simulation. The more weight has the gyrotropic component
of initial anisotropy, the higher the Mach stays.

Low initial cross helicity stays below 0.1 and high initial cross helicity slowly decreases,
taking values between 0.3 and 0.7 at the end of the simulation. We have not found any way
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Figure 12.2: Spectral evolution with initial Gyro-Alfvén symmetry and Mach=1, varying
σ0
c : RC5 (σ0

c = 0, first row), RC7 (σ0
c = 0.6, second row) and RC6 (σ0

c = 0.83, third row);
same caption as in fig. 8.1; last row: RC5: solid line, RC7: dotted line, RC6: dashed line.
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Figure 12.3: Turbulent heating. First column: Mach number vs distance; Second column: σc
vs distance, thicker lines correspond to positive values and thiner lines to the absolute value
of negative ones; third column: normalized turbulent heating Q/Qc; last column: normal-
ized temperature profile RT (R). Oblique straight line corresponds to the adiabatic cooling
prediction T ∝ R−4/3. Top: initial ISO geometry (RC1: solid line, RC2: dotted); Mid-
dle row: GYRO geometry (RC3: solid, RC4: dotted); Bottom row: Gyro-Alfvén geometry
(RC5: solid, RC7: dotted, RC6: dashed ).
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to explain this evolution of cross helicity in terms of the other considered parameters.
If we look now at how the variation in Q/Qc corresponds to the evolution of proton

temperature we see that between R/R0 = 1 and R/R0 = 2 there is a fast increase of
temperature, which was expected considering that the ratio Q/Qc obtains its maximum
values in this interval. From R/R0 = 2 to R/R0 = 4, the proton temperature profile is
closer to R−1, although not as constantly as in the paper (Chapter 11) for simulations with
a similar initial set-up (e.g. run E, fig.3), with the exception of runs RC3 and RC7.

For both runs with isotropic initial spectrum, in the interval (2 ≤ R/R0 ≤ 4), Q/Qc
diminishes from 1.5 to 0.8 approximately. After that, Q/Qc continues to diminish until 0.7,
and the temperature cools faster than 1/R.

The Gyro run with low cross helicity reproduces the results of run C in chapter 11,
obtaining a ratio Q/Qc around 1 in the interval 2 ≤ R/R0 ≤ 5 and an evolution of proton
temperature Tp ∝ R−1 in the same interval. We remark that in this case, the initial trun-
cation has been relaxed from kmax = 4 to kmax = 8, and the initial aspect ratio has also
changed from 5 to 1. Both changes imply giving more energy to modes higher wave-numbers
than for run C in chapter 11. This implies that the variations in kmax do not affect the
turbulent heating, as long as the dissipative scales are not reached.

The Gyro simulation with initial cross helicity 0.8 shows remarkable differences with
respect its zero cross helicity version. Although from R/R0 = 1.2 to R/R0 = 2 turbulent
heating attains the critical heating level, it rapidly diminishes and stays around Q/Qc = 0.8
for R/R0 > 2. Correspondingly, proton temperature follows a power law intermediate
between the adiabatic prediction and the observed R−1 for that interval.

For the run with gyro-Alfvén initial anisotropy and σ0
c = 0, the peak of heating at

R/R0 = 1.5 is about 1.3. After the peak, the ratio Q/Qc stays close to 1 for the rest of
the simulation. Conversely, after a small increase in temperature at R/R0 = 1.5, Tp evolves
almost perfectly as a power law, with an index slightly higher than −1.

On the other hand, for RC6, the G+A run with σ0
c ≈ 0.8, the ratio Q/Qc stays between

2 and 1.5 for the interval R/R0 ∈ (1.5, 3). After that, the ratio stays between 1 and 0.8
for R/R0 > 3. Proton temperature makes visible these two intervals, showing a power law
evolution Tp ∝ Rα with α > −1 for the first interval and close to the inverse of heliospheric
distance fo the second interval.

The last Gyro-Alfvén run, with σ0
c is characterized by stable value of the ratio Q/Qc

close to 1 and a proton temperature evolution following the power law R−1 in the interval
R/R0 ∈ (1.5, 4) and a small departure from that behavior for R/R0 > 4. We associate
the more stable behavior and the absence of overheating with respect the other gyro-Alfvén
simulations, to the stronger truncation of energy in run RC7, as it is the main variation with
respect the other Gyro-Alfvén simulations.
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Chapter 13

Discussion

In this third part of the thesis, we have focused on the study of turbulent heating between
0.2 and 1AU and its relation to turbulent anisotropy.

We have started with a chapter dedicated to the 1D hydrodynamic turbulence with
expansion. The results obtained in this chapter cannot be directly linked to solar wind
observation, since solar wind plasma turbulence cannot be described with such a model
(e.g. the spectral index −2 of the energy spectra is nowhere to be found in the solar wind).
However, it has anticipated some of the results obtained in the following chapters: 1) the
need of low values for the expansion parameter to allow the development of turbulence in
the transverse directions; 2) the major contribution of expansion in the damping of coherent
energy; and 3) the Kolmogorov estimation for the cascade rate Qk41 = k0u

3/a(t) is a good
approximation for the viscous dissipation (although for the EBM simulations they are just
proportional).

Chapter 11 was devoted to the study of turbulent heating in slow winds with EBM
simulations. In this chapter, it is shown for the first time that turbulent heating is capable
to attain the critical heating level and make proton temperature evolve as the inverse of
heliospheric distance. Other important contributions from this chapter have been the pa-
rameters needed to obtain a critical heating and a proton temperature evolution like R−1:
i) the ratio M2/ε ≈ 4.4 for the initial Mach and expansion parameters allows to approach
the critical heating; ii) a strong initial truncation of the energy spectra is necessary to avoid
an early dissipation of all the energy; iii) despite the use of relatively high Mach numbers
(M = 1), turbulent heating is mainly incompressible.

