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Résumé

Un manipulateur parallèle à mobilité réduite a moins de six degrés de liberté et présente
généralement différents types de mouvement connus sous le nom de modes d’opération. Ainsi,
ce type de manipulateur peut être classifié comme reconfigurable selon sa capacité de transition
entre les différents modes d’opération. Cette thèse de doctorat s’articule principalement autour
de l’analyse cinématique de manipulateurs parallèles à mobilité réduite, de manipulateurs paral-
lèles en série obtenus à partir de leur empilement en série et de mécanismes conformes conçus à
partir de leurs configurations singulières à contraintes. La transformation cinématique de Study
est utilisée pour dériver les équations algébriques de contraintes. Ensuite, elles sont interprétées
à l’aide d’outils de géométrie algébrique pour effectuer des analyses de mobilité, de cinématique
et de singularité. Les techniques de “screw theory” et “line geometry” sont utilisées à côté de
l’approche algébrique au besoin.

Cette thèse de doctorat est composée de six chapitres. Le premier chapitre présente l’état
de l’art des manipulateurs parallèles, des manipulateurs parallèles en série et des mécanismes
conformes. Il explique également les outils et concepts fondamentaux utilisés dans ce travail.

Dans le deuxième chapitre, l’analyse des modes d’opération de certains manipulateurs par-
allèles à mobilité réduite est présentée. La décomposition primaire de l’idéal des polynômes
à contraintes conduit à la caractérisation des modes d’opération et des transitions entre eux.
De plus, un manipulateur parallèle 4-rRUU doublement reconfigurable est analysé et des di-
mensions optimales sont synthétisées afin de construire un prototype fonctionnel. Le deuxième
chapitre traite l’influence des paramètres de conception sur le nombre de modes d’opération
d’un manipulateur parallèle de type 3-RPS.

Le troisième chapitre présente la comparaison d’une famille de manipulateurs parallèles à
trois membres. Chaque membre est composé d’articulations aboutissant à deux translations
coplanaires suivies d’une liaison sphérique. Ils sont comparés en fonction de leur espace de
travail d’orientation sans singularité, leurs mouvements parasites et leurs complexités.

Un manipulateur parallèle en série 3-RPS-3-SPR avec un arrangement en série de deux mod-
ules manipulateurs parallèles à mobilité réduite est étudié dans le quatrième chapitre. Sa mobilité
globale est calculée en tant que la dimension d’Hilbert de sa variété de contraintes. La matrice
jacobienne cinématique série est formulée. De plus, les singularités sérielles sont énumérées en
utilisant les conditions de dégénérescence de son tétraèdre caractéristique.

Le cinquième chapitre expose une procédure de synthèse des mécanismes conformes recon-
figurables qui se basent sur les singularités de contraintes de leurs homologues rigides. Cette
approche permet de concevoir un mécanisme reconfigurable conforme à quatre barres. De plus,
une pince reconfigurable et conforme est conçue avec plusieurs modes de préhension.

Mots-clés: manipulateurs parallèles, manipulateurs série-parallèle, mécanismes conformes,
transformation de Study, singularités.





Abstract

A lower mobility parallel manipulator has less than six degrees of freedom and usually ex-
hibits different motion types known as operation modes. Thus, it can be classified as reconfig-
urable on account of its ability to transition between different operation modes. This doctoral
thesis mainly revolves around the kinematic analysis of some lower-mobility parallel manipula-
tors, series-parallel manipulators obtained from their serial stacking and compliant mechanisms
designed using their constraint singular configurations. Study’s kinematic mapping is used to
derive the algebraic constraint equations. They are further interpreted using algebraic geometry
tools to perform mobility, kinematic and singularity analysis. Screw theory and line geometry
techniques are used adjacent to algebraic approach wherever necessary.

This doctoral thesis is composed of six chapters. The first chapter presents the state of the
art related to parallel manipulators, series-parallel manipulators and compliant mechanisms. It
also explains the key fundamental tools and concepts put to use herein.

In the second chapter, operation mode analysis of some lower mobility parallel manipulators
is presented. The primary decomposition of the ideal of constraint polynomials leads to the
characterization of the operation modes and transitions between them. Furthermore, a dual
reconfigurable 4-rRUU parallel manipulator is analyzed for some configurations whose optimal
design is done in order to build a working prototype. The second chapter also discusses the in-
fluence of design parameters on the number of operation modes of a 3-RPS parallel manipulator.

Third chapter deals with the comparison of a family of parallel manipulators with three
limbs, each consisting of joints resulting in two coplanar translations followed by a spherical
joint. They are compared with respect to their singularity-free orientation workspace, parasitic
motions and complexity indices.

A 3-RPS-3-SPR series-parallel manipulator with an in-series arrangement of two lower mobil-
ity parallel manipulator modules is studied in the fourth chapter. Its global mobility is calculated
as Hilbert’s dimension of its constraint variety. The serial kinematic Jacobian matrix is formu-
lated and serial singularities are enumerated by listing the conditions for the degeneracy of its
characteristic tetrahedron.

Fifth chapter introduces a procedure to synthesize reconfigurable compliant mechanisms
based on the constraint singularities of their rigid counterparts. Using this approach, a recon-
figurable compliant mechanisms is designed, further leading to the design of a reconfigurable
compliant gripper with multiple grasping modes.

Keywords: parallel manipulators, series-parallel manipulators, compliant mechanisms, Study’s
kinematic mapping, singularities.
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Glossary

In accordance with the International Federation for the Promotion of Mechanism and Ma-
chine Science (IFToMM), Angeles [Ang13] and Merlet [Mer10; MG08], the following terminolo-
gies are repeatedly used in this doctoral thesis:

Definition 1. A rigid body is a body in which deformation is so small that it can be neglected.
The word link is used as a synonym for a rigid body.

Definition 2. A joint is a connection between two or more links. It is also known as a kine-
matic pair.

Definition 3. A kinematic linkage or a kinematic chain is a network of links and joints
to manage forces and movement. The word limb or leg is used as a synonym for the kinematic
chain.

Definition 4. A mechanism is a kinematic linkage in which one link is fixed or stationary.

Definition 5. Degree of freedom (dof) or mobility is the number of independent parameters
required to define the position of a rigid body in space.

Instantaneous or local mobility corresponds to the mobility at any instant of time whereas
a full cycle or global mobility is the mobility defined over a range of motion.
Franz Reuleaux(1829-1905) introduced kinematic pairs and the six types of lower kinematic
pairs are defined as follows [Ang13]:

1. A revolute pair (R) allows a relative rotation through an angle φ about an axis with a unit
direction vector e.

2. A prismatic pair (P) allows a relative translation tu in the direction of a unit vector e.
3. A helical pair (H) allows both a relative rotation through an angle φ about an axis with a

unit direction vector e a relative translation tu in the direction of a unit vector e. However,
the rotation and the translation are not independent but related by the pitch p of the pair
such that: tu = pφ.

4. A cylindrical pair (C) allows both a relative rotation through an angle φ about an axis
with a unit direction vector e and a relative translation tu in the direction of e such that
the rotation and the translation are independent.

5. A planar pair (E) allows any translation perpendicular to a unit vector e and any rotation
about an axis directed along e.

6. A spherical pair (S) allows an independent rotation about any axis passing through a point
O. The relative motions allowed by a spherical pair are thus characterized by point O.

Additionally, a universal pair (U) allows two relative rotations about two concurrent axes.
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Definition 6. A base is the link in a mechanism where the first joint(is) is(are) connected and
is usually fixed.

Definition 7. An end-effector or a moving platform is a link in a mechanism where the
last joint(s) is(are) connected.

Definition 8. In a kinematic chain, the connection degree of a link is the number of rigid
bodies connected to this link by a kinematic joint.

Definition 9. A serial manipulator (SM) is an open kinematic chain in which the fixed base
and the end-effector have a connection degree equal to 1 while the other links have a connection
degree equal to 2.

Definition 10. A parallel manipulator (PM) is made up of an end-effector with n-dof, and
of a fixed base, linked together by at least two independent kinematic chains. Actuation takes
place through n simple actuators. The term parallel manipulator was coined by Hunt [Hun87].

Definition 11. A lower mobility PM is a parallel manipulator with less than 6-dof.

Definition 12. A hybrid manipulator is a serial linkage mounted on a parallel manipulator and
vice-versa or a serial arrangement of two or more parallel manipulators. The latter has come
to be known as a Series-Parallel Manipulator (S-PM) [Tan00; Che+95; Sha95; WRR89;
ZS94; Rom99; ZBL04], a term proposed in Zoppi et al. [ZZM06].

Definition 13. A compliant mechanism includes flexible elements whose elastic deformation
is utilized in order to transmit a force and/or motion [How01].

There are other terms used in this doctoral thesis which are defined directly in the text for
the sake of continuity.
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IFToMM International Federation for the Promotion of Mechanism and Machine Science
PM Parallel Manipulator
SM Serial Manipulator
S-PM Series-Parallel Manipulator
ISA Instantaneous Screw Axis
FSA Finite Screw Axis
dof degree of freedom
OTI Output Transmission Index
CTI Constraint Transmission Index
R The set of real numbers
C The set of complex numbers
Q The set of rational numbers
Z The set of integers
Pm m-dimensional projective space
Rm m-dimensional affine space
Σ0 Coordinate frame attached to the fixed base
Σ1 Coordinate frame attached to the moving platform
E3 The Euclidean 3-dimensional space
SE(3) Group of Euclidean displacements in E3

SO(3) Group of rotations in E3

M Transformation matrix
R Rotation matrix
d Displacement vector
R Revolute joint
P Prismatic joint
C Cylindrical joint
E Planar joint
H Helical joint
U Universal joint
S Spherical joint
[PP] Joints producing two coplanar translations
× Cross product
· Scalar product
◦ Reciprocal product
∀ For all
∈ Belongs to
⊂ Subset
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∪ Union
∩ Intersection
⊕ Disjoint union
∨ Span
∧ Incidence
MICR Maximum Inscribed Circle Radius



Introduction

Scope of the doctoral thesis

In the 80s, a Robotics lab in Lausanne, Switzerland faced a challenge: to develop a high-
speed and light-weight robot for automatic packaging of chocolate pralines which led to the
conception of DELTA robot by Clavel [Cla88; Cla90]. Ever since its realization, advantages of
lower-mobility parallel manipulators over the known benefits of classical parallel manipulators
(PMs) have been accentuated. Parallel manipulators are closed-loop linkages with appealing
features such as large payload capacity, high precision, rigidity and speed [Mer10]. However,
many industrial applications require less than six dof that has led to the popularity of lower
mobility PMs. Due to their reduced mobility, many of them exhibit different motion types called
operation modes making them reconfigurable manipulators. The motion types could be planar,
translational, cylindrical, spherical, Schönflies, coupled, etc.

The study of any PM begins by learning its mobility, kinematics and singularities before
dealing with its dynamics and control. The reduced mobility of lower mobility PMs relies on the
geometrical constraints imposed by their limbs on the moving platform. They can be used to
determine the pose and motion of the moving platform with respect to the fixed base as functions
of the actuated variables of the PM. Furthermore, singularity analysis must be performed to
determine any uncontrolled dof.

The theory of reciprocal screws is an efficient tool for kinematic analysis, since it is visual,
easy-to-use and well-developed [Bal00; Phi84; Hun87]. However, it can only deal with instan-
taneous motions. Therefore, it is a local analysis technique and is mainly effective for PMs
with simple motion types. On the other hand, the geometrical constraints can be expressed as
algebraic equations using Study’s kinematic mapping so that algebraic geometry tools can be
used to perform a comprehensive kinematic analysis of lower mobility PMs [Hus+97; Hus+07;
HS08; HS13]. Nonetheless, it can be computationally expensive.

This doctoral thesis initially focuses on both local and global kinematic analysis of some
lower mobility PMs such as an equilateral four-bar linkage, zero-torsion mechanisms belonging
to the 3-[PP]S and 3-S[PP] family, a 3-RUU PM and a 4-rRUU PM with a reconfigurable R joint.
It is not surprising that the operation modes of a PM depend on design parameters. This fact is
explored by determining the influence of design parameters on the number of operation modes
of the 3-RPS PM with coplanar R joint axes.

The analysis of a 3-[PP]S family of PMs shows that they all exhibit two operation modes.
This raises a question as to which one of these PMs are better for a given application. Thus, they
are compared in terms of their singularity-free workspaces, parasitic motions and complexities.

Additionally, lower-mobility PMs also appear as constitute elements of hybrid robots that
embody the benefits of both serial and parallel manipulators. They can preceed a serial ma-
nipulator (SM) like in the Tricept robot [SL04b]. They can also be modules of a series-parallel
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manipulator (S-PM), where one or more PMs are stacked in series [Mer10].
The 6-dof motions of one such S-PM, a 3-RPS-3-SPR S-PM are parametrized using three

Study parameters of each module. It is essentially one of the many possible parametrizations of
Study’s quadric in P7. Moreover, the singularities arising due to the serial stacking of the 3-RPS
and 3-SPR PMs are listed with the help of screw theory and line geometry.

When two or more constraint equations of a lower mobility PM become dependent, it is said
to be in a constraint singularity. These kinds of singularities are also the transitions between
operation modes of the PM resulting in an instantaneous gain of a dof [ZBG02a]. The common
notion that “singularities must be avoided” is overturned by using a constraint singularity of an
equilateral four-bar mechanism to design a novel reconfigurable compliant four-bar mechanism.
Additionally, a reconfigurable compliant gripper is designed with multiple grasping modes.

Summary
This doctoral thesis is divided into five chapters and the main objectives are as follows:

1. Operation mode analyses of some lower mobility PMs

Chapter 2 starts with the operation mode analysis of the simplest PM, an equilateral planar
four-bar linkage. Its constraint equations are derived using Blaschke mapping [BR79] which is a
special case of Study’s kinematic mapping for planar Euclidean transformations. The constraint
polynomials can be split into simpler multiple subsets yielding its three operation modes. In
algebraic geometry terms, this is done by primary decomposition of the ideal of constraint
polynomials. The transitions between the operation modes are depicted as constraint singular
configurations where the equilateral four-bar linkage momentarily exhibits a rotational and a
translational dof simultaneously. Similarly, a family of 3-dof lower mobility PMs with zero
torsion are shown to have two operation modes. Furthermore, constraint equations of a 3-RUU
PM are derived using the geometrical approach and Linear Implitization Algorithm [WH10] and
the varieties are compared. Finally, the operation modes of a 4-rRUU dual reconfigurable PM
are determined for three mutually perpendicular orientations of the base R-joint axes. With an
objective to construct a working prototype of a 4-rRUU PM for machining operations, optimal
design parameters are determined such that the reconfigurable PM has the smallest size but the
largest singularity-free workspace.

Another objective of this doctoral thesis is to study the influence of design parameters on the
number of operation modes. This problem is explored at the end of Chapter 2 in the context of
the 3-RPS PM with coplanar revolute joint axes. The relationships between design parameters
are established for the PM to exhibit two operation modes. This work is conducted in the
framework of ANR KAPAMAT project in collaboration with University of Innsbruck, Austria.

2. Comparison of a family of zero-torsion PMs

Operation modes of PMs belonging to the 3-[PP]S-Y family are studied in Chapter 2 to realize
that they all have similar motion types. However, an industrial application might demand
a knowledge of the best among them corresponding to their operation modes and choice of
actuation. For this reason, they are compared in Chapter 3 on the basis of their singularity free
orientation workspace and parasitic motions. Their kinematic Jacobian matrices are derived
using screw theory methods in-order to plot singularity loci in their orientation workspaces.
The singularity-free workspace is quantized using a new performance index called Maximum



23

Inscribed Circle Radius (MICR). Pareto front is drawn to choose the PMs with the least MICR
and the smallest parasitic motions. They are further ranked based on their complexity.

3. Kinematic analysis of an S-PM

Even though there is ample research dedicated to the S-PMs, singularities arising due to the
stacking of two or more lower-mobility PMs is often ignored or incomplete. With an objective
to solve this problem, the serial kinematic Jacobian matrix of the 3-RPS-3-SPR S-PM is derived
using screw theory in Chapter 4. Then, its serial singularities are enumerated by examining the
conditions for collapse of its characteristic tetrahedron [EULL02].

4. Design of reconfigurable compliant mechanisms

One of the many methods to design a compliant mechanism is the rigid body replace-
ment, where rigid members of a mechanism are replaced by their equivalent compliant mem-
bers [HMO13]. The final objective of this doctoral thesis is to synthesize a compliant mechanism
using the aforementioned method starting from the constraint singular configuration of a lower-
mobility PM. Thus, the compliant mechanism will be reconfigurable, thanks to the singular
configuration shared by different motion types of the rigid body mechanism used for its concep-
tion.

The two constraint singular configurations of an equilateral four-bar linkage that separate its
three operation modes are shown in Chapter 2. One of these configurations is chosen in Chapter 5
to design a compliant reconfigurable mechanism such that the output motion is either a rotation
or translation depending on the nature of actuation. Furthermore, two such mechanisms are
assembled with two compliant slider-crank mechanisms to obtain a reconfigurable compliant
gripper. As a consequence, the gripper has two linear inputs that control its angular or parallel
grasping mode. Unlike any traditional gripper, the reconfigurability of the designed gripper
allows grasping objects with a wider variety of shapes. This work is conducted in the framework
of PHC Ulysses project in collaboration with University College Cork, Ireland.

Collaborations
— KAPAMAT project entitled “Kinematic Analysis of lower-mobility parallal manipulators

using algebraic geometry tools”.
Collaborators: Manfred Husty, Martin Pfurner and Thomas Stigger, University of Inns-
bruck, Austria.

— PHC Ulysses project entitled “Design and analysis of reconfigurable compliant mecha-
nisms based on the singularities of parallel manipulators”.
Collaborators: Guangbo Hao and Haiyang Li, University College Cork, Ireland.



Chapter 1

State of the art and theoretical
background

This chapter is the fabric of this doctoral thesis. It puts forth the state of the art and explains
the fundamental concepts used to analyze and understand the behavior of the mechanisms
studied herein. First, a brief literature review of these manipulators is presented. Then, the
mathematical framework is introduced, starting with concepts from line geometry. Furthermore,
the usefulness of screw theory in modeling a parallel manipulator is described. Though screw
theory offers a quick way to characterize the kinematic behavior of a PM, it is a local analysis
method. To overcome this problem and to globally characterize a given PM, algebraic geometry
techniques are exploited whose terminology is given subsequently. Finally, the parametrization
of a transformation matrix is recalled, first by using the coordinates of a finite screw axis and
then by using tilt and torsion angles.