The aforementioned chapter can be seen as a particular case since all runs had gyrotropic
initial spectra and zero cross helicity. In chapter 12, the last of this part, we have studied the
variation of turbulent heating in runs with different cross helicity and initial geometry. Our
aim has been to reproduce a proton temperature evolution Tp ∝ R−1 for slow and fast wind
conditions (low and high cross helicity respectively) and to determine the possible influence
of turbulent anisotropy. For the last, we have also verified whether the results obtained in
part II stayed true for high Mach number simulations.

The results regarding turbulent anisotropy at high Mach number show similar properties
to those observed for low Mach number simulation in part II, at least for the inertial range
scales. Beyond the inertial range, the isocontours follow the stretching of the box in the
directions transverse to the radial. Thus, for low kmaj , we have verified that increasing the
initial cross helicity turns the inclination of the isocontours towards the radial and if σ0

c = 0,
the cascade is mostly perpendicular to B0.
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The images of the reduced spectra display shorter radial inertial lengths and steeper
slopes compared to simulations in part II, specially in the simulations with gyrotropic and
gyro-Alfvén initial conditions. Note that for the GYRO simulations and the GYRO compo-
nent of the G+A simulations, kmax = 8/5 = 1.6 by construction of these initial geometries.
As a consequence, the former two initial geometries are quasi-2D at t = 0. This make diffi-
cult the development of turbulence in the x direction as it limits the nonlinear interactions
with modes in the other two directions. We assume that changing the initial aspect ratio of
the isocontours in the GYRO and G+A initial geometries (imposing for example kmax = 8/2
in the x direction) could have led to similar reduced spectra to those seen in part II.

For what concerns the turbulent heating results of chapter 12, we have managed to
confirm that turbulent heating, obtained in slow and fast wind conditions, is able to reach
and maintain the critical heating level so proton temperature can evolve approximately as
R−1. The information provided by the simulations goes beyond this achievement.

Despite the parallel inertial ranges for gyrotropic and gyro-Alfvén runs with zero initial
cross helicity were very short and steep, their turbulent heating remained at the critical
level for most of the time. All simulations that have shown the same feature also had a
well developed inertial range in the z direction, perpendicular to the mean magnetic field.
Hence, a radial cascade is not necessary to provide enough turbulent heating to the solar
wind.

Simulations with isotropic initial conditions have shown that proton temperature can
evolve as 1/R even though Q/Qc = 1 is not exactly maintained during the whole simulation.
Variations of the ratio between 0.8 and 1.2 also allow to obtain a fair approach to the 1/R
temperature gradient, even if the value of the ratio is not constant in time.

The influence of σ0
c in turbulent heating has proven to be linked to the turbulent

anisotropy. Isotropic runs have shown ratios Q/Qc and proton temperature evolutions al-
most superposed, despite the difference in cross helicity. In contrast, with gyrotropic initial
spectra and the other same initial parameters of the ISO runs, low cross helicity is necessary
to maintain turbulent heating at the critical heating level. Note that the temporal evolution
of cross-helicity for each geometry cannot justify these differences, since it maintains larger
values for cross-helicity in the ISO simulation than in the gyro one. For now, we have not
found any explanation for the strong influence of cross helicity in the heating of gyrotropic
initial geometries.

Finally, gyro-Alfvén initial geometry has showed to be a plausible initial anisotropy for
fast and slow solar wind in terms of heating. The runs with this initial geometry showed
that they can achieve and maintain similar or even higher levels of turbulent heating than
with the other initial geometries.

Numerical parameters vs Helios data

In fig. 13.1, we have plotted data from the Helios mission: rms Mach number (top panel)
and expansion rate ε (bottom panel) vs day of year, during four months, at solar minimum.
Rms quantities are computed in two ways, summing energies starting (i) with frequency
f = 3.310−5 Hz (thick solid lines); (ii) with frequency f = 5.510−5 Hz (dotted lines).
One has also plotted the wind bulk speed (plain solid line) and the heliocentric distance in
arbitrary units (varying from 0.3 to 1 AU, dashed line). It is seen that the Mach number
oscillates around unity and ε around 0.2, as considered in this work.

Here it is important to remark an important difference in the definition of the Mach
number in this figure and in our numerical simulations. In this figure, the rms Mach number
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Figure 13.1: Helios mission, first four months of solar minimum; (a) rms turbulent Mach
number M = urms/c (c = (5/3 kBTp/m)1/2); (b) expansion parameter ε (eq. 2.24). M and
ε are computed at two frequencies: f= 3.3 10−5 Hz (solid bold line) and 5.5 10−5 Hz (dotted
line). Both (a) and (b) show the bulk velocity U (plain line, arbitrary units); Panel (a)
shows the heliocentric distance R× 10 [AU] (dashed line).

is defined each day by computing the ratio of the rms velocity fluctuation at the required
frequency, normalized by the sound speed associated to the proton temperature only, with
no attempt to take electrons into account:

Mhelios = urms/cs = urms/(
5

3
Tp)

1/2 (13.1)

while in the simulations it is

M = urms/c = urms/(
5

3
P/ρ)1/2 (13.2)

where the pressure is P = 2nkBT , T being identified to the proton temperature and, as we
know, the factor 2 coming from the fact that Te = Tp in the MHD system of equations that
we integrate. This remark deserved to be made, although it is probably not basic, in the
absence of a realistic model of the electron dynamics in this work.
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Part IV

Conclusions and future work
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Chapter 14

Conclusions

14.1 Obtention of Maltese Cross components at 1AU

The results concerning turbulent anisotropy have shown that the increase of Mach number
has a moderate effect on turbulent anisotropy. Runs with high Mach number (M=1) have
shown a slight tilt of the isocontours towards the radial in comparison with the simula-
tions with low Mach number (M=0.3). The influence of the other parameters on turbulent
anisotropy is independent of the choice of the initial Mach number.