1.1 Literature review

The literature review presented in this chapter focuses mainly on historical developments in
the field of PMs, S-PMs and compliant mechanisms most relevant to this doctoral thesis. Addi-
tionally, different methodologies adopted for their design and kinematic analysis are discussed.
For a detailed history of PMs, the reader is redirected to, e.g., Merlet [Mer10] and Bonev [Bon03].

1.1.1 Parallel manipulators

Interest in parallel manipulators has increased considerably in the past 50 years due to their
advantages over serial manipulators [Mer10]. Unlike SMs, the PMs possess a larger load capacity
since the load on the moving platform is shared by their limbs. Moreover, in most of the PMs,
the joints impose only traction-compression constraints implying smaller flexural deformations
and better positioning accuracy.
Indeed the discussion of PMs is incomplete without acknowledging the celebrated 6-dof octahe-
dral hexapod also known as the Gough-Stewart platform. Though it is the most popular PM
today, its inventors are not adequately recognized. In fact, it was independently invented by
Gough [GW62], Stewart [Ste65] and Cappel [Cap67], whose designs are shown in Fig. 1.1, 1.2
and 1.3, respectively. Since then, it has been used in numerous applications like flight simula-
tion, rehabilitation, machining, etc. Another overlooked fact about the hexapod is that it is not
the first PM to be built [Bon03].
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Figure 1.1 – Gough
platform [GW62]

Figure 1.2 – Stewart
platform [Ste65]

Figure 1.3 – Cappel
platform [Cap67]

The first mention of theoretical problems related to PMs dates back to 1645 by Sir Christopher
Wren (1632-1723) and then in the 19th century by Cauchy, Lebesgue, Bricard and Borel [Mer10].
However, probably the first practical application was envisioned and patented by Gwinnett [Gwi31].
It was an amusement device capable of performing a spherical motion as shown in Fig. 1.4. In

Figure 1.4 – Gwinett’s amusement de-
vice [Gwi31]. Figure 1.5 – Pollard’s spray painter [Pol42].

1942, Pollard patented a spray painting machine. It was a 5-dof 2-RUS+1-RUU PM as shown
in Fig. 1.5 but was never built. Both these manipulators were lower mobility PMs. Along with
the 6-dof hexapod, lower mobility PMs have gained a lot of attention lately as six actuators are
not required for many applications [LH03].

Lower mobility PMs

The simplest yet ubiquitous lower mobility planar PM is a four-bar linkage. It could be a
planar quadrilateral (RRRR) or slider-crank (RRRP) or double slider linkage (PRRP). Its appli-
cations include bicycle suspension, pumpjack, pantograph, steam engines, windshield wiper and
so on. When the opposite links of a four-bar linkage are parallel, it’s called as a parallelogram
linkage (Π) where the output link can have a pure translational motion with respect to the input
link.
When it comes to spatial lower mobility PMs, three such Π-linkages could be placed in such a
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way that they completely constrain the orientation of the moving platform to which they are
connected. This genius thought led to the most commercially successful robot design known
as the DELTA robot as shown in Fig. 1.6. It was designed and patented by the Golden Robot

Figure 1.6 – ABB FlexPicker DELTA robot [Cla88; Cla90].

award winning professor Raymond Clavel [Cla88; Cla90]. It has 3-dof pure translations and is
extensively used in food, medical and electronic and manufacturing industries. On the other
hand, many applications require pure rotational motions. Figure 1.7 shows the Agile eye devel-

Figure 1.7 – Agile eye [GA89].

oped at Laval University to be used as a camera orienting device [GA89]. It is a 3-RRR spherical
mechanism that belongs to the family of spherical wrists [Kar03]. It has angular velocities supe-
rior to 1000◦/s as well as a cone vision of 140◦ with ±30◦ in torsion. It also exhibits workspace
larger than that of human eye although the latter has no torsional motion. As a matter of fact,
human wrist and sterno-vascular joint have no torsion either. In fact, there is a whole family
of lower mobility PMs without a torsional dof. This family of PMs are called as zero torsion
mechanisms .
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Zero-torsion PMs

Definition 14. Zero-torsion PMs are the class of PMs that always have zero torsion [BZG02;
BB08]. In other words, the rotation of their mobile platforms about an axis normal to the latter
is always constrained and they display a symmetric motion with respect to the constrained axis.

Accordingly, the local motions of the mobile platform of such mechanisms are two non-pure
rotations about horizontal axes and sometimes a pure translational motion along a direction
normal to the axes of the rotational motions.
The 3-dof 3-RPS PM, introduced by Hunt [Hun83] is one such mechanism that has been studied
extensively. Unlike the aforementioned PMs, it generates coupled motions that include both
translational and rotational motions. It can be found as the part of a 6-dof robot [LS88], as a
micro-manipulator wrist subsystem of the ARTISAN manipulator [WRR89] and as a reaction
compensation device for space robots [SZ95]. Recently, the 3-RPS PM was used as the rear of a
boat simulator as shown in Fig. 1.8 with different actuation modes [LR14]. The 3-RSR PM also

Figure 1.8 – Prototype of the 3-RPS boat simulator [LR14].

belongs to this category of mechanisms. Clemens proposed it to be used as a constant velocity
coupling device [Cle69] which later inspired Hunt to propose a reflected tripod [Hun87].
Other examples include the 3-PRS, 3-RRS and 3-PPS PMs. The 3-PRS PM was first proposed
for telescopic applications [Car+99]. Another well-known application of the 3-PRS mechanism
is a machining head, called the Sprint Z3 as shown in Fig. 1.9, developed and patented by DS
Technology [Wah02]. The 3-RRS PM was analyzed in [Tet+16] to be used as a part of a 6-dof
hybrid robot for pick-and-place operations. A flexure based 3-PPS PM was used for a nano
imprinting tool module in [Yan+11].

Reconfigurability

The ability of a system to repeatedly change and rearrange the components in a cost-effective
way is known as reconfigurability [SL04a].

Definition 15. A reconfigurable manipulator is a robotic system that can reconfigure its
architecture to attain different kinematic properties for specific manipulating tasks [CZL14].
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Figure 1.9 – Sprint Z3 machining head [Wah02].

Wohlhart came across a few mechanisms with this behavior in 1996 and named the behaviour
as kinematotropy [Woh96].

Definition 16. Kinematotropic mechanisms can change their full cycle mobility or dof,
while retaining their topological structures.

Figure 1.10 – Wunderlich’s mechanism with mobility F [Woh96].

Wohlhart presented two such peculiar mechanisms: Wunderlich’s mechanism and Wren’s
mechanism both of which can exhibit a full mobility of 1 or 2. Wunderlich’s mechanism is a
planar twelve-bar mechanism with six parallelogram linkages as shown in Fig. 1.10 [Woh96]. Fur-
thermore, Dai et.al presented a new class of mechanisms that are able to change their structures
and mobilities by changing the link numbers and connectivity and coined the term metamorphic
mechanisms [DRJ99; ZD09].

Definition 17. Metamorphic mechanisms can exhibit different full cycle mobilities by chang-
ing their architectures but retaining the same topology [DRJ99; ZD09].

Later, in 2002, Zlatanov et al. analyzed the DYMO (Double Y-Multi Operational) robot, a
3-URU PM shown in Fig. 1.11 to realize that it can exhibit five distinct 3-dof motion types and
coined the term operation modes [ZBG02a].

Definition 18. A category of reconfigurable manipulators can display distinct regions in their
workspace associated with different types of motions. These regions are called Operation
modes [Nur15].

A detailed classification of reconfigurable manipulators summarized by Nurahmi in her PhD
thesis is briefly recalled here [Nur15]:
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Figure 1.11 – DYMO robot with multiple operation modes [ZBG02a].

1. Classification based on the presence of multiple operation modes: PMs can be further
classified based on the number of dof s in each operation mode [KG07].
— Invariable-dof PM : Same number of dof s in every operation mode. Example: Sphe.I.Ro.

wrist is a 3-CPU PM that can exhibit fifteen distinct 3-dof operation modes [Car+14].
— Variable-dof PM : Do not have the same number of dof s in their different operation

modes. Some examples: the DYMO robot [ZBG02a] shown in Fig. 1.11, the 4-UPU PM
with an extra 3-dof operation mode along with the 4-dof Schönflies mode [Car+14]
and the 4-RUU PM with a 2-dof mixed operation mode along with the 4-dof Schönflies
mode [Nur+16].

(a) Prototype. (b) Concept sketch

Figure 1.12 – PARAGRIP robot system [Man+13].

2. Classification based on kinematic architectures: Based on their structure, the following
sub-classifications can be done.
— Reconfigurable SM : Two examples are RMMS robot [PBK96] and MARS manipual-

tor [EK16].
— Reconfigurable PM : Being the focus of this doctoral thesis, some examples are already

mentioned. Others include PARAGRIP (Parallel Gripper) robot system , a 3-RΠS PM
with 6-dof as shown in Fig. 1.12 [Man+13]. It can be used to grasp and manipulate
objects by integrating the object as a moving platform. Its reconfigurable architecture
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allows it to change the grasping points adapting it to the requirements of a given task.
— Reconfigurable hybrid manipulator : They are a mixture of both serial and parallel

architectures. An interesting example is the Cheope robot with a RRP spherical wrist
over a PM with each leg being a P[SS]2 or 3-P[SS] configuration [Tos+10]. Thus, the
PM can exhibit a 3-dof pure translational motion or a 4-dof Schönflies motion resulting
in a 6-dof or a 7-dof hybrid robot.

3. Classification based on assembly process: There are two categories of reconfigurable PMs
based on whether the structure needs to be disassembled to achieve reconfigurability [SF07].
— Dynamic reconfigurable manipulator: that do not need to be disassembled. All the

aforementioned examples belong to this category.
— Static reconfigurable manipulator: that do require disassembly or a change in the basic

topolgy. An example is the MaPaMan (Madras Parallel Manipulator) [SB13]. It can
exhibit a 3-dof pure spherical motion or it can behave like a 3-dof zero-torsion PM
with only roll, pitch and heave motions.

4. Classification based on inactive joints: An inactive joint is defined as the joint that has no
mobility due to the constraints induced by other joints of the manipulator and it has no
effect on the overall mobility [KG07].

(a) Prototype (b) CAD model

Figure 1.13 – 3-RER PM [Kon14].

— Reconfigurable PMs without any inactive joint in any of their operation modes. The
3-RER PM shown in Fig. 1.13 is one such PM [KGR06; Kon14] with fifteen 3-dof
operation modes.

— Reconfigurable PMs with inactive joints in at least one operation mode.

Kinematics of reconfigurable PMs

The term kinematics has Greek origins with kinein meaning ’to move’.

Definition 19. According to IFToMM, Kinematics is defined as a branch of theoretical me-
chanics dealing with the geometry of motion, irrespective of the causes that produce the motion.
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Kinematics is used to describe the motion of links and joints of a system and kinematic
analysis is the process of measuring the kinematic quantities used to describe this motion. For
a PM, it implies to establish relations between the joint coordinates and the moving platform
pose (position and orientation) [Mer10].

Inverse kinematics consists in establishing the values of actuated joint coordinates given
the moving platform pose [Mer10]. It is essential for position control of PMs. For a given
moving platform pose, the limbs of a PM can have different postures resulting in more than one
solution to the inverse kinematics problem. These solutions are called as working modes [CW98;
BCW07].

Direct kinematics involves the determination of the moving platform pose from the actuated
joint coordinate values [Mer10]. In general, this problem is computationally expensive to solve
compared to inverse kinematics problem for parallel architectures. There are usually many
solutions to this problem meaning that there are several ways to assemble the PM. Therefore,
they are also called as assembly modes [WC98; BCW07].

Operation modes Opertaion mode analysis is essentially the task of determining the number
and types of operation modes and transitions between them for a reconfigurable manipulator.
Another PM with the same topology as that of the DYMO robot shown in Fig. 1.11 is the

(a) The SNU 3-UPU PM [WHP09]. (b) The TSAI 3-UPU PM [WH11].

Figure 1.14 – 3-UPU PMs (The numbers at the first limb describe the order of the rotational
axes of the U-joints).

SNU 3-UPU from Seoul National University. It is different from the TSAI 3-UPU [Tsa96] as
shown in Fig 1.14, where each leg is rotated by 90◦ about the prismatic joint axis. The former
was developed to exhibit 3-dof pure translations while the latter, 3-dof pure rotational motions
until Husty et al. performed a complete operation mode analysis to reveal their other hidden
operation modes [WHP09; WH11]. It was found that the SNU 3-UPU has seven 3-dof operation
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modes whereas the TSAI 3-UPU has five 3-dof operation modes and yet the latter was found to
be more complex.

Singularities of PMs

Definition 20. The configurations of a manipulator where it loses or gains one or more dof
are called singular configurations.

Depending on the singular configuration, the robot might lose its inherent rigidity resulting
in uncontrollable degrees of freedom of the moving platform [Mer10]. Hence, it is necessary to
avoid singularities in the workspace.
A PM can mainly fall into two types of singular configurations [Mer10; Tsa99; JT02; CC08]:

1. Serial singularity or limb singularity where the platform loses one or several degrees of
freedom. This type of singularity is the transition between the working modes and hence
defines the boundaries of the workspace.

2. Parallel singularity where the platform can perform infinitesimal motions even though the
actuators are locked. It corresponds to the transition between the assembly modes or the
operation modes. Parallel singularities can be further classified as follows:
— Actuation singularities belong to a single operation mode [WHP09; WH11]. In these

configurations, the actuators cannot control the velocity of the moving platform [AMC16].
— Constraint singularities are the transitions between the operation modes. For this

reason, they are also known as transition configurations [Sch+14; Kon14]. Since op-
eration modes correspond to the partitions of configuration space, these singularities
are also called C-space singularities [ZBG02a; ZBG02b; AMC16]. Moreover, constraint
singularities are inherent to the kinematic linkage and do not depend on the choice of
actuation [CC08].

— Compound singularities are parallel singularities when the PM is neither in a constraint
singularity nor in an actuation singularity [MNC16; NC15]. They are well understood
in a theoretical point of view but their physical interpretation is still a loose end.

Numerous methods exist in the literature to determine the singular configurations of PMs
such as using the velocity equation formulation algebraically [ZFB95a; ZFB95b] and numeri-
cally [Nad13], theory of reciprocal screws [JT02; BZG03], Grassmann-Cayley algebra [BHS06;
BHS09; Kan+09; Ami11; Ami+12a; Ami+12b; AMC16] and using algebraic geometry tools [Sch+14;
WHP09; WH11; NCW15a; Nur+16; Hus+07; HS13; HS10; Nay+17b; Sch14; Nur15].

1.1.2 Series-parallel manipulators

Both SMs and PMs have earned their places in the robotics world due to their inherent
properties such as high stiffness of PMs [Mer10] and large workspace of SMs [Tsa99]. Hence, a
marriage between serial and parallel manipulators with a hope to reap the merits of both, has
led to hybrid manipulators [Tan00; Che+95; Sha95; WRR89; ZS94; Rom99; ZBL04]. A hybrid
manipulator could be mainly of three kinds:

(i) An SM mounted on a PM [TGK99; Tho88; IW05; SL04b].
(ii) A PM mounted on a SM [WRR89].
(iii) serially stacked PMs called as S-PMs [Sha95; Rom99; Tan00; ZBL04].
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Figure 1.15 – A 5-dof industrial hybrid manip-
ulator [TGK99]. Figure 1.16 – Tricept modular hybrid

robot [SL04b].

There are myriad examples of kinds (i) and (ii) compared to kind (iii) hybrid manipulators due
to the fact that for an S-PM, the actuators at every module increase the inertia of the system
making it bulky and impractical for applications.
An example for an SM mounted on a PM is the Georg V. [TGK99] robot. Fig. 1.15 shows
that it is a tripod (3-RPS PM) with a 2-dof wrist joint mounted on it. It is used as a laser
cutting machine. 6-dof GEC Tetrapod is another example with a spherical wrist mounted on a
translational PM [Tho88] used as an assembly robot. The most successful modular hybrid robot
is the 5(or 6)-dof Tricept robot as shown in 1.16. It has more than 300 units installed worldwide
with applications ranging from robotics assembly drilling and milling of hard metals [SL04b].
However, this doctoral thesis focuses mainly on the serial arrangement of two or more PMs,
known as S-PMs. To the best of the author’s knowledge, the only industrial example of an S-
PM is the LX robot built by the company Logabex by piling up hexapods as shown in Fig. 1.17.
It weighs 120 kgs [Mer10] and its configuration space is a 25 dimensional variety embedded in a
97-dimensional joint space [CS04] and the control is evidently difficult [Cha90]. Therefore, from
a practical view point, S-PMs are not very useful, but theoretically, they are fascinating and
pose a lot of interesting problems to be solved in order to understand their behavior.

Kinematic analysis of S-PMs

As much as they are regarded for their merits, hybrid manipulators also bear the demerits
of their constituent manipulators in the sense that their kinematic modeling and singularity
analysis are more complicated. Various approaches have been proposed in the literature to
analyze S-PMs: Shahinpoor [Sha95] solved the direct and inverse kinematics of modular 3-axis
parallel manipulators mounted in series as an n-axis S-PM. Romdhane [Rom99] performed the
forward displacement analysis of a Stewart-like S-PM. Tanev [Tan00] studied a novel 6 degrees of
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(a) Industrial prototype [Mer10]. (b) CAD model [CS04].

Figure 1.17 – Logabex LX4 S-PM.

freedom (dof) S-PM and derived the closed-form solutions to its forward and inverse kinematics.
Moreover, Zheng et al. [ZBL04] obtained closed-form kinematic solutions for the design of a
6-dof S-PM composed of a 3-UPU translational PM and a 3-UPU rotational PM mounted in
series. In most of these S-PMs, the constituent modules possess the degrees of freedom that are
pure rotations or translations. Hence, each module can be replaced by a set of equivalent lower
kinematic pairs that can simplify the understanding of the S-PM behaviour.
There exist other S-PMs in which the constitutive PMs have their degrees of freedom coupled
and hence give rise to parasitic motions. Hu, Lu and Alvarado [Hu+12; LHY09; GA+08; Hu14;
GA+15] have contributed considerably to the design and analysis of this kind of series-parallel
manipulators. Lu and Hu [LHY09] pursued the kinematic analysis of a 2(SP+SPR+SPU) S-PM
and plotted its workspace. They also performed the static analysis [Hu+12] of S-PMs with
k-PMs in series. In addition, Hu [Hu14] formulated the Jacobian matrix for S-PMs as a function
of Jacobians of the individual parallel modules. Alvarado [GA+08] used screw theory and the
principle of virtual work to carry out the kinematic and dynamic analysis of a 2-(3-RPS) S-PM.
The 3-RPS-3-SPR S-PM is another example of a S-PM composed of two parallel modules with
coupled degrees of freedom [HLYZ12; GA+15; NCW18d]. Though there are well-developed
methods for kinematics of S-PMs, the singularity analysis is generally overlooked. Therefore,
this doctoral thesis sheds some light into this area considering S-PMs with two or more lower
mobility PMs mounted in series.

1.1.3 Compliant mechanisms

Although, people have been building machines with rigid links and joints to accomplish a
motion, almost every moving thing in nature is flexible with parts that can bend to simulate
motion. Examples include bee wings, elephant trunks, eels, human body parts such as heart,
muscles along with the man-made designs of ancient bows and mechanisms of Leonardo da Vinci
as shown in Fig. 1.18 [HMO13].

Definition 21. Compliant mechanisms consist of flexible elements whose elastic deformation
is utilized in order to transmit a force and/or motion [How01].
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(a) An eel. (b) Flying machine by Leonardo da Vinci.

Figure 1.18 – Natural and man-made compliant mechanisms [HMO13].

Compliant mechanisms have many advantages as compared to their rigid counterparts. They
are simpler to manufacture (usually monolithic) with lower costs of manufacturing, possess
high precision due to reduced wear and backlash, are light weight and can be miniaturized.
Nonetheless, they also offer some challenges such as the deflections are often non-linear and
require care in defining their motion and are prone to fatigue due to high stresses in the compliant
joints [HMO13].
The Handbook of compliant mechanisms lists the following methods to design a compliant
mechanism [HMO13]:

1. Synthesis through Freedom and Constraint Topologies (FACT) method is a systematic
approach that depends on the mathematics of screw theory [HC10a; HC10b; Hop10].

2. Synthesis through topology optimization: Initially a design domain is defined as the allow-
able space for design and then a topology is decided through the distribution of a material
and void within this domain [Roz14]. The result is usually the stiffest, least weight mech-
anism.

3. Synthesis through rigid body replacement involves choosing a rigid-body mechanism capable
of accomplishing a desired task whose rigid links and movable joints are then replaced with
equivalent compliant members and joints to obtain a compliant mechanism. Usually, there
are several ways to replace the rigid parts of a mechanism by compliant parts [Ols+10;
HL15; How01]. To choose the best design, type synthesis is done using Pseudo-Rigid Body
Modeling (PRBM) that provides a simple method for analyzing the non-linear deflections
of compliant members in a mechanims by modeling their deflection using rigid-body com-
ponents that have equivalent force or deflection characteristics [MHM04].

4. Synthesis through the use of building blocks mainly relies on the designer’s creative capacity
to decompose a problem into sub-problems that can be addressed by subsystems or building
blocks [KMK08].

Reconfigurable compliant mechanisms

Though there are abundant reconfigurable rigid-body mechanisms in the literature, the study
of reconfigurable compliant mechanisms is limited. Hao studied the mobility and structure
reconfiguration of compliant mechanisms [Hao16] while Hao and Li introduced a position-space-
based structure reconfiguration (PSR) approach to the reconfiguration of compliant mechanisms
and to minimize parasitic motions [HLK16; LH15].
As it will be shown in this doctoral thesis, the constraint singularities of lower-mobility PMs
can be exploited to design reconfigurable compliant mechanisms.
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1.2 Fundamental concepts and tools

1.2.1 Line geometry

The set of straight lines in the projective space P3 is a four dimensional manifold. Felix
Klein (1849-1925) introduced an easier way to study line geometry by mapping every line in P3

to a point on a quadric in the projective 5-space P5. This mapping is called the Klein model
and the quadric on which these points lie is called the Klein quadric.

Plücker coordinates

Following H.Grassman and J.Plücker, the coordinates of a line L spanned by two points
A and B with homogeneous coordinates (a0,a) = (a0, a1, a2, a3) and (b0,b) = (b0, b1, b2, b3),
respectively are given by their exterior product as follows [PW01]:

(a0, a1, a2, a3) ∧ (b0, b1, b2, b3) = (l, l) = (p01, p02, p03, p23, p31, p12), pij = aibj − ajbi. (1.1)

The six-tuple = (p01, p02, p03, p23, p31, p12) contains the Plücker coordinates of a line and they
must satisfy the following Plücker identity:

p01p23 + p02p31 + p03p12 = 0 (1.2)

The vector l denotes the direction vector of L and the vector l denotes the moment vector of
the line with respect to origin.

Thus, a line L carries a pencil of points. By duality it also carries a pencil of planes leading
to dual Plücker coordinates. For instance, the line of intersection of two planes U and W with
homogeneous coordinates (u0,u) = (u0, u1, u2, u3) and (v0,v) = (v0, v1, v2, v3), respectively has
the following dual Plücker coordinates:

(u0, u1, u2, u3) ∧ (v0, v1, v2, v3) = (p∗01, p
∗
02, p

∗
03, p

∗
23, p

∗
31, p

∗
12), p∗ij = uivj − vjui. (1.3)

Span and intersection

The line L spanned by two points (a0,a) and (b0,b) can also be expressed as:

L = (l, l) = (a0b− b0a,a × b) (1.4)

where × denotes the vector cross product in R3. Every line L = (l, l) contains a point at infinity
called as the ideal point whose homogeneous coordinates are (0, l) = (0, l01, l02, l03). Similarly,
the line L contained in two planes (u0,u) and (u0,u) is given by:

L = (l, l) = (u× v, u0v− v0u) (1.5)

If a line (l, l) and a point (a0,a) are not incident, the plane (u0,u) spanned by them is computed
by the formula:

(u0,u) = (a · l,−a0l + a × l), (1.6)

where · denotes the scalar product in R3. The dual formula to compute the intersection point
(a0,a) of a plane (u0,u) and a line (l, l) is given by:

(a0,a) = (u · l,−u0l + u× l) (1.7)
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If two lines G = (g,g) and H = (h,h) intersect in a real point, the plane spanned by them
G ∨H = (u0,u) is computed as follows:

(u0,u) = (g · h,g× h). (1.8)

The intersection point G∩H = (p0,p) of these lines are computed by the following dual formula

(p0,p) = (g · h,g× h). (1.9)

Incidence relations

The point (p0,p) is incident with the plane (u0,u) if and only if

u0p0 + u · p = 0 (1.10)

A point (a0,a) is contained in the line (l, l) if and only if their exterior product vanishes as
follows:

a · l = 0, −a0l + a × l = 0 (1.11)

Dually, a plane (u0,u) and a line (l, l) if and only if

u · l = 0, −u0l + u× l = 0 (1.12)

The following Lemma is stated for the intersection of two lines [PW01]:

Lemma 1. Two lines G = (g,g) and H = (h,h) intersect if and only if

g · h + g · h = 0 (1.13)

1.2.2 Screw theory

Screw theory has been proven to be a powerful mathematical tool for the analysis of spatial
mechanisms. A screw can be used to denote the position and orientation of a spatial vector,
the linear and angular velocity of a rigid body, or a force and a moment. Though screw theory
approach is local, it provides a quick and efficient methodology to understand the mobility of a
moving platform at a given instant. Furthermore, singularities present in the manipulator are
easy to determine and visualize using screw theory approach.

Expressing the motion of a rigid body as a combination of a rotation and a translation was
first proposed by Chasles (1830) and further developed by Poinsot (1848). Then, Plücker gave
the expression for a screw [Plu65]. In 1900, Ball [Bal00] published his classical work, in which
he studied the screw theory systematically. He contributed greatly to the formulation of clear
ideas about the kinematics and dynamics of a rigid body using screw theory. Hunt [Hun87]
further developed screw theory with a geometrical emphasis. Initially he dealt with planar
mechanisms and then he analyzed spatial mechanisms. With an introduction to line geometry,
the major contribution of Hunt was to classify the screw systems. For instance, he showed
that all the screws of the second-order screw system lie on a cylindroid whereas all the screws
of the third-order screw system with same pitches lie on a hyperboloid of one sheet. Further-
more, Phillips [Phi84] presented the mechanisms as the geometric essence of machinery. He
elaborated on line geometry explaining line complexes and congruences utilizing them to further
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describe the classifications of screws as screw systems. Many other researchers, such as Wal-
dron [Wal66], Roth [Rot67], Duffy [Duf82], Angeles [Ang94] have made significant contributions
to screw theory. Lately, in 2007, Kong and Gosselin [KG07] have used screw theory to synthe-
size mechanisms. Recently, Carricato [Car05; CZ14] synthesized numerous type of legs which he
classified into invariant, non-invariant and persistent screw systems. The following subsections
briefly describe the theoretical concepts behind screw theory.

At any instant the combination of angular velocity and translational velocity of a rigid body
along the same line, produces an instantaneous movement. This movement can be expressed as
a resultant angular velocity vector ω together with a translational velocity vector v along the
same instantaneous screw axis (ISA), denoted by a twist t. Similarly, a system of forces, f and
moments m acting on a rigid body can be represented as a wrench w:

t =
[
ω
v

]
; w =

[
f
m

]
(1.14)

Thus, a screw is defined as follows:

Definition 22. A screw is defined by an axis, the position of a point onto this axis with respect
to a reference frame and a pitch.

In general, a screw $ can be represented as

$ =
[

s
r× s + hs

]
(1.15)

where s is the direction vector of the screw, h is the pitch of the screw and r is the position
vector of any point on the screw. Given a twist, r and h can be calculated from the angular and
translational velocity vectors in the following way [Bea85]:

r = ω × v
ω · ω

h = ω · v
ω · ω

s = ω

‖ω‖
(1.16)

Depending on the pitch, three classifications of screws have proved to be useful :

— Zero-pitch screws: h = 0, $0 =
[

s
r× s

]
.

— Infinite-pitch screws: h =∞, $∞ =
[
03×1

s

]
.

— Finite-pitch screws: h 6= 0, h 6= ∞. They can be written as a linear combination of $0
and $∞.

Furthermore, a zero-pitch twist and a infinite-pitch twist are represented as ξ0 and ξ∞,
respectively, while a zero-pitch wrench and a infinite-pitch wrench are represented as ζ0 and ζ∞,
respectively.

Screw systems

Definition 23. A screw system of order n (0 ≤ n ≤ 6) comprises of n linearly independent
screws that result in a n degree-of-freedom system.

Hunt [Hun87] covers all screw systems, the one-system to the five-system, in their general
and special forms. The first-order screw system or one-system consists of a single screw. The
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second-order screw system or two-system comprises of ∞1 screws and the general ruled surface
on which these screws lie is a cylindroid. The third-order screw system or three-system comprises
of∞2 screws and the general ruled surface on which these screws lie is a hyperboloid and so on.
These screw systems explain the transitory mobility of spatial linkages which can be extended
to full-cycle mobility for a great number of linkages.

Reciprocity conditions

Definition 24. Two screws are considered to be reciprocal when their contribution to the rate of
working is zero. Specifically, if a rigid body is constrained to move about an ISA, ξ (Figure 1.19)
and a wrench ζ can contribute nothing to the rate at which work is done by the body, then, ξ
and ζ are said to be reciprocal screws [Hun87].

v

ω

m

f

r

ξ

ζ

λ
h

h’

Figure 1.19 – Reciprocal screws

In Figure 1.19, a body is constrained about the ISA ξ with pitch h. Its instantaneous angular
velocity and translational velocity are ω and v, respectively. The pitch h satisfies the relation
v = hω. The screw ζ contains a wrench with pitch h′ has its intensity f and the moment
m = h′f . The shortest distance between ξ and ζ is r and the angle between them is λ.
The work done by the wrench ζ on the twist ξ can be represented as :

ζ ◦ ξ = f · v + m · ω

=
[
v ω

] [ f
m

]

= (Πt)T w, where Π =
[
03×3 I3×3
I3×3 03×3

] (1.17)

where, ◦ is the reciprocal product between two screws. For Figure 1.19, when no work is done,
the following relationship is obtained:

ζ ◦ ξ =⇒ (fv + mω) cos(λ)− frω sin(λ) = 0
=⇒ fω

(
(h+ h′) cos(λ)− r sin(λ)

)
= 0

(1.18)

If the locations and pitches of the screws ξ and ζ are such that

(h+ h′) cos(λ)− r sin(λ) = 0, (1.19)
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Screw 1 Screw 2 Reciprocity condition

$10 $2∞ orthogonal axes
$1∞ $20 orthogonal axes
$10 $20 coplanar axes
$1∞ $2∞ always reciprocal

Table 1.1 – Reciprocity conditions

then, irrespective of the applied wrench or the amplitude of the instantaneous twist, the contri-
bution the wrench makes to the instantaneous working rate is zero and the screws are reciprocal.
Equation (1.19) is called the reciprocity condition. Some important instances of any two recip-
rocal screws are listed in Table 1.1.

Twist and wrench systems of parallel manipulators

For a serial kinematic chain with n joints, there are n twists associated to the chain and the
span of these twists is called the twist system of the kinematic chain.
A parallel manipulator consists of a set of m serial kinematic chains, called as limbs with
ni, i = 1, ...,m joints in each limb. If each joint is assigned a twist, ξji, j = 1, ..., ni, i = 1..m,
there are ni twists associated to each limb. Therefore, the twist system Ti of each limb is the
span of these twists. Additionally, the wrench system, Wi of the i-th limb is the span of the
wrenches reciprocal to each and every twist ξji, j = 1, ..., ni. In other words, Ti and Wi are
orthogonal screw systems and their orders must add up to 6:

Ti = span{ξ1i, ξ2i, ..., ξnii} ; Wi = T⊥i , i = 1, ...,m. (1.20)

Moreover, due to the parallel arrangement of the limbs, the global twist system of the parallel
kinematic chain T is the intersection of the twist systems of each limb, Ti. Dually, the wrench
system for a parallel kinematic chain is the linear combination of the wrench system from each
serial kinematic chain Wi:

T =
m⋂
i=1

Ti ; W =
m⊕
i=1

Wi ; T = W⊥, i = 1, ...,m. (1.21)

Computationally, it is easier to find the linear combination between vector spaces than their
intersections. Hence, the twist system of a PM is obtained by first finding its wrench system as
a linear combination of the wrench systems of its limbs and then finding the orthogonal screw
system.

Actuation and constraint wrench systems

A parallel manipulator consists of a total wrench system of order 6. It can be considered as
the linear combination of actuation wrench system, Wa and constraint wrench system, Wc.
If the PM has m number of limbs and each limb has a twist system Ti, (i = 1, ...,m) of order t,
then, the constraint wrench system, Wc

i of each leg will be of order 6− t.
If each leg has n(< t) unactuated joints, the wrench system reciprocal to unactuated joints is
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of order 6− n. Then, the actuation wrench system of each leg consists of wrenches that do not
belong to Wc. Therefore, the total wrench system of the PM can be found as

W = Wa ⊕Wc (1.22)

In a general configuration, the constraint and actuation wrench systems of parallel manipulators
form a 6-system. It means that by locking the actuators, the moving platform must be fully
constrained, otherwise the manipulator reaches a parallel singularity [KG07]. A parallel singu-
larity can be an actuation singularity, a constraint singularity or a compound singularity [Nur15;
Ami11; AMC16; MNC16; NC15].

Extended Jacobian matrix

Based on the theory of reciprocal screws [Hun87; Phi84], Joshi and Tsai [JT02] developed
a methodology to express the 6× 6 extended Jacobian matrix, JE for lower-mobility PMs that
includes constraint and actuation wrenches. It is expressed as the concatenation of actuation
and constraint wrenches of the PM:

JE =
[
Wa Wc

]
(1.23)

1.2.3 Algebraic geometry

In algebraic geometry, methods from both algebra and geometry are used to gain under-
standing of the solution system to a given set of polynomial equations over a field, k. k can be a
set of Q (rational numbers), or C (complex numbers), or R (real numbers). The set of all poly-
nomials in x1, ..., xn with coefficients in k is denoted k[x1, ..., xn]. Since parallel manipulators
are governed by geometric constraints that can be written in terms of polynomial equations,
algebraic geometry tools can be used to understand their kinematic behavior.
It should be noted that all the following definitions and examples are chosen from Cox, Little
and O’Shea [CLO07], where the reader can find further explanations.

Ideals and Varieties

Definition 25. A subset I ⊂ k[x1, ..., xn] is an ideal if it satisifies:

(i) 0 ∈ I

(ii) If f, g ∈ I then f + g ∈ I

(iii) If f ∈ I and h ∈ k[x1, ..., xn], then hf ∈ I

(1.24)

The first natural example of an ideal is the ideal generated by a finite number of polynomials.

Definition 26. Let f1, ..., fs be polynomials in k[x1, ..., xn], then

〈f1, ..., fs〉 =
{

s∑
i=1

hifi : h1, ..., hs ∈ k[x1, ..., xn]
}

(1.25)

is an ideal.

Lemma 2. If f1, ..., fs ∈ k[x1, ..., xn] then 〈f1, ..., fs〉 is an ideal of k[x1, ..., xn] and 〈f1, ..., fs〉
is called the ideal generated by f1, ..., fs.
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An ideal I is finitely generated if there exist f1, ..., fs ∈ k[x1, ..., xn] such that I = 〈f1, ..., fs〉,
and f1, ..., fs are called a basis of I.

Definition 27. If f1, ..., fs are polynomials in the field k[x1, ..., xn] and if

V(f1, ..., fs) = {(a1, ..., an) ∈ kn : fi(a1, ..., an) = 0, for all 1 ≤ i ≤ s} (1.26)

then V(f1, ..., fs) is called an affine variety defined by the polynomials fi.

Thus, an affine variety V(f1, ..., fs) ⊂ kn is the set of all solutions of the system of equations
f1(x1, ..., xn) = ... = fs(x1, ..., xn) = 0.