For wave-numbers within the inertial range, we have observed that the numerical sim-
ulations with zero initial cross- helicity develop a 2D cascade perpendicular to the mean
magnetic field, regardless of the variation of other initial parameters. In contrast, when
the inhibition of non-linear couplings by expansion and cross helicity are present, the en-
ergy isocontours become more aligned with the radial direction. In this case, the tilt of the
isocontours depends on the initial geometry, as we detail now.

An initial gyrotropic distribution of energy in Fourier space (GYRO simulations) fa-
vors the perpendicular cascade from the beginning of the simulation. On the other hand,
simulations with isotropic and gyro-Alfvén initial spectra (ISO and G+A ), develop turbu-
lent cascades more aligned with the radial direction, that is, a radial-slab anisotropy ([102],
VG16). Among these, the G+A simulation has the more radially aligned anisotropy, mim-
icking the situation of a system completely dominated by expansion (as the one shown in
section 3.2.1).

The above results for ISO simulations are also observed for high values of the expansion
parameter. In contrast, in the limit of no expansion, ISO simulations develop a 2D cascade
perpendicular to B0, independently of the initial cross helicity. With the ensemble of ISO
simulations we managed to reproduce for the first time the observations of wave-vector
anisotropy observed at 1AU in the solar wind at MHD scales, including the components
that form the Maltese Cross. On more fundamental level, we showed that expansion is
physically needed to obtain the observed anisotropies.

14.2 Can the Maltese Cross heat the solar wind?

The use of the EBM equations have allowed us to verify for the first time that turbulent
heating is able to produce a power law evolution of proton temperature, R−1, between 0.3
and 1AU for fast and slow winds. Thus, the work presented here renforces the idea that
MHD energy cascade rate could be the main contributor to the Solar Wind dissipation rate.
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Turbulent anisotropies at the end of the simulations, that is, the "2D" and the R-slab
anisotropy do not determine the proton temperature evolution. It has been possible to obtain
both anisotropies and achieve the critical level of turbulent heating necessary to obtain the
proton temperature evolution Tp ∝ R−1.

In contrast, the initial anisotropy that we have used (isotropic, gyrotropic and gyro-
Alfén) have more influence on turbulent heating. This influence however, depends upon the
initial value of cross helicity. Both isotropic and gyro- Alfvén initial conditions can arrive
and maintain the critical heating level with similar initial conditions. In the gyrotropic case,
with the same initial parameters, this is only achieved for zero initial cross-helicity.

In addition, we have found that the condition M2/ε ≈ 4.4 was derived in chapter 11 to
obtain the critical level heating. This condition has proven to be useful for the choice of
our initial Mach number and expansion parameter. Both values (M = 1 and ε = 0.2) are
close to in-situ measurements in fast and slow winds. Despite the use of this Mach number,
incompressible turbulence had the major contribution to turbulent heating.

Finally, our results have shown that the development of an inertial range in the directions
perpendicular to the mean magnetic field is key to obtain an acceptable turbulent heating
level. Regardless of the initial conditions, all simulations that obtain a proton temperature
evolution close to observations has shown a well developed inertial range in the perpendicular
direction to B0, even when the reduced spectra in the parallel direction were shorter or
steeper than k−5/3.

14.3 Expectations from Solar Orbiter and Parker Solar Probe

The validation and the refutation of physical models is achieved via experimental data, by
improving the sensibility of previous measurements and by extending the reach of these mea-
surements to scales and places never explored before. In the particular case of Heliospheric
and Solar physics, multiple questions and theories strongly depend on the properties of the
plasma at the lower solar corona (including our work). It is in this context that the missions
Parker Solar Probe (launched on August of 2018) and Solar Orbiter (launch expected at
2020) were designed to obtain in-situ measurements at the closest distance from the solar
surface ([26], [70])

Parker Solar Probe (PSP) will be the first spacecraft to approach to less than 10 solar
radii at the perihelium of its orbits, which are constrained to the ecliptic plane. Solar Orbiter
(SO) on the other hand, will reach distances at its perihelium already explored by previous
mission, (0.28AU at its maximal approach to the Sun) but will also provide measurements at
these close distances outside the ecliptic plane (latitudes up to 25◦ at the end of the nominal
mission), allowing to directly measure the properties of fast streams. Remote observations
will be also combined to the in-situ measurements carried by both probes.

The programmed orbits of PSP and its multiple passages at 10 solar radii allow the in-
situ measurements of plasma properties at the heating region of the solar corona, responsible
for the solar wind acceleration. Hence, we expect that the data collected by PSP can
clarify the role of turbulence in the question of coronal heating via the measurement of
plasma properties at this distances. We are particularly interested in the measurement of the
turbulent heating rate in the accelerating region of the solar wind (not possible to describe
with the EBM equations), since it could improve the choice of our initial conditions: for
instance, more information about the formation of the large scale spectral range in f−1 could
make us treat it as a turbulence forcing instead of a ”fossile” energy reservoir. In addition,
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it could improve the estimation of the radial distance at which collisions between solar wind
particles become negligible, a crucial parameter for models of solar wind alternatives to an
MHD description, the exospheric models [52],[50],[77].