Lemma 3. If V ⊂ kn is an affine variety, then I(V ) ⊂ k[x1, ..., xn] defined as

I(V ) = f ∈ k[x1, ..., xn] : f(a1, ..., an) = 0 for all (a1, ..., an) ∈ V (1.27)

is called as the ideal of V .

An affine variety can also be defined as the vanishing set of an ideal. The following example
clarifies the definitions of ideals and varieties [McC86]:

Example 1. A circle of center (0,0) and a line are given as x2
1 +x2

2−1 = 0 and x1 +x2−1 = 0
respectively. Then the ideal generated by these two equations is given by I = 〈x2

1+x2
2−1, x1+x2−

1〉 and the corresponding variety is {(1,0),(0,1)}. Figure 1.20 shows the variety corresponding

(0,1)

x
1

x
2

(1,0)

Figure 1.20 – Variety corresponding to the ideal I = 〈x2
1 + x2

2 − 1, x1 + x2 − 1〉.

to the ideal I.

Hilbert Basis Theorem and Gröbner Basis

In the algebra of polynomial ideals and the geometry of affine varieties, the following two
problems are of concern:
a. The Ideal Description Problem : Does every ideal I ⊂ k[x1, ..., xn] have a finite generating
set? In other words, can we write I = 〈f1, ..., fs〉 for some fi ∈ k[x1, ..., xn]?
b. The Ideal Membership Problem : Given f ∈ k[x1, ..., xn] and an ideal I = 〈f1, ..., fs〉,
determine if f ∈ I . Geometrically, this is closely related to the problem of determining whether
V(f1, ..., fs) lies on the variety V(f).
The following theorem answers the ideal description problem :
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Theorem 1. (Hilbert Basis Theorem) : Every ideal I ⊂ k[x1, ..., xn] has a finite generating
set. That is, I = 〈g1, ..., gt〉 for some g1, ..., gt ∈ I.

A notion of ordering of terms in polynomials is a key ingredient in algebraic geometry. It
helps in division and row-reduction algorithms of the polynomials which are important to solve
linear equations. The ordering used in this context is lexicographic ordering defined as follows:

Definition 28. (Lexicographic order): Let α = (α1, ..., αn) and β = (β1, ..., βn) ∈ Zn≥0. It is
said that α >lex β if, in the vector difference α − β ∈ n, the leftmost nonzero entry is positive.
The monomials xα >lex xβ if α >lex β.

Fixing the monomial ordering, the standard basis can be defined as :

Definition 29. A finite subset G = g1, ..., gt of an ideal I is said to be a Gröbner basis (or
standard basis) if 〈LT (g1), ..., LT (gt)〉 = 〈LT (I)〉.

where LT is the Leading Term of the polynomial. Equivalently, but more informally, a set
g1, ..., gt ⊂ I is a Gröbner basis of I if and only if the leading term of any element of I is divisible
by one of the LT (gi).

Some applications of Gröbner basis include:
1. Solving the ideal membership problem along with the help of division algorithm of polyno-

mials which gives the condition for the existence of a solution.
Example 2. Let I = 〈f1, f2〉 = 〈xz − y2, x3 − y2〉. Does the polynomial f = −4x2y2z2 +
y6 + 3z5 belong to the ideal I?
Using lex ordering, the Gröbner basis of ideal I can be computed using a computer algebra
system:

G = {f1, f2, f3, f4, f5} = {xz − y2, x3 − z2, x2y2 − z3, xy4 − z4, y6 − z5}.

Dividing f by G gives:
f = (−4xy2z − 4y4)f1 − 3f5,

proving that f ∈ I.
2. Solving polynomial equations: This is the most relevant application in this context and is

explained with the help of a simple example:
Example 3. For a set of equations in R3,

x2 + y + z = 1
x+ y2 + z = 1
x+ y + z2 = 1

the ideal is determined as I = 〈x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1〉 ⊂ R[x, y, z]
and all the points in V(I) are to be found.
Computing a Gröbner basis on I with respect to lex order gives

g1 = x+ y + z2 − 1
g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z4 + 4z3 − z2
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Here the polynomial g4 depends on z alone, hence, the possible values of z are 0, 1 and
-1±
√

2. Substituting these calues into g2 = 0 and g3 = 0, determines the y’s, and then
finally g1 = 0 gives the corresponding x’s. Thus, the solutions for the three polynomial
equations are (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1+

√
2, -1+

√
2, -1+

√
2) and (-1-

√
2, -1-√

2, -1-
√

2). The intersection curves of the three pairs of polynomials in the ideal I =

y

(0,0,1)

x

z

(0,1,0)
(1,0,0)

(-1+  2, -1+  2, -1+  2)√ √ √

(-1- 2, -1- 2, -1- 2)√ √ √

Figure 1.21 – Solution to the system of equations {x2 +y+z = 1, x+y2 +z = 1, x+y+z2 = 1}.

〈x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1〉 are shown in Fig. 1.21. Additionally, the
solutions to the given set of equations are indicated.

3. The impliticization problem in which a variety V ⊂ kn is given parametrically as x1 =
g1(t1, ..., tm),..., xn = gn(t1, ..., tm) and the task is to find out the system of polynomial
equations that defines the variety.

Primary decomposition

It is sometimes useful to decompose a given ideal into simpler ideals and study them sepa-
rately. The original ideal can then be expressed as the intersection of these sub-ideals.

Definition 30. The intersection I ∩ J of two ideals I and J in k[x1, ..., xn] is the set of
polynomials which belong to both I and J.

Intersection of ideals is equivalent to the union of corresponding varieties according to the
following theorem:

Theorem 2. If I and J are ideals in k[x1, ..., xn], then V(I ∩ J) = V(I) ∪V(J)

In this light, the following theorem has been stated

Theorem 3. Every ideal I ⊆ k[x1, ..., xn] can be written as a finite intersection of primary
ideals.

A Primary Ideal and a Prime Ideal is defined as follows:

Definition 31. An ideal I in k[x1, ..., xn] is primary if fg ∈ I implies either f ∈ I or some
power gm ∈ I for some m > 0.
An ideal I in k[x1, ..., xn] is prime if fg ∈ I implies either f ∈ I or g ∈ I.
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Example 4. 〈x2〉 is a primary ideal, but not prime.
Eventually, the Primary Decomposition of an ideal can be defined in the following way:

Definition 32. A primary decomposition of a given ideal I is an expression of I as an in-
tersection of primary ideals, namely I =

⋂r
i=1Qi. Such a decomposition is called minimal if the

radicals
√
Qi are all different and Qi

⋂
i 6=j Qj. Furthermore, if no radical

√
Qi is strictly con-

tained in radical
√
Qj, then the primary components Qi are uniquely determined. The radicals√

Qi = Pi are the corresponding prime ideals.
The radical ideal is defined as :

Definition 33. Let I ⊂ k[x1, ..., xn] be an ideal. The radical of I, denoted
√
I, is the set

{f : fm ∈ I for some integerm ≥ 1}.
Example 5. The primary decomposition of the ideal 〈x3−xy3〉 ⊂ k[x, y] yields two prime ideals
〈x〉 and 〈x2 − y3〉. Figure 1.22 depicts the primary decomposition of the ideals as the union of
their corresponding varieties.

x

y

x = 0

x
2 -y

3  = 0

Figure 1.22 – V(〈x3 − xy3〉) as the union of varieties V(〈x〉) in green and V(〈x2 − y3〉) in blue.

Example 6. The primary decomposition of an ideal need not be unique. For instance, the
ideal 〈x2, xy〉 ⊂ k[x, y] has two distinct minimal decompositions whose radicals are identical :
〈x2, xy〉 = 〈x〉 ∩ 〈x2, xy, y2〉 = 〈x〉 ∩ 〈x2, y〉.

Hilbert dimension

Theorem 4. Let V = V (I) be an affine variety, where I ⊂ k[x1, ..., xn] is an ideal. If k is
algebraically closed, then the dimension of V is the maximum dimension of a coordinate subspace
in V (〈LT (I)〉)

The degree of Hilbert polynomial also yields the dimension of V and is known as the Hilbert
dimension. If the Hilbert dimension is zero, it means that there are finite number of intersec-
tions between the polynomials that constitute the corresponding ideal. It has been proved that
the degrees of freedom of a mechanism is the Hilbert dimension of the ideal of its constraint
polynomials [HS08].

For radical ideals and algebraically closed fields, Table 1.2 summarizes the mapping between
algebra and geometry.
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ALGEBRA GEOMETRY
radical ideals varieties
addition of ideals intersection of varieties
product of ideals union of varieties
intersection of ideals union of varieties
quotient of ideals difference of varieties
elimination of variables projection of varieties
prime ideals irreducible varieties

Table 1.2 – Mapping between algebra and geometry in algebraic geometry [CLO07]

Trigonometric identities

Algebraic geometry tools can only be used if the constraint equations are algebraic. But the
geometric constraint equations are often trigonometric and the following formulas and substitu-
tions are recalled to perform the simplifications and make them algebraic:

sin2(θ) + cos2(θ) = 1 (1.28)

where θ is arbitrary.
A useful change of variables is the Weierstrass substitution named after Karl Weierstrass (1815-
1897):

t = tan(θ2). (1.29)

With this transformation and the double-angle trigonometric identities, it immediately follows:

sin(θ) = 2t
1 + t2

, cos(θ) = 1− t2

1 + t2
, tan(θ) = 2t

1− t2 . (1.30)

It is commonly known as the tangent half-angle substitution and the mapping has a pre-image
[0, 2π] and the image R ∪ {∞}.

1.2.4 Study’s kinematic mapping

A kinematic mapping converts the variables specifying a displacement into a set of coor-
dinates of a point in a higher dimensional space [McC86]. These variables can be the three
orientation angles of a rotation or the three position coordinates along with three orientation
angles of a spatial displacement. For parallel manipulators, kinematic mapping is a transforma-
tion of their configuration space to another space called the image space in which the geometric
study of the constraints typical of mechanical systems is simplified.
Euclidean three space is the three dimensional vector space R3 together with the usual scalar
product xTy =

∑3
i=1 xiyi. The spatial Euclidean displacement is a mapping of

γ : R3 → R3, x = Rx + d (1.31)

where R ∈ SO(3) is a proper orthogonal three by three matrix and d ∈ R3 is a displacement
vector. The entries of matrix R fulfill the well-known orthogonality condition RTR = I where,
I is the identity matrix.
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The group of all Euclidean displacements is denoted by SE(3). To incorporate homogeneous
coordinates, it is convenient to write Equation (1.31) as follows:[

1
x

]
=
[

1 0T3×1
d R

]
·
[

1
x

]
(1.32)

Study in 1891 introduced a set of 8 parameters to represent a spatial displacement. Hence,
Study’s kinematic mapping maps each spatial Euclidean displacement γ of SE(3) onto a point
in p ∈ P7. In this parametrization, a point [x, y, z] is transformed to [x′, y′, z′] according to:

[1, x′, y′, z′]T = M[1, x, y, z]T (1.33)

where, the matrix M ∈ SE(3) is represented as [Hus+07]:

M =
[
x0

2 + x1
2 + x2

2 + x3
2 0T3×1

MT MR

]
(1.34a)

MT =

 −2x0y1 + 2x1y0 − 2x2y3 + 2x3y2
−2x0y2 + 2x1y3 + 2x2y0 − 2x3y1
−2x0y3 − 2x1y2 + 2x2y1 + 2x3y0

 (1.34b)

MR =
[
x02+x12−x22−x32 −2x0x3+2x1x2 2x0x2+2x1x3

2x0x3+2x1x2 x02−x12+x22−x32 −2x0x1+2x3x2
−2x0x2+2x1x3 2x0x1+2x3x2 x02−x12−x22+x32

]
(1.34c)

whereMT andMR represent the translational and rotational parts of the transformation matrix
M respectively. The parameters xi, yi, i ∈= {0, ..., 3} present in the transformation matrix M
are called the Study-parameters. An Euclidean transformation can be represented by a point
p ∈ P7 if and only if the following equation and inequality are satisfied:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (1.35)
x0

2 + x1
2 + x2

2 + x3
2 6= 0 (1.36)

All the points that satisfy the Equation (1.35) belong to the 6-dimensional Study quadric, S2
6.

The points that do not satisfy the inequality (1.36) lie on the exceptional generator x0 = x1 =
x2 = x3 = 0.
Study’s kinematic mapping is closely related to the algebra of dual quaternions, where the
eight basis elements of a dual quaternion correspond to Study parameters. The inverse of the
transformation matrixM−1 expressed in the Study-parameters (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
is given by (x0 : −x1 : −x2 : −x3 : y0 : −y1 : −y2 : −y3).

To find this inverse mapping, we need to know how to obtain the Study-parameters from the
entries of matrix R = [aij ]i,j=1,...,3 and the displacement vector d = [d1, d2, d3]T . It was shown
by Study that the quadruple x0 : x1 : x2 : x3 can be computed in one of the following ways :

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12

= a32 − a23 : 1 + a11 − a22 − a33 : a21 + a12 : a13 − a31

= a13 − a31 : a21 + a12 : 1− a11 + a22 − a33 : a32 + a23

= a21 − a12 : a13 + a31 : a32 − a23 : 1− a11 − a22 + a33

(1.37)
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Some of the ratios can be zero simultaneously, however Study showed that at least one of the
ratios is not equal to (0 : 0 : 0 : 0). The remaining Study-parameters are computed as:

2y0 = d1x1 + d2x2 + d3x3

2y1 = −d1x0 + d3x2 = d2x3

2y2 = −d2x0 − d3x1 + d1x3

2y3 = −d3x0 + d2x1 − d1x2

(1.38)

1.2.5 Transformation axis

The French geometer Michel Chasles (1793-1880) stated the following theorem:

Theorem 5. Any rigid body displacement can be produced by translation along a line followed
by rotation about that line.

Such a combination of rotation and translation is known as the Screw displacement and
the line is called as the Finite Screw Axis (FSA) [BR79]. It is advantageous to represent the
FSA in terms of Plücker coordinates, L = (p01, p02, p03, p23, p31, p12). The FSA corresponds to
the transformation that maps the coordinate frame attached to the fixed base of a PM to the
coordinate frame attached to the moving platform of the PM [Nur15]. The Plücker-coordinates
of the corresponding FSA in terms of the Study-parameters is given as [Sch+14]:

p01 = (−x2
1 − x2

2 − x2
3)x1, p23 = x0y0x1 − (−x2

1 − x2
2 − x2

3)y1

p02 = (−x2
1 − x2

2 − x2
3)x2, p31 = x0y0x2 − (−x2

1 − x2
2 − x2

3)y2

p03 = (−x2
1 − x2

2 − x2
3)x3, p12 = x0y0x3 − (−x2

1 − x2
2 − x2

3)y3

(1.39)

where, (p01, p02, p03)T is the direction vector of the FSA. Furthermore, if the Study-parameters
are normalized (x2

0 + x2
1 + x2

2 + x2
3 = 1), the angle φ of the rotational part and the distance s of

the translational part of the given transformation can be computed from the Study-parameters
directly with

cos(φ2 ) = x0 ; s = 2y0√
x2

1 + x2
2 + x2

3

(1.40)

1.2.6 Tilt and Torsion angles

There are several ways to parametrize the orientation of a rigid body. The orientation Study
parameters x0, x1, x2, x3 do this job and are useful to interpret and analyze the motion of a
mechanism algebraically. However, they are not intuitive and require some manipulation to
clearly understand the orientation capabilities of a mechanism. In this vein, Bonev et al. [BR99;
BZG02] introduced a set of modified Euler angles that offer a compact and intuitive represen-
tation of the orientation workspace of PMs. They are known as Tilt and Torsion angles (T&T
angles) and are shown in Fig. 1.23.
In case of ZXZ Euler convention, a rotation matrix is decomposed as:

R = Rz(φ)Rx(θ)Rz(ψ), (1.41)

where φ, θ and ψ represent yaw, pitch and roll angles respectively. However, T&T angles use
only two rotations:

R = Ra(θ)Rz(σ) (1.42)
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z’ ≡ z*
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σ
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Figure 1.23 – Tilt and Torsion angles [BZG02]

where θ is the tilt and σ represents the torsion angle. This is the reason why they are named
as Tilt and Torsion angles. However, it should be noted that the azimuth angle locates the axis
a. It is measured as φ from the initial position of x-axis. This simple yet effective change of
angles makes the whole analysis much simpler and suitable for the study of a PM. The change
of parametrization from the orientation dual quaternions to T&T angles is done as follows:

x0 = cos(θ2) cos(σ2 )

x1 = sin(θ2) cos(φ− σ

2 )

x2 = sin(θ2) sin(φ− σ

2 )

x3 = cos(θ2) sin(σ2 )

(1.43)

1.3 Conclusions

In this chapter, the existing literature on PMs, S-PMs and compliant mechanisms was re-
viewed and the mathematical tools necessary to analyze those mechanisms were presented.

This doctoral thesis focuses on reconfigurable lower mobility parallel manipulators and other
mechanisms whose architectures are based on them. Therefore, the technological advancements
and applications of PMs were discussed. Serial arrangements of these PMs lead to series-parallel
manipulators. The theoretical importance of S-PMs was highlighted. Moreover, the origin and
growing interest in compliant mechanisms were presented emphasizing their synthesis based on
the parallel singularities of lower mobility PMs.

Furthermore, the fundamental concepts and tools necessary to analyze the aforementioned
mechanisms were explained starting with the line geometry. Screw theory tools used for local
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kinematic analysis and algebraic geometry tools used for global kinematic analysis were presented
with examples. Study’s kinematic mapping was explained with an aim to derive the algebraic
constraint equations. Finally, the transformation axis coordinates were expressed in terms of
Study parameters and Tilt and Torsion angles that come in handy for some special PMs.

The operation mode analysis is performed in detail in Chapter 2 for some PMs revealing
their reconfigurable behavior.



Chapter 2

Operation modes of parallel
manipulators

This chapter presents the operation mode analysis of some parallel manipulators (PM) start-
ing with the simplest one, a parallelogram linkage. It is analyzed to determine the constraint
singularities that will be later used to design a compliant mechanism in Chapter 5. Furthermore,
a family of 3-[PP]S PMs is studied to determine their operation modes with an ultimate goal to
compare their performances as will be shown in Chapter 3. It is followed by the analysis of a
RUU limb, there by identifying the operation modes of a 3-RUU PM and a 4-rRUU reconfigurable
PM whose working prototype will be constructed.
Initially, the manipulator architecture is examined to determine the underlying geometrical con-
straints. To convert these constraints as equations, it is necessary to express all the vectors in
the same coordinate system, usually the one associated with the fixed base. Study’s kinematic
mapping is exploited for this purpose so that the constraint equations are algebraic. Conse-
quently, algebraic geometry tools can be applied to determine the operation modes. This is
done by performing the primary decomposition of the ideal of constraint polynomials in a com-
puter algebra system Singular [Dec+18]. The obtained sub-ideals correspond to the operation
modes exhibited by the PM.