As stated in the previous paragraphs, the strong points of SO mission with respect to
former missions will be the improvement of measurements at already explored distances
(manly explored between 0.3 and 0.5 AU) and the direct recollection of data from coronal
holes, situated out of the ecliptic plane. SO mission will provide new measurements of
the velocity distribution functions of protons, electrons and heavy ions, and of the turbulent
levels and heating rates possibly before the cascade is fully developed. Hence, by comparison
with the measurements at other distances, it will be possible to give a better estimation of
the distribution of MHD turbulent heating among the different species of the solar wind,
and by extension, re-evaluate the importance of turbulence as a local source of proton
heating. In addition, we also expect that the data collected by SO magnetometers at the
multiple passage of the spacecraft by 0.3 AU, will supply enough data to analyze the spectral
anisotropy at this distance (specially for fast winds), as done previously at 1AU ([65][23]).

14.4 Open questions and (partial) answers

We know from [23] that the fast and the slow wind have different spectral anisotropies at
1 AU. What is then the most probable pattern at, say, 0.3 AU? The data that we will be
able to obtain from Solar Orbiter mission will tell us more about the turbulent anisotropy of
the solar winds at 0.28 AU. But until the mission has gathered enough data, we can extract
some predictions from our results.

Before our work we would have said as found in [102]: at 0.3 AU, the most probable
geometry for the slow wind is the gyrotropic pattern (also 2D), and the ISO pattern for the
fast wind.

We know there are several ways to obtain the R-Slab anisotropy for fast solar winds: ISO
initial spectrum and high initial cross helicity or initial excitation of large scale modes in one
direction and zero initial cross helicity (VG16 [102]). Both situations cause the inhibition of
nonlinear couplings in the directions transverse to the radial necessary to obtain the R-Slab
anisotropy. However, we consider that the initial anisotropy proposed by VG16 is difficult
to justify, as it would need an unknown physical mechanism to act before 0.2AU.

Thus, our preferred initial conditions are: (i) Gyro with σ0
c = 0 for the slow wind, and (ii)

the ISO with large cross helicity for the fast wind. We could also propose as an alternative
the Gyro-Alfvén model with large σ0

c for the fast wind but, remembering the very poor
scaling of these runs in the radial direction, we prefer the ISO model.

Then, what can this tell us on the turbulent regime in the fast wind?
Before our work, a long-lasting time idea was that perhaps large σc could lead to a special

turbulent regime (e.g. [34])
Now we know that without expansion a large cross helicity changes nothing to the

gyrotropic cascade: even a value as high as σ0
c = 0.8 leads to gyrotropy whatever the initial

spectrum. But we know also that this changes completely with some expansion: then the
cross helicity has a big effect, leading to the strange R-SLAB, with a spectrum elongated in
the radial direction.

Last, what can we say reasonably about turbulent heating ? Before our work, one
had only tried models devoid of detailed description of the nonlinear couplings (of course,
one could integrate more sophisticated models as MHD HALL or hybrid models, but then
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expansion was absent, or space dimension was 2 or 1).
Now, we have true 3D simulations including the anisotropic wind expansion, and we

succeeded in heating reasonably the plasma. However, we are forced to severely truncate
the initial spectrum, otherwise all energy is lost in the first moments. What the initial
conditions really are e.g. at 0.2 AU, we have an idea, because after all the turbulent cascade
relaxes relatively rapidly, but we don’t really understand what the relaxation is. We only
know that the most important role is probably played in all winds (fast and slow) by the
cascade in direction z, that is perpendicular to both the radial and the mean field direction,
otherwise obtaining the same heating rate and/ or temperature profile in both winds would
be strange.
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Chapter 15

Future work: Anisotropy temperature
description

The EBM equations assume the MHD closure, that is, that proton temperature is isotropic.
This assumption is not always valid. As it can be seen from 2D cuts of the 3D velocity
distribution functions of protons ([62]), while the core of the velocity distribution function
for slow winds is isotropic, the distribution for fast winds is perpendicular to the mean
magnetic field axis. Consequently, temperature anisotropy is more important for fast winds
than for slow winds. For instance, in situ measurements have confirmed that temperature
perpendicular to B0, Tp⊥, decreases slower with heliospheric distance than the parallel
temperature, Tp‖([64],[37, 38] ).

By neglecting temperature anisotropy in the EBM description, we are not only unable
to reproduce the different evolution of Tp‖ and Tp⊥. In addition, we are also leaving aside
all the instabilities triggered by temperature anisotrpy, such as the beam, ion cyclotron or
parametric instabilities ([53], [97]).

Following a previous work by Fabrizio Cametti, Roland Grappin and André Mangeney
(not published), we will implement temperature anisotropy to the EBM equations. This
new description of solar wind plasma will use a modified version of the classical Chew-
Goldberger-Low closure, also known as CGL closure or double-adiabatic closure ([20]).