2.1 Operation mode analysis

2.1.1 An equilateral four-bar linkage

The simplest PM is a four bar linkage. This section presents the operation mode analysis of
a four-bar linkage with equal link lengths with an algebraic view point.
A planar equilateral four-bar linkage with equal link lengths, l is depicted in Fig. 2.1. Link
AD is fixed, AB and CD are the cranks and BC is the coupler. The origin of the fixed frame
(Σ0), O0 coincides with the center of link AD while that of the moving frame (Σ1) O1 with the
center of BC. The coordinate axes are oriented in such a way that the position vectors of the
intersection points between the revolute joint axes and the x0y0 plane can be homogeneously
written as follows:

r0
A = [1, −l2 , 0]T r0

D = [1, l2 , 0]T

r1
B = [1, −l2 , 0]T r1

C = [1, l2 , 0]T (2.1)
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Figure 2.1 – An equilateral four bar linkage.

The displacement of the coupler with respect to the fixed frame can be rendered by (a, b, φ),
where a and b represent the positional displacement of the coupler (nothing but the coordinates
of point O1 in Σ0) and φ is the angular displacement about z0-axis (angle between x0 and x1).
Thus, the corresponding set of displacements can be mapped onto a three-dimensional projective
space, P3 with homogeneous coordinates xi (i = 1, 2, 3, 4) [BR79]. This mapping (also known
as Blaschke mapping in the literature [BR79]) is defined by the following matrix M :

M =


1 0 0

2x1x3 + 2x2x4
x2

3 + x2
4

−x2
3 + x2

4
x2

3 + x2
4

−2x3x4
x2

3 + x2
4

−2x1x4 + 2x2x3
x2

3 + x2
4

2x3x4
x2

3 + x2
4

−x2
3 + x2

4
x2

3 + x2
4

 (2.2)

The planar kinematic mapping can also be derived as a special case of Study’s kinematic mapping
by setting x1 = x2 = y0 = y3 = 0 in Eq. 1.34c [Hus+07]. To avoid the rotational part of M to
be undefined, the following equation is defined:

H := x2
3 + x2

4 = 1 (2.3)

Without loss of generality, xi can be expressed in terms of (a, b, φ), as follows [BR79] :

x1 : x2 : x3 : x4 = (au− bv) : (av + bu) : 2u : 2v, u = sin(φ2 ), v = cos(φ2 ). (2.4)

Constraint Equations

Points B and C are constrained to move along circles of centers A and D, respectively and
with radius l each. The position vectors of points B and C are expressed algebraically in frame
Σ0 as follows :

r0
B = M r1

B ; r0
C = M r1

C (2.5)
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Therefore, the algebraic constraint equations take the form :

(r0
B − r0

A)T (r0
B − r0

A) = l2 =⇒ g1 := 4(x2
1 + x2

2) + 4lx1x3 − l2x2
4 = 0 (2.6)

(r0
C − r0

D)T (r0
C − r0

D) = l2 =⇒ g2 := 4(x2
1 + x2

2)− 4lx1x3 − l2x2
4 = 0 (2.7)

Since g1 ± g2 = 0 gives the same variety as (2.6) and (2.7), the final simplified constraint
equations are :

H1 := g1 − g2 := 4lx1x3 = 0 (2.8)
H2 := g1 + g2 := 4(x2

1 + x2
2)− l2x2

4 = 0 (2.9)

Equation (2.8) degenerates into two planes x1 = x3 = 0 into the image space and Eq. (2.9)
amounts to a cylinder with a circular cross-section in the image space. Assuming x4 6= 0, these
constraint manifolds can be represented in the affine space, A3, as shown in Fig. 2.2.
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Figure 2.2 – Constraint manifolds of the four-bar linkage in image space.

Operation Modes

The affine variety of the polynomials H1 and H2 amounts to all the possible displacements
attainable by the coupler. This variety is nothing but the intersection of these constraint surfaces
in the image space [Hus+07]. The intersections can be seen as two lines and a circle in Fig. 2.2. In
fact, these curves can be algebraically represented by decomposing the constraint equations (2.8)
and (2.9). A primary decomposition of the ideal I = 〈H1, H2〉 onto the field K(x1, x2, x3, x4)
results in the following sub-ideals:

I1 = 〈x1, 2x2 − lx4〉 (2.10)
I2 = 〈x1, 2x2 + lx4〉 (2.11)
I3 = 〈x3, 4(x2

1 + x2
2)− l2x2

4〉 (2.12)
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It shows that this four-bar linkage has three operation modes. The Hilbert dimension of the
ideals Ii including the polynomial H from Eq. (2.3) is calculated to be one, indicating that
the DOF of the four-bar mechanism is one in each of these three operation modes. I1 and I2

correspond to x1 = 0 implying u = b

a
from Eq. (2.4). Furthermore, for I1, eliminating u from

2x2 − lx4 = 0 gives
a2 + b2 − al = 0 (2.13)

which is the equation of a circle of center point B of Cartesian coordinates ( l2 , 0) and radius l2
as shown in Fig. 2.3.

l/2

D
B

C

(a
,b)

(0,0)(0,0)
(l/2,0)

A
D

Figure 2.3 – Operation mode 1 : a2 + b2 − al = 0

Similarly, I2 yields
a2 + b2 + al = 0 (2.14)

which is the equation of a circle of center point C of Cartesian coordinates (- l2 , 0) and radius
l

2 as shown in Fig. 2.4.

B

C
l/2

A

(a,b)

(0,0)

D

(-l/2,0)
(0,0)(0,0)(0,0)

)

Figure 2.4 – Operation mode 2 : a2 + b2 + al = 0.

The third ideal I3 corresponds to x3 = 0 and hence u = 0 implying φ = 0. The second
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equation of the same ideal results in

a2 + b2 − l2 = 0 (2.15)

being the equation of a circle of center (0, 0) and radius l as shown in Fig. 2.5. As a result, I1
and I2 represent rotational modes while I3 represents a translational mode.

l

A
D

B C
(a,b)

(0,0)

B

Figure 2.5 – Operation mode 3 : a2 + b2 − l2 = 0.

Ultimately, in Fig. 2.2, the intersection lines L1 and L2 of the constraint manifolds portray
the rotational motion modes while the circle C portrays the translational motion mode. It will
be shown in Chapter 5 how the transition between these operation modes can be exploited to
design a reconfigurable compliant mechanism.

2.1.2 3-[PP]S and 3-S[PP] PMs

A popular category of zero torsion mechanisms is the 3-[PP]S type, for which each leg is con-
fined to move in a plane with the first two joints generating a motion equivalent to two coplanar
translations, denoted as [PP]. When these planes are arranged such that they intersect at 120◦
in a common line, they are henceforth addressed as the 3-[PP]S-Y family. If the arrangement of
those planes is based on equilateral pattern, they will be part of the so-called 3-[PP]S-∆ family.
If these planes are arranged orthogonally, they are already known as the 3-[PP]S-cube family.
For instance, the 3-RPS-cube manipulator analyzed in [Nur+15] is part of the 3-[PP]S-cube
family.

Figure 2.6 represents six manipulators from the 3-[PP]S-Y family. The two coplanar trans-
lational motions can be obtained with the following serial kinematic chains: RP, PhR, PvR,
RR, PvPh or PhPv with Ph denoting a prismatic joint of horizontal direction and Pv denoting
a prismatic joint of vertical direction. It should be noted that these directions are considered
following the notation defined in [LB08] and it is assumed that the fixed base is horizontal.
Though there are other possible orientations of the prismatic joints [NCW15a], most practical
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Figure 2.6 – Six parallel manipulators belonging to the 3-[PP]S-Y family
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applications include horizontal or vertical prismatic joints. The spherical joint centers are re-
stricted to move along the vertical planes P1, P2 and P3 shown in Fig. 2.7. These planes are
considered in the fixed coordinate frame such that they pass through points A1, A2 and A3,
respectively. They have a common line of intersection, L along the z0 axis where they subtend
an angle of 120◦. This geometric condition is used to derive the constraint equations for these
manipulators. Similarly inverting the arrangement of the joints leads to 3-S[PP]-Y mechanisms.
In this case, the spherical joint centers, A1, A2 and A3 are fixed and the planes P1, P2 and P3
considered in moving coordinate frame are restricted to pass through these points, respectively
as shown in Fig. 2.7. Table 2.1 gives a list of twelve manipulators belonging to the 3-[PP]S-Y
family and a list of twelve manipulators belonging to the 3-S[PP]-Y family, where the underlined
joint symbol means that it is actuated.

No. 3-[PP]S-Y family No. 3-S[PP]-Y family

1a 3-PvRS 1b 3-SRPv
2a 3-PhRS 2b 3-SRPh
3a 3-PvRS 3b 3-SRPv
4a 3-PhRS 4b 3-SRPh
5a 3-RPS 5b 3-SPR
6a 3-RPS 6b 3-SPR
7a 3-RRS 7b 3-SRR
8a 3-RRS 8b 3-SRR
9a 3-PhPvS 9b 3-SPvPh
10a 3-PhPvS 10b 3-SPvPh
11a 3-PvPhS 11b 3-SPhPv
12a 3-PvPhS 12b 3-SPhPv

Table 2.1 – Manipulators belonging to the 3-[PP]S-Y and 3-S[PP]-Y families

Both the base and platform are equilateral triangles with vertices Ai and Bi, i = 1, 2, 3
and with circumradii h1 and h2, respectively. The origin O0 of the fixed coordinate frame
Σ0 coincides with base circumcenter while origin O1 of frame Σ1 coincides with the platform
circumcenter. The x0-axis of Σ0 is along line (O0A1) and the x1-axis of frame Σ1 is along line
(O1B1). Thus, the axes yi, i = 1, 2 are parallel to lines (A2A3) and (B2B3), respectively and
the axes zi, i = 1, 2 are normal to the base and the moving-platform, respectively.

Constraint Equations

This section aims to determine the constraint equations of the manipulators under study.
Those constraint equations are expressed algebraically based on the motions of the moving-
platform that are constrained by the legs.

From Fig. 2.7, the coordinates of points Ai and Bi in coordinate frames Σ0 and Σ1, respec-
tively, are expressed as follows:

0a1 = [h1, 0, 0]T , 0a2 = [−1
2 h1,

√
3

2 h1, 0]T , 0a3 = [−1
2 h1,−

√
3

2 h1, 0]T

1b1 = [h2, 0, 0]T , 1b2 = [−1
2 h2,

√
3

2 h2, 0]T , 1b3 = [−1
2 h2,−

√
3

2 h2, 0]T
(2.16)
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The rotation matrix 0R1 from frame Σ0 to frame Σ1 is expressed as:

0R1 =


x0

2 + x1
2 − x2

2 − x3
2 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

2x0x3 + 2x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2x0x1 + 2x3x2

−2x0x2 + 2x1x3 2x0x1 + 2x3x2 x0
2 − x1

2 − x2
2 + x3

2

 (2.17)

where xj , j = 0, 1, 2, 3 are the unit orientation quaternions satisfying: x2
0 +x2

1 +x2
2 +x2

3 = 1 and
0p1 is the point-displacement vector from the origin O0 of Σ0 to the origin O1 of Σ1 expressed
in Σ0 as [X,Y, Z]T .

From Fig. 2.7, for each leg, the vector connecting points Ai and Bi should always lie in the
plane Pi. This geometrical constraint holds true for all manipulators belonging to the 3-[PP]S-Y
family. To derive the constraint equations, we can express the normal vector si to planes Pi,
i = 1, 2, 3, in frame Σ0 as follows:

0s1 = [0,−1, 0]T , 0s2 = [
√

3
2 ,

1
2 , 0]T , 0s3 = [−

√
3

2 ,
1
2 , 0]T (2.18)

In the fixed coordinate frame Σ0, the co-ordinates of point Bi can be expressed as follows:

0bi = 0R1
1bi + 0p1, i = 1, 2, 3 (2.19)

Vector −−−→AiBi is perpendicular to si, which is expressed as ( 0bi − 0ai)T 0si = 0 which after
simplification yields the following three equations:

g1 := x0x3 = 0 (2.20)
g2 := Xx2

0 +Xx2
1 +Xx2

2 +Xx2
3 − h2x

2
1 + h2x

2
2 = 0 (2.21)

g3 := Y x2
0 + Y x2

1 + Y x2
2 + Y x2

3 − 4h2x0x3 + 2h2x1x2 = 0 (2.22)
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On the other hand, the similar constraints for the 3-S[PP]-Y PMs lead to following equations:

g1 := x0x3 = 0 (2.23)
g2 := Xx2

0 +Xx2
1 −Xx2

2 −Xx2
3 + 2Y x0x3 + 2Y x1x2 − 2Zx0x2 + 2Zx1x3

+ h1x
2
1 − h1x

2
2 = 0 (2.24)

g3 := 2Xx0x3 − 2Xx1x2 − Y x2
0 + Y x2

1 − Y x2
2 + Y x2

3 − 2Zx0x1 − 2Zx2x3

+ 4h1x0x3 + 2h1x1x2 = 0 (2.25)

Depending upon the actuated joints, three other equations, g4 = 0, g5 = 0 and g6 = 0 can be
derived. For instance, in case of the 3-RPS PM (Figure 2.6a), the Euclidean distance between
Ai and Bi must be equal to the prismatic joint length, ri for the i-th leg of the manipulator. As
a result, ‖0bi − 0ai‖2 = r2

i leads to three additional equations [SWH12] :

g4 := (4Xh2 − 4h1h2)x0
2 − 4Zh2x0x2 + 4Y h2x0x3 + (4Xh2 − 4h1h2)x1

2

+ 4Y h2x1x2 + 4Zh2x1x3 +X2 − 2Xh1 − 2Xh2 + Y 2 + Z2 + h1
2 + 2h1h2

+ h2
2 − r1

2 = 0 (2.26)
g5 := (−2

√
3Y h2 − 2Xh2 − 4h1h2)x0

2 − 2
√

3Zh2x0x1 + 2Zh2x0x2 + (2
√

3Xh2

− 2Y h2)x0x3 + (−2Xh2 − h1h2)x1
2 + (−2

√
3Xh2 − 2

√
3h1h2 − 2Y h2)x1x2

− 2Zh2x1x3 + (−2
√

3Y h2 − 3h1h2)x2
2 − 2

√
3Zh2x2x3 +

√
3Y h1 +

√
3Y h2

+X2 +Xh1 +Xh2 + Y 2 + Z2 + h1
2 + 2h1h2 + h2

2 − r2
2 = 0 (2.27)

g6 := (2
√

3Y h2 − 2Xh2 − 4h1h2)x0
2 + 2

√
3Zh2x0x1 + 2Zh2x0x2 + (−2

√
3Xh2

− 2Y h2)x0x3 + (−2Xh2 − h1h2)x1
2 + (2

√
3Xh2 + 2

√
3h1h2 − 2Y h2)x1x2

− 2Zh2x1x3 + (2
√

3Y h2 − 3h1h2)x2
2 + 2

√
3Zh2x2x3 −

√
3Y h1 −

√
3Y h2

+X2 +Xh1 +Xh2 + Y 2 + Z2 + h1
2 + 2h1h2 + h2

2 − r3
2 = 0 (2.28)

In addition, the normalization equation of the unit quaternion is to be considered to satisfy the
inequality (1.36), namely,

S2
6 := x0

2 + x1
2 + x2

2 + x3
2 − 1 = 0 (2.29)

It is noteworthy that Eq. (2.20) reveals that both 3-[PP]S-Y and 3-S[PP]-Y families of PMs
can have at least two operation modes characterized by x0 = 0 and x3 = 0. The following
section examines the primary decomposition of the ideal of constraint equations to identify
different operation modes of the mechanisms under study.

Operation Modes

The constraint equations (2.20) to (2.22) describe the configuration space of the manipula-
tors. The first constraint equation is recalled:

x0x3 = 0 (2.30)

As a result, their configuration space can be split into two parts x0 = 0 and x3 = 0, called
the operation modes [NCW15a; Sch+15; MNC16] separated by a constraint or C-space sin-
gularity [ZBG02a]. To obtain other equations in each operation mode, a polynomial ideal is
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defined consisting of equations g1, g2, g3 and S2
6 with variables {x0, x1, x2, x3, X, Y, Z} over the

coefficient ring C[h1, h2] as follows:

J = 〈g1, g2, g3, S2
6〉 (2.31)

The primary decomposition of ideal J results in two ideals Jk (i = 1, 2) confirming two operation
modes for all the PMs in the 3-[PP]S-Y family, no matter their actuation scheme.

J1 : 〈x0, x1y1 + x2y2 + x3y3, h1x1x2 + x1y3 − x2y0 − x3y1, h1x1
2 − h1x2

2

+ 2x1y0 + 2x2y3 − 2x3y2, h1x2
2y2 + h1x2x3y3 − x1y1y3 + x2y0y1

+ x3y1
2, h1x2

3 + x1
2y3 − 3x1x2y0 − x1x3y1 − 2x2

2y3 + 2x2x3y2,

h1x1x2y2 + h1x1x3y3 + h1x2
2y1 − 2x1y0y1 − 2x2y1y3 + 2x3y1y2,

h1
2x2

2y3 − h1x1y0y3 + h1x2y1
2 − 3h1x2y2

2 − h1x2y3
2 − h1x3y2y3

− 2 y0
2y3 − 2 y1

2y3 − 2 y2
2y3 − 2 y3

3,−h1
2x2

2y0y3 + h1
2x2

2y1y2

+ h1
2x2x3y1y3 + h1x1y0

2y3 − h1x1y1
2y3 + 3h1x2y0y2

2 + h1x2y0y3
2

+ h1x3y0y2y3 + h1x3y1
3 + 2 y0

3y3 + 2 y0y1
2y3 + 2 y0y2

2y3 + 2 y0y3
3〉

(2.32)

J2 : 〈x3, x0y0 + x1y1 + x2y2, h1x1x2 + x0y2 + x1y3 − x2y0, h1x1
2

− h1x2
2 − 2x0y1 + 2x1y0 + 2x2y3, h1x2

3 + x0x1y2 + 2x0x2y1

+ x1
2y3 − 3x1x2y0 − 2x2

2y3, h1
2x2

2y0 − h1x1y0
2 − h1x1y2

2

− h1x2y0y3 − 3h1x2y1y2 − 2 y0
3 − 2 y0y1

2 − 2 y0y2
2 − 2 y0y3

2〉

(2.33)

J3 : 〈x0, x1, x2, x3〉 (2.34)

The intersection of these so called primary ideals returns the ideal J. From a geometrical
viewpoint, the variety V (J) can be written as the union of the varieties of the primary ideals
V (Ji), i = 1, 2, 3.