It has already been shown that the invariants from the classical CGL equations are broken
in the solar wind ([61]). In a new CGL-EBM description for the solar wind plasma, the CGL
invariants will be altered and possibly closer to reality. Moreover, proton temperature in the
parallel and perpendicular directions to the mean magnetic field will be described separately
in two different equations, allowing to take into account the temperature anisotropy observed
in the solar wind and its possible effects on turbulent heating and turbulent anisotropy.
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Appendix A

Liste of symbols

HD hydrodynamics

MHD magnetohydrodynamics

AU astronomical unit (1AU = 1.49 · 1011m)

kB Boltzmann constant kB = 1.38 · 10−23m2kgs−2K−1

Rs Solar radii (1Rs = 6.96 · 108m)

R heliospheric distance

R0 initial heliospheric distance for simulations, R0 = 0.2AU

X, ~X vector X

X, |X| modulus of vector X

< · · · > volume average

Xrms =
√
< X2 > root mean square value of X

k,k wavenumber and wavevector

n, np number of particles per unit of volume for protons

ne number of particles per unit of volume for electrons

m,mp mass of protons

me mass of electrons

ρ = mpnp +mene volumetric density of fluid in MHD description

ρ̄, ρ0 =< ρ > mean value of ρ

u velocity of fluid particles in MHD description
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U0, Usw radial component of mean solar wind speed

T, Tp proton temperature

Te electron temperature

Tα alpha particles (He+2) temperature

T‖, Tp,‖ proton temperature parallel with respect to the mean magnetic field

T⊥, Tp,⊥ proton temperature perpendicular with respect to the mean magnetic field

Te,‖, Te,⊥ electron temperature parallel and perpendicular to the mean magnetic field

P = ρT isotropic pressure

P‖ component of the pressure tensor parallel to the mean magnetic field

P⊥ component of the pressure tensor perpendicular to the mean magnetic field

γ polytropic index

E electric field

B magnetic field

B0 mean magnetic field

δB magnetic field perturbation

Va = B0/
√
ρ0 Alfvén speed

b = δB/
√
ρ0

z± = u± b Alfvén modes written in Elsasser variables

σc = ((z+)2 − (z−)2)/((z+)2 + (z−)2) normalized cross helicity

σ0
c initial value for the normalized cross helicity

µ, η, κ dynamic viscosity, magnetic and thermal conductivity

ν = µ/ρ kinematic viscosity

L integral length of a system

tν characteristic time of viscous dissipation. In HD tν = 1/(νL−2)

tNL characteristic time of nonlinear interaction. In HD tNL = 1/(L−1u)

Re = tν/tNL Reynolds number
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ω = ∇× u vorticity

j,J = ∇×B current density

Rx = LX/L
0
Y = LX/L

0
Z initial aspect ratio of the numerical domain

εt, Q energy flux between scales within the inertial range of a turbulent flow (energy
cascade rate)

ISO: isotropic distribution of energy for the initial 3D energy spectra in Fourier space

GYRO: gyrotropic distribution of energy for the initial 3D energy spectra perpendicular to
the radial

G+A: as GYRO but with a 1D component along the radial direction made of Alfvén
modes with maximum σc
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Appendix B

Numerical method

B.1 Computation of spatial gradients

The numerical resolution of the EBM equations uses a pseudo-spectral method to solve the
spatial gradients. For physical problems where it is possible to assume periodic conditions
at the boundaries of the numerical domain, pseudo-spectral methods can be easily imple-
mented. This is one of the reasons, along with the simplicity of the equations, to consider
a cubic box instead of a shell section as the numerical domain for our simulations. This
approximation done by the EBM description is acceptable for a box small enough, that is,
LX,Y,Z/R� 1 ([33]).

Pseudo spectral methods are called in this way because one computes gradients in Fourier
space . Non-linear terms are computed in real space.

Our code uses the algorithm FFTW (Fast Fourier Transformation of the West) to com-
pute the Fourier and the inverse Fourier transformation of variables. This algorithm is
specially efficient with arrays whose dimension can be expressed as a power of 2. Because of
this, the resolution of the numerical domain is chosen as a power law of 2, typically taking
a uniform mesh of 5123 points to discretize the numerical domain.

In the absence of sharp discontinuities (e.g. Heavyside-like functions), the evaluation of
the spatial gradients by pseudo-spectral methods is highly accurate, reducing the numerical
errors to the order of the number representation in the machine. Because of that, energy
conservation can be assured in the simulation or, more precisely, the numerical dissipation
can be neglected in comparison with the contribution of the dissipative terms in the equa-
tions. In the particular case of the EBM equations, in the absence of expansion, the sum of
the kinetic and magnetic field energy of the fluctuations and the internal energy is conserved.

When the expansion is non zero, then total energy is not conserved in the plasma volume,
but this is physically correct and not due to the numerical method.

Despite of the advantages of the pseudo-spectral methods, their use has some limitations.
One of the drawbacks of these methods comes from the need to represent the variables in a
discretize Fourier space. Let u(x) be a function on R. It can be represented in Fourier space
over a discretized grid of N points, j = 0, . . . , N − 1, as a sum of trigonometric polynomials:

u(xj) =

N/2−1∑
k=−N/2

ũke
ikxj (B.1)

where the k-mode coefficients, ũk, are related as follows to the k-modes of the continuous
Fourier transformation, ûk,
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ũk = ûk +
+∞∑

m=−∞
ûk+Nm (B.2)

The second term on the right-hand side accounts for all the (k + Nm)th modes whose
value is the same as the k-mode on the points of the grid. These modes are said to ”alias”
the kth-mode on the grid, giving rise to the so called ”aliasing errors”. Usually, there are two
possibilities to ”de-alias”, that is, to avoid these errors in the representation of variables in
the discretized Fourier space. The first way is to truncate the third of the modes with largest
wave-number at each time-step of the simulation. The second one consists in computing the
transformation on the original grid and in another mesh that is half a grid-cell of distance
shifted from the original one (see ”Spectral methods in Fluid dynamics” by [14] for an
extensive description of each de-aliasing method).