J =
3⋂
i=1

Ji or V (J) =
3⋃
i=1

V (Ji) (2.35)

Nonetheless the third ideal, J3 is discarded as the variety V (J3 ∪ g8) is null over the field of
interest C. In other words, there exists no real or complex set of solutions for xi, i = 0, ..., 3 that
simultaneously satisfies the Equation (2.29) and the polynomial equations xi = 0. As a result,
the 3-SPR manipulator ends up with two operation modes, represented by x0 = 0 and x3 = 0,
which is noticeable from Equation (2.20).

The analysis is completed by adding the remaining constraint equations g4 = g5 = g6 = 0 to
the primary ideals J1 and J2, which returns two ideals K1 and K2. As a consequence, the ideals
Ki correspond to the two operation modes and can be studied separately.

Kk = Jk ∪ 〈g4, g5, g6〉 k = 1, 2 (2.36)

Ideal K1–Operation mode 1, OM1 (x0 = 0) : The moving platform is always found
to be displaced about a finite screw axis by 180 degrees from the identity position where Σ0
coincides with Σ1 [Sch+15]. Substituting x0 = 0 and solving for X,Y from the ideal K1 shows
that the translational motions can be parametrized by Z and the rotational motions by x1, x2
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and x3 along with x2
1 + x2

2 + x2
3 = 1 [Sch+15].

Ideal K2–Operation mode 2, OM2 (x3 = 0) : The moving platform is displaced about
a finite screw axis with a rotation angle α defined as: α = ±2 acos(x0). The screw axis in this
case stays parallel to the xy-plane [Sch+15]. Substituting x3 = 0 and solving for X,Y, Z from
the ideal K2 shows that the translational motions can be parametrized by Z and the rotational
motions by x0, x1 and x2 along with x2

0 + x2
1 + x2

2 = 1 [Sch+15].
Therefore, PMs belonging to the 3-[PP]S-Y and 3-S[PP]-Y family exhibit two operation

modes.

2.1.3 3-RUU PM

Although the 3-RUU PM is already known in the literature, its complete kinematic analysis
is lacking. In this section, two different ways to derive the constraint equations of a 3-RUU PM
are compared. Using them, the DKM is solved and it is shown to have a translational operation
mode [Sti+19].

Manipulator Architecture

The 3-RUU PM is shown in Figure 2.9. Each limb consists of a revolute joint and two
universal joints in succession. The moving platform and the fixed base form equilateral triangles
with vertices Ci and Ai, respectively, i = 1, 2, 3. The revolute-joint axes vectors in the i-th
limb are marked sij , i = 1, 2, 3; j = 1, ..., 5. si5 and si1 are tangential to the circumcircles (with
centers P and O) of the moving platform and the base triangles, respectively. Vectors si1 and
si2 are always parallel, so are vectors si3 and si4. The origin of the fixed coordinate frame, FO
is at O and the zO-axis lies along the normal to the base plane whereas the origin of the moving
coordinate frame FP is at P and the zP -axis lies along the normal to the moving platform plane.
xO and xP axes are directed along OA1 and PC1, respectively. r0 and r1 are the circumradii
of base and the moving platform, respectively. a1 and a3 are the link lengths. θi1 is the angle
of rotation of the first revolute joint about the axis represented by vector si1 measured from
the base plane whereas θi2 is the angle of rotation of the second revolute joint about the axis
represented by vector si2 measured from the first link.

Derivation of Constraint Equations

The constraint equations of the 3-RUU PM are derived using a geometrical approach and
Linear Implicitization Algorithm (LIA) [WH10]. First, canonical constraint equations for a
limb of the PM are derived by attaching the fixed and the moving coordinate frames to the two
extreme joints of a RUU limb as shown in Fig. 2.10. Each U-joint is characterized by two revolute
joints with orthogonally intersecting axes and the DH convention is used to attach coordinate
frames at each joint. Thus, F0 and F1 are the fixed and the moving coordinate frames with
their corresponding z-axes along the first and the last revolute joint axes, respectively. Later
on, general constraint equations are derived for the whole manipulator.
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Figure 2.9 – The 3-RUU-∆ parallel manipulator in a general configuration

Geometrical Approach

Canonical Constraints In order to derive the geometric constraints for a RUU limb, Fig. 2.10
is referred to write down the homogeneous coordinates 1 of points A,B,C (a,b, c, respectively)
and vectors sj , j = 1, ..., 5.

0a = [1, 0, 0, 0]T 0b = [1, a1 cos(θ1), a1 sin(θ1), 0]T 1c = [1, 0, 0, 0]T
0s1 = [0, 0, 0, 1]T 0s2 = [0, 0, 0, 1]T 0s3 = [0, cos(θ1 + θ2), sin(θ1 + θ2), 0]T
0s4 = [0, cos(θ1 + θ2), sin(θ1 + θ2), 0]T 1s5 = [0, 0, 0, 1]T

(2.37)

where θ1 and θ2 are the angles of rotation of the first and the second revolute joints, respectively.
Study’s kinematic mapping described in Sec. 1.2.4 is used to express the vectors c and s5

in the fixed coordinate frame F0, using the transformation matrix M shown in Eq. (1.34a)
consisting of Study parameters xi and yi, i = 0, 1, 2, 3:

0c = M 1c ; 0s5 = M 1s5 (2.38)

All the vectors are now expressed in the base coordinate frame and hence the geometric con-
straints can be derived. Due to the choice of homogeneous coordinates, the following constraints
are already satisfied:

1. First and the second revolute joint axes are parallel: s1 = s2

2. Third and the fourth revolute joint axes are parallel: s3 = s4

3. −−→AB is perpendicular to the first or the second revolute joint axis: (b− a)T s1 = 0
4. Second revolute joint axis is perpendicular to the third revolute joint axis: sT2 s3 = 0
5. Length of the link AB is a1: ||b− a|| = a1

1. left superscript k denotes the vector in coordinate frame Fk, k ∈ {0, 1}
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The remaining geometric constraints are derived as algebraic equations using tangent half angle
substitution:

1. The second revolute joint axis, the fifth revolute joint axis and the link BC lie in the same
plane. In other words, the scalar triple product of the corresponding vectors is zero:

g1 : (b− c)T (s2 × s5) = 0

=⇒
(
−2 t12a1 + 2 a1

)
x0

3x1 + 4 t1 a1x0
3x2 + 4 t1 a1x0

2x1x3 +
(
4 t12 + 4

)
x0

2x1y1

+
(
2 t12a1 − 2 a1

)
x0

2x2x3 +
(
4 t12 + 4

)
x0

2x2y2 +
(
−2 t12a1 + 2 a1

)
x0x1

3

+ 4 t1 a1x0x1
2x2 +

(
−4 t12 − 4

)
x0x1

2y0 +
(
−2 t12a1 + 2 a1

)
x0x1x2

2

+
(
−2 t12a1 + 2 a1

)
x0x1x3

2 + 4 t1 a1x0x2
3 +

(
−4 t12 − 4

)
x0x2

2y0

+ 4 t1 a1x0x2x3
2 + 4 t1 a1x1

3x3 +
(
2 t12a1 − 2 a1

)
x1

2x2x3
(
−4 t12 − 4

)
x1

2x3y3

+ 4 t1 a1x1x2
2x3 + 4 t1 a1x1x3

3 +
(
4 t12 + 4

)
x1x3

2y1 +
(
2 t12a1 − 2 a1

)
x2

3x3

+
(
−4 t12 − 4

)
x2

2x3y3 +
(
2 t12a1 − 2 a1

)
x2x3

3 +
(
4 t12 + 4

)
x2x3

2y2 = 0 (2.39)

2. Vector −−→BC is perpendicular to the third or the fourth revolute joint axis:

g2 : (b− c)T s4 = 0

=⇒
(
t1

2t2
2a1 − t12a1 + t2

2a1 − a1
)
x0

2 + (−2 t12t2
2 + 2 t12 + 8 t1 t2 + 2 t22

− 2)x0y1 +
(
4 t12t2 + 4 t1 t22 − 4 t1 − 4 t2

)
x0y2 + (t12t2

2a1 − t12a1 + t2
2a1

− a1)x1
2 +

(
2 t12t2

2 − 2 t12 − 8 t1 t2 − 2 t22 + 2
)
x1y0 + (−4 t12t2 − 4 t1 t22

+ 4 t1 + 4 t2)x1y3 +
(
t1

2t2
2a1 − t12a1 + t2

2a1 − a1
)
x2

2 + (−4 t12t2 − 4 t1 t22

+ 4 t1 + 4 t2)x2y0 +
(
−2 t12t2

2 + 2 t12 + 8 t1 t2 + 2 t22 − 2
)
x2y3 + (t12t2

2a1

− t12a1 + t2
2a1 − a1)x3

2 +
(
4 t12t2 + 4 t1 t22 − 4 t1 − 4 t2

)
x3y1 + (2 t12t2

2

− 2 t12 − 8 t1 t2 − 2 t22 + 2)x3y2 = 0 (2.40)

3. The fourth and the fifth revolute joint axis are perpendicular:

g3 : sT4 s5 = 0

=⇒
(
2 t12t2 + 2 t1 t22 − 2 t1 − 2 t2

)
x0x1 +

(
t1

2t2
2 − t12 − 4 t1 t2 − t22 + 1

)
x0x2

+
(
t1

2t2
2 − t12 − 4 t1 t2 − t22 + 1

)
x1x3 + (−2 t12t2 − 2 t1 t22 + 2 t1

+ 2 t2)x2x3 = 0 (2.41)



64 Operation modes of parallel manipulators

4. Length of the link BC is a3:

g4 : ||b− c|| − a3 = 0

=⇒
(
t1

2a1
2 − t12a3

2 + a1
2 − a3

2
)
x0

2 +
(
−4 t12a1 + 4 a1

)
x0y1 + 8 t1 a1x0y2

+
(
t1

2a1
2 − t12a3

2 + a1
2 − a3

2
)
x1

2 +
(
4 t12a1 − 4 a1

)
x1y0 − 8 t1 a1x1y3

+
(
t1

2a1
2 − t12a3

2 + a1
2 − a3

2
)
x2

2 − 8 t1 a1x2y0 +
(
−4 t12a1 + 4 a1

)
x2y3

+
(
t1

2a1
2 − t12a3

2 + a1
2 − a3

2
)
x3

2 + 8 t1 a1x3y1 +
(
4 t12a1 − 4 a1

)
x3y2

+
(
4 t12 + 4

)
y0

2 +
(
4 t12 + 4

)
y1

2 +
(
4 t12 + 4

)
y2

2 +
(
4 t12 + 4

)
y3

2 = 0 (2.42)

Furthermore, Study’s quadric, S2
6 in Eq. (1.35) is considered for every Euclidean transformation

mapped to a point in P7 lies in it.
The five geometric relations g1 = g2 = g3 = g4 = S = 0 describe a RUU limb. In fact, when
the first revolute joint is actuated, each limb must have only two constraints. Equations (2.21)
and (2.22) contain the passive joint variable t2 along with the active joint variable t1. Eliminating
t2 from g2 = 0 and g3 = 0 results in an equation which is identical to g1 = 0. Therefore, the
two constraint equations (excluding the Study’s quadric) describing a RUU limb are g1 = 0 and
g4 = 0 shown in Eqs. (2.20) and (2.26). The polynomials g1, g4 and S are enclosed in an ideal
defined over the field of Study parameters:

I1 = 〈g1, g4,S2
6〉 ⊆ k[x0, x1, x2, x3, y0, y1, y2, y3], (2.43)

where

g1 :=
(
(x0x1 − x2x3) (t12 − 1) + (−2x0x2 − 2x1x3) t1

)
(x2

0 + x2
1 + x2

2 + x2
3)a1

− 2((x2
0 + x2

3)(x1y1 + x2y2) + 2(x2
1 + x2

2)(x0y0 + x3y3))(t21 − 1) = 0, (2.44)

g4 :=−
(
x0

2 + x1
2 + x2

2 + x3
2
) (
t1

2 + 1
)
a1

2 +
(
4 (y1x0 − y0x1 + y3x2 − y2x3) t12

+ 8 (−x0y2 + x1y3 + x2y0 − x3y1) t1 + 4 (y2x3 − y3x2 − y1x0 + y0x1)) a1

+
((
x0

2 + x1
2 + x2

2 + x3
2
)
a3

2 − 4
(
y2

2 + y3
2 + y0

2 + y1
2
)) (

t1
2 + 1

)
= 0. (2.45)

General Constraints To derive the general constraints that do not contain the passive joint
variable θi2, i = 1, 2, 3, only the constraints in Eqs. (2.39) and (2.42) must be satisfied. From
Fig. 2.9, the homogeneous coordinates of the necessary vectors are listed below:

0bi = Rz(βi)[1, r0 + a1 cos(θi1), 0, a1 sin(θi1)]T
0ci = Rz(βi) M[1, r1, 0, 0]T ,
0si2 = Rz(βi)[0, 0, 1, 0]T ,
0si5 = Rz(βi) M[0, 0, 1, 0]T , i = 1, 2, 3,

(2.46)

where Rz(βi) is the homogeneous rotation matrix about the z-axis by an angle βi, β1 = 0,
β2 = 2π

3 and β3 = 4π
3 . Therefore, the two geometric constraints g1 = g4 = 0 for each limb,

gi1 = gi4 = 0, i = 1, 2, 3, the Study quadric, S2
6 = 0 and the normalization condition N :

x2
0 + x2

1 + x2
2 + x2

3− 1 = 0 constitute the eight geometric constraint equations of the 3-RUU PM:

I = 〈g11, g14, g21, g24, g31, g34, S,N〉 ⊆ k[x0, x1, x2, x3, y0, y1, y2, y3] (2.47)
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Joint 1 2 3 4 5
α 0 π

2 0 −π
2 0

a a1 0 a3 0 0
d 0 0 0 0 0

Table 2.2 – DH parameters of a RUU limb shown in Fig. 2.10

Linear Implicitization Algorithm

Canonical Constraints The same general pose of a RUU limb is chosen as shown in Fig.2.10
to derive the canonical constraint equations using LIA [WH10]. To describe the RUU kinematic
chain using DH parameters, the following 4× 4 matrices are defined:

T = M1.G1.M2.G2.M3.G3.M4.G4.M5 (2.48)

where the Mi-matrices describe a rotation about the z-axis with ui as the rotation angle. The
Gi-matrices describe the relative pose of one joint to the next.

Mi =


1 0 0 0
0 cos (ui) − sin (ui) 0
0 sin (ui) cos (ui) 0
0 0 0 1

 , Gi =


1 0 0 0
ai 1 0 0
0 0 cos (αi) − sin (αi)
di 0 sin (αi) cos (αi)

 . (2.49)

As shown in Fig. 2.11, parameters in Gi are the distance along x-axis ai, the offset along z-axis
di and the twist angle between the axes αi. For the RUU limb shown in Fig. 2.10, the DH
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a d
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Figure 2.11 – Relative position of two lines in
space

parameters are listed in Table 2.2.
Computing the Study-Parameters based on the transformation matrix T yields the paramet-

ric representation of the limb [Hus+07]. Applying LIA yields the quadratic canonical constraint
equations. To start with the LIA, a degree for the Ansatz polynomial has to be defined. The
degree refers to the expected degree of the solution. Since we would like to have the lowest
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possible degree of the solution we also have to start with the lowest possible degree for the
Ansatz. The RUU leg consists of 5 joints, therefore we skipped the linear Ansatz and started
with degree 2.
One also has to specify which motion-parameters should be eliminated. To keep only the active
joint variable t1 in the constraint equations, we chose t2, t3, t4 and t5 to be eliminated.
In the next step the Study parameters, which represent x0, x1 . . . y3 are substituted in the Ansatz
polynomial and the motion-parameters t are collected. Since the equation has to be fulfilled for
all motion-parameters t, the coefficient equations have to be solved. Therefore a coefficient ma-
trix is useful. The solutions for all coefficients are again substituted in the Ansatz polynomial.
The new introduced parameters are collected. To ensure, that the equation is fulfilled again all
coefficients have to vanish. Therefore each coefficient equation has to be fulfilled. Every single
equation is a constraint equation of the mechanism.
f1 and f2:

J1 = 〈f1, f2,S2
6〉 ⊆ k[x0, x1, x2, x3, y0, y1, y2, y3], (2.50)

where

f1 :=
(
(x0x1 − x2x3) (t12 − 1) + (−2x0x2 − 2x1x3) t1

)
a1

+ 2
(
t1

2 + 1
)

(x0y0 + x3y3) = 0 (2.51)

f2 :=−
(
x0

2 + x1
2 + x2

2 + x3
2
) (
t1

2 + 1
)
a1

2 +
(
4 (y1x0 − y0x1 + y3x2 − y2x3) t12

+ 8 (−x0y2 + x1y3 + x2y0 − x3y1) t1 + 4 (y2x3 − y3x2 − y1x0 + y0x1)) a1

+
((
x0

2 + x1
2 + x2

2 + x3
2
)
a3

2 − 4
(
y2

2 + y3
2 + y0

2 + y1
2
)) (

t1
2 + 1

)
= 0 (2.52)

General Constraints To obtain the constraint equations of the whole mechanism from the
canonical constraint equations, coordinate transformations are applied in the base and moving
platform. To facilitate the comparison of the constraint equations derived by two different
approaches, the coordinate transformations should be consistent with the global frames FO and
FP as shown in Fig. 2.9. This can be done directly in the image space P7 [Pfu06] by the mapping

x0
x1
x2
x3
y0
y1
y2
y3


7→



2
(
v0

2 + 1
)
x0

−2 v0
2x1 + 4 v0x2 + 2x1
2
(
v0

2 + 1
)
x3

2 v0
2x2 + 4 v0x1 − 2x2

((r0 − r1)x1 + 2 y0) v0
2 − 2x2 (r0 − r1) v0 + (−r0 + r1)x1 + 2 y0

((r0 − r1)x0 − 2 y1) v0
2 + 4 v0y2 + (r0 − r1)x0 + 2 y1

((−r0 − r1)x2 + 2 y3) v0
2 − 2 (r0 + r1)x1v0 + (r0 + r1)x2 + 2 y3

((r0 + r1)x3 + 2 y2) v0
2 + 4 v0y1 + (r0 + r1)x3 − 2 y2


, (2.53)

where v0 = tan(βi), i = 1, 2, 3, β1 = 0, β2 = 2π
3 and β3 = 4π

3 . The resulting general constraint
equations are the transformed equations from f1=f2 = 0, i.e., fi1 = fi2 = 0, i = 1, 2, 3, S = 0
and N = 0:

I = 〈f11, f12, f21, f22, f31, f32,S2
6,N〉 ⊆ k[x0, x1, x2, x3, y0, y1, y2, y3] (2.54)

Ideal Comparison

A careful observation of the ideals I1 and J1 spanned by the canonical constraint polynomials
reveals that g4 = f2 and g1 = f1(x2

0 +x2
1 +x2

2 +x2
3)−2(x2

0 +x2
2)(t21 +1)S2

6. Since, x2
0 +x2

1 +x2
2 +x2

3
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cannot be null, these ideals are the same. Thus, it follows that the ideals I and J spanned by
the constraint equations of the whole manipulator are also contained in each other.

I ⊆ J ⊆ I. (2.55)

Since I and J are the basis of the same ideal, the variety of the constraint polynomials must be
the same [CLO07]. Therefore, the set of constraint equations derived in Section 2.1.3 is used
for further computations since it only contains quadratic equations. Although these equations
are simpler, the set of equations derived by the geometrical approach in Section 2.1.3 have the
advantage that they have a physical interpretation.

Direct Kinematics: Numerical Examples

Because of the complexity of the algebra involved in the constraint equations of the manipu-
lator, it is not possible to compute the direct kinematics without the use of numerical examples.
In the following subsections, the design parameters of the manipulator are given the following
arbitrary values:

a1 = 3, a3 = 5, r0 = 11, r1 = 7

Identical Inputs Assuming the input joint angles are equal, θi1 = π

2 , i = 1, 2, 3 for simplic-
ity, the system of constraint equations in Eq. (2.54) yields the following real solutions and the
corresponding manipulator poses are shown in Fig. 2.12.

(a)
{
x0 =

√
23023
154 , y3 = −3

2x0, x3 = −3
√

77
154 , y0 = 3

2x3, x1 = x2 = y1 = y2 = 0
}
,

(b)
{
x0 =

√
23023
154 , y3 = −3

2x0, x3 = 3
√

77
154 , y0 = 3

2x3, x1 = x2 = y1 = y2 = 0
}
,

(c) {x0 = 1, x1 = x2 = x3 = y0 = y1 = y2 = y3 = 0} ,
(d) {x0 = 1, x1 = x2 = x3 = y0 = y1 = y2 = 0, y3 = −3} .

(2.56)

Different Inputs Substituting distinct arbitrary inputs and computing a Groebner basis over
the field of Study parameters with pure lexicographic ordering yields a univariate polynomial

y0 · P (y0) = 0 (2.57)

where degree(P (y0)) = 80.

Translational Operation Mode

The univariate polynomial in Eq. (2.57) shows that this manipulator exhibits at least two
operation modes. The one corresponding to y0 = 0 yields pure translational motion of the
moving platform with the identity as the orientation. In this case the set of constraint equations



68 Operation modes of parallel manipulators

x
O

z
O

y
O

x
P

z
P

y
P

(a)

x
O

z
O

y
O

x
P

z
P

y
P

(b)

x
O, 

x
P

z
O, 

z
P

y
O, 

y
P

(c)

x
O

z
O

y
O

x
P

z
P

y
P

(d)

Figure 2.12 – A numerical example: solutions to direct kinematics corresponding to Eq. (2.56).

reduce to

[
(
3y3 − y1

2 − y2
2 − y3

2 − 4y1
)
t1

2 − 6 (y1 + 2) t1 − y1
2 − y2

2 − y3
2 − 4y1 − 3y3,

−
(
2t22 + 3t2 + 2

)
y2
√

3 +
(
−y1

2 − y2
2 − y3

2 + 2y1 + 3y3
)
t2

2 + (3y1 − 12) t2 − y1
2

− y2
2 − y3

2 + 2y1 − 3y3,
(
2t32 + 3t3 + 2

)
y2
√

3 +
(
−y1

2 − y2
2 − y3

2 + 2y1 + 3y3
)
t3

2

+ (3y1 − 12) t3 − y1
2 − y2

2 − y3
2 + 2y1 − 3y3] (2.58)

This system of equations yields a quadratic univariate in one of the yi, which gives a parametriza-
tion of the motion dependent on the input variables vi1 = tan(θi1/2), i = 1, 2, 3.

2.1.4 4-rRUU dual reconfigurable PM

This section presents a novel dual reconfigurable 4-rRUU PM proposed under the framework
of this thesis in [NCW18a]. By allowing the base R-joint of a 4-RUU PM to have any orientation,
an architectural reconfigurability is imparted to the existing mechanism. Finally, the design and
construction of a 4-rRUU prototype is detailed.

Manipulator Architecture

The architecture of the dual reconfigurable 4-rRUU PM with a square base and a platform
is shown in Fig. 2.13 and its constituent double-Hooke’s joint linkage is shown in Fig. 2.14.

A reconfigurable revolute joint (rR) and two universal joints (UU) mounted in series con-
stitute each limb of the 4-rRUU PM. Point Li, i = 1, 2, 3, 4 lies on the pivotal axis of the
double-Hooke’s joint linkage as shown in Fig. 2.14. Point Ai lies on the first revolute joint axis
of the 4-rRUU PM and it can be obtained from point Li by traversing a horizontal distance of li
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Table 2.3 – DH parameters of the double-Hooke’s joint

Joint 1 2 3 4 5 6
α π

2
π
2 0 π

2
π
2 0

a 0 0 a3 0 0 0
d 0 0 0 0 0 0

along the first revolute joint axis. Points Bi and Ci are the geometric centers of the first and the
second universal joints, respectively. Points Li and Ci form the corners of the square base and
the platform, respectively. FO and FP are the coordinate frames attached to the fixed base and
the moving platform such that their origins O and P lie at the centers of the respective squares.
The revolute-joint axes vectors in i-th limb are marked sij , i = 1, 2, 3, 4; j = 1, ..., 5. Vectors
si1 and si2 are always parallel, so are vectors si3 and si4. For simplicity, it is assumed that the
orientation of vector si1 expressed in coordinate frame FO is the same as that of si5 expressed
in coordinate frame FP . The position vectors of points Li, Ai, Bi and Ci expressed in frame
Fk, k ∈ O,P are denoted as kli, kai, kbi and kci, respectively. r0 and r1 are half the diagonals
of the base and the moving platform squares, respectively. p and q are the link lengths.

Double-Hooke’s joint linkage

The double Hooke’s joint linkage is shown in Fig. 2.14. The first three and the last three
revolute joint axes intersect at points O0 and O6, respectively. The first revolute joint is driven
by a motor with an input angle of φ1 and the last revolute joint rotates with an output angle of
φ6 and their axes intersect at point Li, i = 1, 2, 3, 4. It is noteworthy that for a constant-velocity
transmission, the triangle 4O0O6Li must be isosceles with O0Li = O6Li. The angle between
the input and the output shafts is denoted as β ∈ [0, π]. Double-Hooke’s joint is known to be
a constant-velocity transmitter [Bak02; Die95; MR95]. To derive the input-output relations,
the Denavit-Hartenber (DH) convention is adopted where the coordinate frames are attached to
each joint. To describe the over-constrained 6R-mechanism using DH parameters, the following
4× 4 matrices are defined:

0T6 = M1.G1.M2.G2.M3.G3.M4.G4.M5.G5.M6 (2.59)

Mi- and Gi-matrices are described in Eq. (2.49). For the double Hooke’s joint linkage shown
in Fig. 2.14, the DH parameters are listed in Table 2.3. By cosine rule, a3 = 2b2(1− cos(β)) =
2b2(1 + cos(δ)), where δ = π − β. By extracting the dual quaternions from the transformation
matrix 0T6 and by tangent half angle substitution vi = tan(φi

2 ), i = 1, ..., 6 yields parametric
representation of the constraint manifold of the double Hooke’s joint linkage as a function of
vi, i = 1, ..., 6.

From Fig. 2.14, 0T6 can also be determined by traversing the loop in the other way and it
leads to the following transformation matrix:

0T6 =


1 0 0 0

−b sin (δ) cos (δ) 0 − sin (δ)

0 0 1 0

b+ b cos (δ) sin (δ) 0 cos (δ)

 (2.60)
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Substituting t = tan( δ2) in Eq. (2.60) yields the dual quaternion [4, 0,−4t, 0, 0, 0, 0,−4b]T . Equat-
ing it with the dual quaternion obtained by DH parametrization and solving for vi results in

v6 = −v1 (2.61)

Equation (2.61) is consistent with the linear input-output relation derived in Eq. (5.11) by
Baker [Bak02], considering the property of parallel clevis-pins on the connecting rod for an
industrial application such as the one in this paper. Equation (2.61) implies that the double
Hooke’s joint linkage is indeed a constant velocity transmitter independent of the angle β. In
fact, the input-output relations can be derived between any two joint variables and are as follows
for β = π

2 :

v2 = −v1
2 +
√

2 v14 + 2 + 1
v12 + 1 , (2.62a)

v3 = −1/2 v1
2√2 +

√
2−
√

2 v14 + 2
v1

, (2.62b)

v4 = −1/2 v1
2√2 +

√
2−
√

2 v14 + 2
v1

, (2.62c)

v5 = v1
2 +
√

2 v14 + 2− 1
v12 + 1 , (2.62d)

v6 = −v1 (2.62e)

Figure 2.15 shows the top view of the 4-rRUU PM without the links. For architectural recon-
figurability, the reconfigurable revolute joint axis in the base is allowed to have a horizontal
orientation βi, i = 1, 2, 3, 4. It is noteworthy that βi will be changed manually in the prototype
under construction.

Constraint Equations

From the previous section, since the reconfigurable revolute joint is actuated, a RUU limb
must satisfy the following two constraints:

1. The second revolute joint axis, the fifth revolute joint axis and link BC must lie in the
same plane. In other words, the scalar triple product of the corresponding vectors must
be null:

gi : (bi − ci)T (si2 × si5) = 0, i = 1, 2, 3, 4 (2.63)

2. The length of link BC must be q:

gi+4 : ||bi − ci|| − q = 0, i = 1, 2, 3, 4 (2.64)

Since the length of link BC does not affect the operation modes of the 4-rRUU PM, only the
principal geometric constraint from Eq. (2.63) is considered. To express it algebraically, the
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homogeneous coordinates of the necessary vectors are listed below:

0li = Rz(λi) [1, r0, 0, 0]T (2.65a)
0ai =0 li + Rz(λi + βi) [0, 0, li, 0]T (2.65b)
0bi = 0ai + Rz(λi + βi) [0, p cos(θi), 0, p sin(θi)]T (2.65c)
0ci = M Rz(λi)[1, r1, 0, 0]T , (2.65d)
0si2 = Rz(λi + βi) [0, 0, 1, 0]T , (2.65e)
0si5 = M Rz(λi + βi)[0, 0, 1, 0]T , i = 1, 2, 3, 4. (2.65f)

where Rz(·) is the homogeneous rotation matrix about the z-axis, λi for the i-th limb is given
by λ1 = 0, λ2 = π

2 , λ3 = π, λ4 = 3π
2 and θi is the actuated joint angle. M is the transformation

matrix of Eq. (1.34a)
Thus, Eq. (2.63) is derived for each limb algebraically by substituting ti = tan( θi

2 ) and wi =
tan(βi

2 ), i = 1, 2, 3, 4.

g1 := (2 pt12v1
4 + 2 r0t1

2v1
4 − 2 r1t1

2v1
4 − 2 pv1

4 − 4 r0t1
2v1

2 + 2 r0v1
4

+ 4 r1t1
2v1

2 − 2 r1v1
4 − 2 pt12 + 2 r0t1

2 − 4 r0v1
2 − 2 r1t1

2 + 4 r1v1
2

+ 2 p+ 2 r0 − 2 r1)x0x1 + (−4 pt12v1
3 − 4 r0t1

2v1
3 + 4 r1t1

2v1
3 − 4 pt12v1

+ 4 pv1
3 + 4 r0t1

2v1 − 4 r0v1
3 − 4 r1t1

2v1 + 4 r1v1
3 + 4 pv1 + 4 r0v1

− 4 r1v1)x0x2 + (4 pt1v1
4 + 8 pt1v1

2 + 4 pt1)x0x3 + (−8 pt1v1
3
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+ 8 pt1v1)x1
2 + (−4 pt1v1

4 + 24 pt1v1
2 − 4 pt1)x1x2 + (4 pt12v1

3

+ 4 r0t1
2v1

3 + 4 r1t1
2v1

3 + 4 pt12v1 − 4 pv1
3 − 4 r0t1

2v1 + 4 r0v1
3

− 4 r1t1
2v1 + 4 r1v1

3 − 4 pv1 − 4 r0v1 − 4 r1v1)x1x3 + (4 t12v1
4 − 8 t12v1

2

+ 4 v1
4 + 4 t12 − 8 v1

2 + 4)y1x1 + (−8 t12v1
3 + 8 t12v1 − 8 v1

3 + 8 v1)x1y2

+ (8 pt1v1
3 − 8 pt1v1)x2

2 + (2 pt12v1
4 + 2 r0t1

2v1
4 + 2 r1t1

2v1
4 − 2 pv1

4

− 4 r0t1
2v1

2 + 2 r0v1
4 − 4 r1t1

2v1
2 + 2 r1v1

4 − 2 pt12 + 2 r0t1
2 − 4 r0v1

2

+ 2 r1t1
2 − 4 r1v1

2 + 2 p+ 2 r0 + 2 r1)x2x3 + (−8 t12v1
3 + 8 t12v1 − 8 v1

3

+ 8 v1)x2y1 + (16 t12v1
2 + 16 v1

2)x2y2 + (4 t12v1
4 + 8 t12v1

2 + 4 v1
4

+ 4 t12 + 8 v1
2 + 4)y3x3 = 0 (2.66a)

g2 := (4 pt22v2
3 + 4 r0t2

2v2
3 − 4 r1t2

2v2
3 + 4 pt22v2 − 4 pv2

3 − 4 r0t2
2v2

+ 4 r0v2
3 + 4 r1t2

2v2 − 4 r1v2
3 − 4 pv2 − 4 r0v2 + 4 r1v2)x0x1 + (2 pt22v2

4

+ 2 r0t2
2v2

4 − 2 r1t2
2v2

4 − 2 pv2
4 − 4 r0t2

2v2
2 + 2 r0v2

4 + 4 r1t2
2v2

2

− 2 r1v2
4 − 2 pt22 + 2 r0t2

2 − 4 r0v2
2 − 2 r1t2

2 + 4 r1v2
2 + 2 p+ 2 r0

− 2 r1)x0x2 + (4 pt2v2
4 + 8 pt2v2

2 + 4 pt2)x0x3 + (8 pt2v2
3 − 8 pt2v2)x1

2

+ (4 pt2v2
4 − 24 pt2v2

2 + 4 pt2)x1x2 + (−2 pt22v2
4 − 2 r0t2

2v2
4 − 2 r1t2

2v2
4

+ 2 pv2
4 + 4 r0t2

2v2
2 − 2 r0v2

4 + 4 r1t2
2v2

2 − 2 r1v2
4 + 2 pt22 − 2 r0t2

2

+ 4 r0v2
2 − 2 r1t2

2 + 4 r1v2
2 − 2 p− 2 r0 − 2 r1)x1x3 + (16 t22v2

2

+ 16 v2
2)y1x1 + (8 t22v2

3 − 8 t22v2 + 8 v2
3 − 8 v2)x1y2 + (−8 pt2v2

3

+ 8 pt2v2)x2
2 + (4 pt22v2

3 + 4 r0t2
2v2

3 + 4 r1t2
2v2

3 + 4 pt22v2 − 4 pv2
3

− 4 r0t2
2v2 + 4 r0v2

3 − 4 r1t2
2v2 + 4 r1v2

3 − 4 pv2 − 4 r0v2 − 4 r1v2)x2x3

+ (8 t22v2
3 − 8 t22v2 + 8 v2

3 − 8 v2)x2y1 + (4 t22v2
4 − 8 t22v2

2 + 4 v2
4

+ 4 t22 − 8 v2
2 + 4)x2y2 + (4 t22v2

4 + 8 t22v2
2 + 4 v2

4 + 4 t22 + 8 v2
2

+ 4)y3x3 = 0 (2.66b)
g3 := (−2 pt32v3

4 − 2 r0t3
2v3

4 + 2 r1t3
2v3

4 + 2 pv3
4 + 4 r0t3

2v3
2 − 2 r0v3

4

− 4 r1t3
2v3

2 + 2 r1v3
4 + 2 pt32 − 2 r0t3

2 + 4 r0v3
2 + 2 r1t3

2 − 4 r1v3
2

− 2 p− 2 r0 + 2 r1)x0x1 + (4 pt32v3
3 + 4 r0t3

2v3
3 − 4 r1t3

2v3
3 + 4 pt32v3

− 4 pv3
3 − 4 r0t3

2v3 + 4 r0v3
3 + 4 r1t3

2v3 − 4 r1v3
3 − 4 pv3 − 4 r0v3

+ 4 r1v3)x0x2 + (4 pt3v3
4 + 8 pt3v3

2 + 4 pt3)x0x3 + (−8 pt3v3
3

+ 8 pt3v3)x1
2 + (−4 pt3v3

4 + 24 pt3v3
2 − 4 pt3)x1x2 + (−4 pt32v3

3

− 4 r0t3
2v3

3 − 4 r1t3
2v3

3 − 4 pt32v3 + 4 pv3
3 + 4 r0t3

2v3 − 4 r0v3
3

+ 4 r1t3
2v3 − 4 r1v3

3 + 4 pv3 + 4 r0v3 + 4 r1v3)x1x3 + (4 t32v3
4 − 8 t32v3

2

+ 4 v3
4 + 4 t32 − 8 v3

2 + 4)y1x1 + (−8 t32v3
3 + 8 t32v3 − 8 v3

3 + 8 v3)x1y2

+ (8 pt3v3
3 − 8 pt3v3)x2

2 + (−2 pt32v3
4 − 2 r0t3

2v3
4 − 2 r1t3

2v3
4 + 2 pv3

4

+ 4 r0t3
2v3

2 − 2 r0v3
4 + 4 r1t3

2v3
2 − 2 r1v3

4 + 2 pt32 − 2 r0t3
2 + 4 r0v3

2

− 2 r1t3
2 + 4 r1v3

2 − 2 p− 2 r0 − 2 r1)x2x3 + (−8 t32v3
3 + 8 t32v3 − 8 v3

3

+ 8 v3)x2y1 + (16 t32v3
2 + 16 v3

2)x2y2 + (4 t32v3
4 + 8 t32v3

2 + 4 v3
4
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+ 4 t32 + 8 v3
2 + 4)y3x3 = 0