We use the following strategy in our code to minimize the numerical errors. Instead of
the de-aliasing methods previously described, we adopt values for the viscosity, resistivity
and thermal conductivity high enough to dissipate the energy at mesh scale and thus, most
of the aliasing errors. In this way, we enforce the conservation of energy which is necessary
to study the turbulent heating.

At the frequencies at which we study solar wind plasma, Mach number has values close
to 1. At these values, density fluctuations can create regions where the kinematic viscosity
is not high enough to dissipate the energy accumulated at the mesh-size scales.

In all simulations, we set equal viscosity, resistivity, and thermal conduction at the initial
time. For simulations with plasma expansion, all these coefficients diminish as the inverse of
heliospheric distance, in order to maintain a constant Reynolds number (see an explanation
of this in the attached paper in part III). Following a suggestion by Prof. Thierry Passot
we have split the kinematic viscous term into a compressible and a solenoidal component.
The kinematic dissipation term in equation (2.26) becomes,

∂tu|diss = −µs
ρ

(∆u)− µc
ρ

(
1

3
∇ · u) (B.3)

where µs and µc are the solenoidal and the compressible viscosity, respectively.
The intention was to increase the compressible dissipation to moderate the steepness of

shock-waves and, at the same time, diminish the solenoidal viscosity so as to achieve higher
Reynolds numbers for the Alfvénic terms. Unfortunately, the improvement of the Reynolds
number was minor with respect to the use of a single viscosity because the required solenoidal
viscosity to dissipate energy at mesh scales was at most 20% smaller than the original one.
The several runs that had to be launched to find the optimal choice for the compressible and
solenoidal dissipation for each new simulation were not worth such a small decrease in the
Reynolds number. As a consequence, we have chosen to continue using only one viscosity.

B.2 Time integration method

Along with the pseudo-spectral methods that evaluate the spatial gradients in the EBM
equations, it is also necessary to use a numerical method to integrate in time the same
equations. The time integration method we use is the third order Runge-Kutta method.
The time step is chosen accordingly to the Courant-Friedrich-Lax (CFL) condition, which
assures the stability of the time integration.
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Let ∆x be the distance between two points of the mesh, dt the time-step in the simulation
and dtph the characteristic time at which perturbations propagate in the system. According
to the CFL condition, for the third order Runge-Kutta method to be stable, it is necessary
that

dt < dtph (B.4)

For instance, in the simulation of the Navier-Stokes equations, perturbations propagate
at sound speed cs = ∆x/dts, where dts is the the characteristic time for sound waves.

In the EBM simulations, several characteristic times coexist in the simulation: the sound
time, the Alfvén time, the dissipation time and the expansion time, defined as,

dts = ∆x/cs (B.5)
dtA = ∆x/vA (B.6)
dtdiss = ∆x/max(µ/min(ρ), η, κ) (B.7)

As a consequence, in the CFL condition becomes

dt < min(dts, dtA, dtdiss) (B.8)
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Appendix C

Résumé en français

Le but de cette thèse est l’étude du développement de la turbulence dans le vent solaire
entre 0.2 et 1 unité astronomique du soleil (l’orbite terrestre). L’étude est faite en résolvant
numériquement les équations de la MHD après soustraction de l’écoulement moyen radial
(Expanding Box Model ou EBM). Les deux aspects de la turbulence qui nous intéressent
sont la structure 3D des spectres d’énergie et le chauffage du plasma qui résultent de la
dissipation turbulente des tourbillons et couches de courant emportés par le vent.

Il s’agit de problèmes inverses: on cherche à déterminer quelles sont les conditions
initiales du plasma à 0.2 UA qui permettent d’aboutir à ce qu’on observe à 1 unité as-
tronomique. Un but important de mon travail est aussi de déterminer si la physique qui est
présente dans les équations que j’intègre (la Magnétohydrodynamique) suffit pour arriver à
reproduire ce qu’on observe dans l’intervalle où se font les mesures in situ, entre 0.3 et 1
UA.

Notre thèse contient quatre parties. Dans la première, nous donnons les équations de
base, une introduction à la turbulence et au vent solaire, ainsi qu’un exposé de nos mo-
tivations dans cette thèse. La deuxième partie est consacrée à l’étude de l’anisotropie de
la cascade turbulente, et plus précisément à l’anisotropie du spectre 3d, considérée comme
un diagnostic de la nature de la turbulence, et en même temps un moyen de remonter aux
conditions plus près du soleil. La troisième partie est consacrée au chauffage turbulent, qui
apparaît comme une conséquence universelle de la turbulence, quel que soit le régime.

Partie I: Introduction

Le vent solaire est un plasma accéléré dans la direction radiale à partir d’environ dix rayons
solaires de la surface du Soleil. Dans cette première partie, nous présentons les propriétés
suivantes: température des différentes espèces, densité, fonction de distribution des vitesses
. . . Nous continuons avec la description du plasma du vent solaire dans une approche fluide,
en particulier celle de la boite en expansion ou EBM.

La turbulence et ses propriétés sont définies de façon générale successivement dans le
cadre des fluides neutres et celui des plasmas. Dés que ces concepts de base sont établis,
les deux problèmes principaux traités dans cette thèse sont présentés: l’anisotropie de la
turbulence à grandes échelles et le chauffage turbulent du vent solaire. Dans les deux cas,
nous rappelons les travaux observationels qui ont mené à ces questions et les différentes
tentatives d’y répondre avant nous. Cette partie finit par la présentation du plan que nous
avons suivi pour faire face aux deux problèmes proposés.
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Partie 2: Anisotropie de la turbulence dans le vent solaire

Dans la zone inertielle, les mesures in situ vers 1 UA montrent des figures turbulentes
complexes représentées ici dans l’espace de Fourier par des spectres d’énergie. Dans le vents
lents, on observe une géométrie spectrale qui correspond à une cascade d’énergie dans le
plan perpendiculaire au champ magnétique moyen. Pour les vents rapides, à fréquence pas
trop élevée, les isocontours d’énergie se présentent alignés le long de l’axe magnétique. Cette
deuxième géométrie est connue dans la littérature sous le nom de “Slab turbulence” et la
première géométrie, caractéristique des vents lents, sous le nom de cascade perpendiculaire
ou simplement “2D”.

Ces observations peuvent être interprétées de plusieurs façons, parce que la méthode
utilisée pour obtenir les autocorrélations est basée sur une hypothèse de gyrotropie (symétrie
par rapport au champ magnétique moyen), ne permet pas de reconstituer une géométrie qui
ne serait pas à symétrie axiale par rapport au champ moyen. Mais les simulations numériques
nous ont permis de lever l’ambiguïté et de reconstituer complètement la structure 3D.

La question est en effet de savoir quand intervient l’axe soleil-terre, et quand intervient
l’axe du champ magnétique moyen dans la définition de la géométrie 3D, c’est-à-dire la forme
des structures turbulentes.

Dans ce cadre, nous avons montré les résultats d’une série de simulations où nous avons
étudié l’effet de trois paramètre reliés au développement de la turbulence: la pente spectrale
initiale du spectre 1D (réduit à sa dépendance par rapport à l’échelle dans la direction
soleil-terre) , le paramètre d’expansion et l’hélicité croisée.

Pente initiale

La pente initiale du spectre 1D (réduit à sa dépendance par rapport au nombre d’onde radial)
caractérise la distribution initiale de l’énergie des fluctuations magnétiques et cinétiques
entre les grandes et le petites échelles le long de la direction soleil-terre. Avec quelques modes
seulement excités au début de la simulations, une turbulence ordinaire (dans l’atmosphère
terrestre par exemple) devrait être aveugle à un changement de la pente spectrale initiale.
Pourtant, nous avons trouvé que dans certains cas où les interactions non-linéaires sont
affaiblies, la distribution initiale de l’énergie entre les différentes échelles compte et affecte
fortement le développement ultérieur de la turbulence.

Paramètre d’expansion

L’expansion transverse du vent solaire affaiblit les couplages non-linéaires dans le sys-
tème. Cette expansion est plus intense à plus basses fréquences. Le réglage du paramètre
d’expansion dans nos simulations nous a permis d’étudier l’inhibition de la cascade turbulent
par l’expansion à plusieurs fréquences. En prenant aussi des valeurs initiales pour l’hélicité
croisé proches des valeurs mesurées dans les vents lents et les vents rapides, nous avons réussi
à reproduire pour la première fois l’anisotropie turbulente observée le long des fréquences
de la zone inertielle.

Hélicité croisée

L’hélicité croisée mesure l’efficacité des couplages non-linéaires présents dans les équations
de la MHD dans sa limite incompressible, simplification utile pour décrire les régimes tur-
bulents. Dans cette limite, les couplages se font entre ondes d’Alfvén se propageant en
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directions opposées. Les couplages non-linéaires (et donc la turbulence) meurent si un seul
des deux modes d’ondes est présent. Dans le vent solaire, on trouve dans les vents rapides
une situation de ce genre, avec une amplitude très réduite d’un des deux modes. Pourtant
les spectres montrent une loi de puissance caractéristique des régimes turbulents, ce qui est
contradictoire: cette contradiction a été relevée très tôt par [24].

Dans notre thèse, nous retrouvons la relation observée entre la géométrie des spectres
et l’hélicité croisée qui apparaît dans les vents rapides. Par ailleurs, on sait qu’à petite
échelle, la géométrie redevient 2D même dans les vents rapides: nous expliquons cela par
la diminution du taux d’expansion qui rend l’hélicité croisée moins efficace pour tuer la
cascade.

Partie 3: Chauffage turbulent

La troisième partie est centrée sur le chauffage turbulent dans les vents rapides et lents.
Entre 0.3 et 1 UA, la température des protons diminue anormalement lentement, ce qui
indique une source de chauffage, qu’on suppose ici être la dissipation des tourbillons et
couches de courant emportés par le vent depuis la couronne solaire. Nous commençons
par exposer nos résultats utilisant un modèle 1D de turbulence (équation de Burgers) qui
reproduit le raidissement des ondes sonores et la formation de chocs. Nous montrons com-
ment le taux d’expansion du volume de plasma emporté par le vent permet de tout prédire
analytiquement: la décroissance de la turbulence et le taux de chauffage.

Ensuite, nous étudions l’évolution d’un volume tri-dimensionnel de plasma emporté par le
vent. Nous examinons en premier le cas de conditions initiales correspondant aux vents lents.
Le cas des vents rapides est abordé ensuite. Dans les deux cas, on adopte des anisotropies
spectrales différentes, tenant compte de nos résultats de la partie 2 sur l’anisotropie.

Dans les deux cas, et avec des paramètres (nombre de Mach rms proche de 1, taux
d’expansion égal à 0.2) représentatifs des valeurs observées, nous observons numériquement
que la turbulence transfère l’énergie des fluctuations à l’énergie interne du système à un taux
satisfaisant, c’est-à-dire suffisant pour créer une évolution de la température des protons en
loi de puissance de la distance R au soleil du type Tp ' 1/R.

Un tel gradient de température est proche de celui observé par plusieurs auteurs. Ce
résultat nous permet d’affirmer que la turbulence est une source possible de chauffage local
du vent solaire qui contribue majoritairement au ralentissement de la diminution de la
température des protons avec la distance héliosphérique entre 0.3 et 1 UA. Ceci nous permet
de répondre à la question initiale: oui, des régimes turbulents différents (et des géométries
turbulentes différentes) peuvent aboutir à un même gradient de température des protons
dans le vent solaire.

Partie 4: Conclusions et travail futur

Dans cette dernière partie, nous exposons les conclusions de l’ensemble de nos résultats
concernant l’anisotropie turbulente du vent solaire et le chauffage turbulent. Ces résultats
ont tous été obtenus avec les équations de la MHD, qui supposent une température isotrope,
qu’on ne trouve pas dans les vents rapides, dans lesquels la température parallèle diminue
plus rapidement avec la distance héliosphérique que la température perpendiculaire. Nous
proposons une modification à implémenter dans les équations EBM pour tenir compte de
cet effet dans des travaux futurs.
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Titre :Dynamique Turbulente du Vent Solaire
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Résumé : Le but de cette thèse est l'étude du
développement de la turbulence dans le vent so-
laire entre 0.2 et 1 unité astronomique (UA) du soleil
(i.e. l'orbite terrestre). L'étude est faite en résolvant
numériquement les équations de la MHD après sous-
traction de l'écoulement moyen radial. Les deux as-
pects de la turbulence qui nous intéressent sont la
structure 3D des spectres d’énergie et le chauffage
du plasma qui résulte de la dissipation turbulente des
tourbillons et couches de courant emportés par le
vent. On cherche à déterminer quelles sont les condi-
tions du plasma près du soleil qui permettent d’aboutir
à ce qu'on observe à 1 UA. Un but important de mon
travail est aussi de déterminer si la physique qui est
présente dans les équations que j'intègre (la MHD)
suffit pour arriver à reproduire ce qu'on a déjà observé
dans cet intervalle de distance.
Nous introduisons le contexte de notre travail dans
la premier partie. On y trouve les équations de base,
une introduction à la turbulence, un résumé sur la phy-
sique du vent solaire et de la couronne solaire.
La partie 2 sera consacrée à l'étude de l'anisotropie
de la cascade turbulente, et plus précisément du
spectre 3D. Dans la zone inertielle, les mesures in-situ

vers 1 UA montrent des figures complexes pour ces
spectres qu'on peut interpréter de plusieurs façons :
nos simulations numériques permettent de lever toute
ambiguı̈té. Plus précisément, la question est de savoir
quand intervient l'axe soleil-terre, et quand intervient
l'axe du champ magnétique moyen.
La partie trois est centrée sur le chauffage turbu-
lent dans les vents rapides et lents. Entre 0.3 et 1
UA, la température des protons diminue anormale-
ment lentement, ce qui indique une source de chauf-
fage, qu'on suppose ici être la dissipation des tour-
billons et couches de courant emportés par le vent.
Pour démontrer que cette hypothèse est raisonnable,
nous considérons d’abord le modèle de Burgers qui
est un modèle pour l'évolution d’ondes sonores. En-
suite, nous passons à l'étude du cas plus complexe
d'un volume de plasma 3D. Nous examinerons les
conditions initiales correspondant aux vents lents et
rapides. Dans les deux cas, on adoptera des aniso-
tropies spectrales différentes.
Dans la dernière partie, nous exposerons les conclu-
sions de notre travail et proposerons d'introduire
l'anisotropie de la température dans un travail futur.

Title : Turbulent Dynamics of the Solar Wind

Keywords : Turbulence, Magnetohydrodynamics, Solar Wind

Abstract : The aim of this thesis is the study of the
development of turbulence in the solar wind between
0.2 and 1 astronomical unit (AU) from the Sun (i.e.
Earth’s orbit). The study is done by solving the ma-
gnetohydrodynamics equations (MHD) after subtrac-
ting the mean radial flow.
The two aspects of turbulence that interest us are the
3D structure of the energy spectra and the heating
of plasma that results from the turbulent dissipation
of eddies and current layers transported by the wind.
We want to determine which conditions of the plasma
close to the Sun can result into what we observe at
1 AU. We have relatively detailed measurements of
what happens between 0.3 and 1 AU. One important
goal of this work is to determine if the physics present
in the equations that are integrated (MHD) is sufficient
to reproduce what is observed in this interval of dis-
tances.
We introduce the context of our work in the first part.
We give a summary of the physics concerning the so-
lar wind and the solar corona, and the basic equations
used to describe the solar wind plasma and an intro-
duction to turbulence.

Part 2 is dedicated to the study of anisotropy in the
turbulent cascade, which characterizes 3D spectra. In
the inertial range, in-situ measurements at 1 AU show
complex figures for these spectra that we can interpret
in several ways : numerical simulations allow to clear
ambiguities. An important question is to know whether
the Earth-Sun symmetry axis or the mean magnetic
field axis is dominant.
The third part focuses on turbulent heating in fast and
slow winds. Between 0.3 and 1 AU, proton tempera-
ture decreases more slowly than expected, which re-
quires a heating source. This source is supposed to
be the continuous dissipation of eddies and current
layers transported by the wind. To start with, we consi-
der the simple case of Burgers equation, which is a
one-dimensional model for shock formation. Thereu-
pon, we switch to the 3-dimensional case, where we
consider initial conditions appropriate for slow and fast
winds.
In the last part we expose our conclusions and pro-
pose the implementation of temperature anisotropy as
future work.
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