g4 := (−4 pt42v4
3 − 4 r0t4

2v4
3 + 4 r1t4

2v4
3 − 4 pt42v4 + 4 pv4

3 + 4 r0t4
2v4

− 4 r0v4
3 − 4 r1t4

2v4 + 4 r1v4
3 + 4 pv4 + 4 r0v4 − 4 r1v4)x0x1 + (−2 pt42v4

4

− 2 r0t4
2v4

4 + 2 r1t4
2v4

4 + 2 pv4
4 + 4 r0t4

2v4
2 − 2 r0v4

4 − 4 r1t4
2v4

2

+ 2 r1v4
4 + 2 pt42 − 2 r0t4

2 + 4 r0v4
2 + 2 r1t4

2 − 4 r1v4
2 − 2 p− 2 r0

+ 2 r1)x0x2 + (4 pt4v4
4 + 8 pt4v4

2 + 4 pt4)x0x3 + (8 pt4v4
3 − 8 pt4v4)x1

2

+ (4 pt4v4
4 − 24 pt4v4

2 + 4 pt4)x1x2 + (2 pt42v4
4 + 2 r0t4

2v4
4 + 2 r1t4

2v4
4

− 2 pv4
4 − 4 r0t4

2v4
2 + 2 r0v4

4 − 4 r1t4
2v4

2 + 2 r1v4
4 − 2 pt42 + 2 r0t4

2

− 4 r0v4
2 + 2 r1t4

2 − 4 r1v4
2 + 2 p+ 2 r0 + 2 r1)x1x3 + (16 t42v4

2

+ 16 v4
2)y1x1 + (8 t42v4

3 − 8 t42v4 + 8 v4
3 − 8 v4)x1y2 + (−8 pt4v4

3

+ 8 pt4v4)x2
2 + (−4 pt42v4

3 − 4 r0t4
2v4

3 − 4 r1t4
2v4

3 − 4 pt42v4 + 4 pv4
3

+ 4 r0t4
2v4 − 4 r0v4

3 + 4 r1t4
2v4 − 4 r1v4

3 + 4 pv4 + 4 r0v4 + 4 r1v4)x2x3

+ (8 t42v4
3 − 8 t42v4 + 8 v4

3 − 8 v4)x2y1 + (4 t42v4
4 − 8 t42v4

2 + 4 v4
4

+ 4 t42 − 8 v4
2 + 4)x2y2 + (4 t42v4

4 + 8 t42v4
2 + 4 v4

4 + 4 t42 + 8 v4
2

+ 4)y3x3 = 0 (2.66c)

The constraint polynomials gi, i = 1, 2, 3, 4 form the following ideal:

I = 〈g1, g2, g3, g4〉 ⊆ k[x0, x1, x2, x3, y0, y1, y2, y3] (2.67)

To simplify the determination of the operation modes, the 4-rRUU PM is split into two 2-rRUU
PMs [Nur+16] by considering two ideals:

I(I) = 〈g1, g3,S2
6〉 (2.68a)

I(II) = 〈g2, g4,S2
6〉 (2.68b)

Furthermore, I(I) and I(II) can be decomposed into simpler ideals using primary decomposition
to understand the operation modes of the 2-rRUU PMs. Thus, the union of the corresponding
prime ideals characterize the operation modes of the whole 4-rRUU PM. Two cases can be
considered:

Case 1: When the revolute joint axes are arbitrarily oriented, the primary decomposition of
I(I) and I(II) for leads to one sub-ideal each. These sub-ideals depend on the design parameters
and are mixed motion modes which are not of interest in the context of this paper.

Case 2: When the opposite revolute joint axes have the same orientation i.e. v1 = v3 and
v2 = v4, the operation modes can be determined as follows:
All planar orientations of the rR-joint axes are covered by varying βi ∈ [−90◦, 90◦] and hence
vi ∈ [−1, 1]. Design parameters were substituted as r0 = 2, r1 = 3, p = 5, q = 7 to simplify
the primary decomposition of ideals I(I) and I(II) in Eq. (2.68). The operation modes could
be determined only when arbitrary rational values are substituted for v1 = v3 = v13 and v2 =
v4 = v24. The primary decomposition is performed in a computer algebra system Singular
and it leads to three sub-ideals each. The first two are independent of the design parameters
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and actuated variables. They are of the following form:

I(I) = I1(I) ∩ I2(I) ∩ I3(I),

where I1(I) = 〈x0, h1x1 + h2x2, x1y1 + x2y2 + x3y3〉
and I2(I) = 〈x3,−h2x1 + h1x2, x0y0 + x1y1 + x2y2〉 (2.69a)
I(II) = I1(II) ∩ I2(II) ∩ I3(II),

where I1(I) = 〈x0,−h2x1 + h1x2, x1y1 + x2y2 + x3y3〉
and I2(I) = 〈x3, h1x1 + h2x2, x0y0 + x1y1 + x2y2〉 (2.69b)

where h1 and h2 are functions of v13 and v24. For instance, I1(I) consists of x0 and S2
6|x0=0

v13 -1 -12 -14 0 1
4

1
2 1 w

h1 -1 -4 -8 0 8 4 1 2
w
, w 6= 0

h2 0 -3 -15 0 -15 -3 0 1− 1
w2 , w 6=

0

Table 2.4 – h1 and h2 as functions of v13 such that 〈h1x1 + h2x2〉 ∈ I1(I)

irrespective of the value of v13. The remaining polynomial has coefficients h1 and h2, whose
values are listed in Table 3.3 for arbitrarily chosen v13 along with their interpolated values for
a general v13 = w. Thus, Eq. (2.69) can be further simplified as follows:

I1(I) = 〈x0, 2v13x1 + (v2
13 − 1)x2, x1y1 + x2y2 + x3y3〉

I2(I) = 〈x3, (1− v2
13)x1 + 2v13x2, x0y0 + x1y1 + x2y2〉 (2.70a)

I1(II) = 〈x0, (1− v2
24)x1 + 2v24x2, x1y1 + x2y2 + x3y3〉

I2(II) = 〈x3, 2v24x1 + (v2
24 − 1)x2, x0y0 + x1y1 + x2y2〉 (2.70b)

As a result, the first two operation modes of the 4-rRUU PM are:

I1 = I1(I) ∪ I1(II)

= 〈x0, 2v13x1 + (v2
13 − 1)x2, (1− v2

24)x1 + 2v24x2, x1y1 + x2y2 + x3y3〉 (2.71a)
I2 = I2(I) ∪ I2(II)

= 〈x3, (1− v2
13)x1 + 2v13x2, 2v24x1 + (v2

24 − 1)x2, x0y0 + x1y1 + x2y2〉 (2.71b)

In general, I1 = 〈x0, x1, x2, y3〉 and I2 = 〈x3, x1, x2, y0〉. The former corresponds to a 3-dof pure
translational mode, where the platform is upside down with the zP -axis pointing downwards
whose transformation matrix is as follows:

M1 =



1 0 0 0
2y2
x3

−1 0 0

− 2y1
x3

0 −1 0

2y0
x3

0 0 1


(2.72)
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The latter is also a 3-dof translational mode, but the platform is in upright position with zP -axis
pointing upwards whose transformation matrix is as follows:

M2 =



1 0 0 0

− 2y1
x0

1 0 0

− 2y2
x0

0 1 0

− 2y3
x0

0 0 1


(2.73)

An example with these operation modes is shown in Fig. 2.16 with βi = 90◦, i = 1, 2, 3, 4 [NCW18d].
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Figure 2.16 – A 4-rRUU PM with horizontal and intersecting base revolute joint axes

However, the set of binomial equations 2v13x1 + (v2
13−1)x2 = 0 and (1−v2

24)x1 + 2v24x2 = 0
can have non-trivial values for x1 and x2 if the following conditions are satisfied:

2v13
v2

13 − 1
= 1− v2

24
2v24

=⇒ tan(β1) = tan(β3) = − cot(β2) = − cot(β4)

=⇒ β1 = β3 = β2 − 90◦ = β4 − 90◦ (2.74)
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In that case, the first two operation modes are

I1 = I1(I) ∪ I1(II)

= 〈x0, 2v13x1 + (v2
13 − 1)x2, x1y1 + x2y2 + x3y3〉 (2.75a)

I2 = I2(I) ∪ I2(II)

= 〈x3, (1− v2
13)x1 + 2v13x2, x0y0 + x1y1 + x2y2〉. (2.75b)

With x3 = 1, the Study parameters corresponding to the first operation mode, I1 are
{0, x1, x2, 1, y0, y1, y2,−x1y1 − x2y2}. The corresponding transformation matrix in Eq. (1.34a)
yields:

M2 =



1 0 0 0

−2y1
x0

1 0 0

−2(x0y2 − x1y3) 0 x0
2 − x1

2 −2x0x1

−2(x0y3 + 2x1y2) 0 2x0x1 x0
2 − x1

2


(2.76)

Thus, only four independent parameters are sufficient to characterize this operation mode and it
corresponds to a 4-dof Schönflies mode in which the translational motions are parametrized by
y0, y1 and y2 and the rotational motion is parametrized by x1, x2 along with 2v13x1+(v2

13−1)x2 =
(1− v2

24)x1 + 2v24x2 = 0. In this operation mode, the platform is upside down with the zP -axis
pointing in a direction opposite to the zO-axis. The rotational motion is about an axis located
at an angle of β1 − 90◦ = β3 − 90◦ = β2 = β4 from the xO-axis.
Similarly, with x0 = 1, the Study parameters corresponding to the first operation mode, I2 are
{1, x1, x2, 0,−x1y1 − x2y2, y1, y2, y3}. The transformation matrix in Eq. (1.34a) yields:

M1 =



1 0 0 0

−2y3
x2

−1 0 0

2(x2y0 − x3y1) 0 x2
2 − x2

3 2x2x3

2(x2y1 + x3y0) 0 2x2x3 −x2
2 + x2

3


(2.77)

Thus, only four independent parameters are sufficient to characterize this operation mode and
it is a 4-dof Schönflies mode in which the translational motions are parametrized by y1, y2
and y3 and the rotational motion is parametrized by x1, x2 along with (1 − v2

13)x1 + 2v13x2 =
2v24x1 + (v2

24 − 1)x2 = 0. In this operation mode, the platform is in upright position with
rotational motion about an axis located at an angle of β1 − 90◦ = β3 − 90◦ = β2 = β4 from the
xO-axis.
Hence, it can be concluded from Eqs. (2.74) and (2.75) that when all the base R-joint axes

of the 4-rRUU PM have the same horizontal orientations, it exhibits a Schönflies motion mode
with the rotational dof about a horizontal axis with the same orientation as those R-joint axes.
An example is the configuration shown in Fig. 2.17, where β1 = β3 = 90◦, β2 = β4 = 0◦ and the
orientation dof of the moving platform is about the xO-axis [NCW18d].

The double-Hooke’s joint allows a planar transmission and hence the 4-rRUU PM can have
any orientation of the base revolute joints such that βi ∈ [0, π]. Additionally, with the help of a
L-fixture, it is possible to have a vertical orientation of the base revolute joint axes as shown in
Fig. 2.18.
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Figure 2.17 – A 4-RUU PM with horizontal and parallel base revolute joint axes
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Figure 2.18 – A dual reconfigurable 4-rRUU PM with vertical base revolute joint axes
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Reconfiguration analysis of this mechanism already exists in the literature [Nur+16], where
it was shown to have three operation modes. The first operation mode is a 4-dof Schönflies mode
in which the platform is upside down and the rotational axis is parallel to zO-axis. The second
operation mode is a 4-dof Schönflies mode with the rotational axis parallel to zO-axis, but in
this case, the posture of the platform is upright. The third operation mode is a 2-dof coupled
motion mode and is less relevant from a practical view point.

Workspace for the same orientations of base R-joint axes

The moving platform center of the 4-rRUU PM lies on the boundary of the translational
workspace only when at least one of its limbs is in a fully extended or a folded configuration. In
this case, the limb is said to be in a limb or serial or input singularity [GA90]. It can happen
when the 8×4 input Jacobian matrix JI = ∂g

∂ti
with i = 1, 2, 3, 4 and g = [g1, g2, ..., g8] is not full-

rank. One approach to deal with the non-square matrix is to search for conditions such that all
its 4×4 minors vanish as shown for a 3-RUU PM in [SPH19]. However, the first three equations
of the 3-RUU PM do not depend on the variable ti which is the half tangent of the actuated
joint variable θi. Likewise, here, gi does not depend on ti, i = 1, 2, 3, 4. Therefore, the input
singularities corresponding to limb i can be simply calculated as fi : ∂gi+4

∂ti
= 0, i = 1, 2, 3, 4.

Eliminating ti from fi and gi+4 leads to four polynomials, Si solely in terms of Study parameters.
The singularity surfaces (tori shaped) are nothing but the varieties of these polynomials and the
workspace boundary is given by their intersection. By considering the 4-rRUU PMs in Schönflies
motion mode, it is possible to visualize the translational workspace boundaries for different fixed
orientations of the moving platform. For instance, the singularity surfaces of a 4-rRUU PM with
base R-joint axes parallel to xO-axis and with design parameters r0 = 2, r1 = 1, p = 2, q = 3
have the following implicit representations:

S1 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 − 4x3 − 4xy2 − 4xz2 − 4x2 − 24 y2

− 24 z2 + 16x+ 16 = 0 (2.78a)
S2 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 − 4x2y − 4 y3 − 4 yz2 − 8x2 − 20 y2

− 24 z2 + 48 y = 0 (2.78b)
S3 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 + 4x3 + 4xy2 + 4xz2 − 4x2 − 24 y2

− 24 z2 − 16x+ 16 = 0 (2.78c)
S4 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 + 4x2y + 4 y3 + 4 yz2 − 8x2 − 20 y2

− 24 z2 − 48 y = 0 (2.78d)

where the orientation of moving platform, φ = 0◦ and (x, y, z) are the coordinates of point P .
The workspace boundary for this PM is shown in Fig. 2.19c. Additionally, Fig. 2.19 shows the
workspaces for three configurations of the PM with their base R-joint axes parallel to xO, yO and
zO-axes, henceforth named as 4-RxUU, 4-RyUU and 4-RzUU PMs, respectively. The workspaces
are plotted for different orientations of the moving platform including their cross-sections about
a symmetric axis a for the 4-RaUU PM, where a can be x, y or z.

Design optimization

With an ultimate goal to build a working prototype of the 4-rRUU PM, the design param-
eters are determined using a Pareto optimization procedure shown in Algorithm 1. Although
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(a) φx = −90◦
(b) φx = −45◦ (c) φx = 0◦

(d) φx = 45◦ (e) φx = 90◦ (f) φy = −90◦

(g) φy = −45◦
(h) φy = 0◦ (i) φy = 45◦

(j) φy = 90◦ (k) φz = −90◦ (l) φz = −45◦

(m) φz = 0◦ (n) φz = 45◦ (o) φz = 90◦

Figure 2.19 – Workspaces of 4-RxUU(a-e), 4-RyUU(f-j) and 4-RzUU(k-o) PMs
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there are infinitely many possible orientations of the base R-joint axes, the optimization problem
is simplified by only considering 4-RxUU, 4-RyUU and 4-RzUU PMs. Moreover, these PMs are
examined with zero orientations of their moving platform since it is the only pose shared by them.

Algorithm 1 Design optimization of a 4-rRUU PM
1: procedure
2: ax← Orientation of base R-joints . 1,2,3 for Rx, Ry and Rz, respectively
3: κ← Inverse condition number of the homogenized forward Jacobian matrix
4: κth ← Threshold value of κ
5: r0 ← Base circum-radius
6: r1 ← Platform circum-radius
7: p← Proximal link length
8: q ← Distal link length
9: ν := 1
10: r0 := 1;
11: for r1 ← l by d to u do
12: for p← l by d to u do
13: for q ← l by d to u do
14: ObjS(ν) := r1 + p+ q

6 ; . Objective function: Size
15: x, y, z ← −val : res : val;
16: n := 2val

res
+ 1;

17: for i← 1 to n do
18: for j ← 1 to n do
19: for k ← 1 to n do
20: if (x(i), y(j), z(k)) is in the workspace and there

exists at least one real solution to IKM without
internal collisions with κ > κth then

21: Wax(i, j, k) := 1
22: else
23: Wax(i, j, k) := 0
24: end if
25: end for
26: end for
27: end for
28: Wax := ΣiΣjΣkWax(i, j, k)

n3
29:

30: ObjW(ν) := 1−
3

min
ax=1

Wax . Objective function: Workspace density
31: end for
32: end for
33: end for
34: ν := ν + 1
35: end procedure

The design parameters are r0, r1, p and q. They must be homogenized to facilitate scaling
of the final design, which is done by setting the circum-radius of the base, r0 to unity. It also
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reduces the number of parameters and hence the computation time. Their arithmetic mean is
the first objective function ObjS ∈ [0, 1] which gives the overall size of the PM. Eventually,
design parameters are varied from l = r0

5 to u = 2r0 with an increment of d = r0
5 . For a given

set of {r1, p, q}, a cube of side length 2val = 6r0 is discretized into n3 = 613 points. At each of
these points, the following conditions are checked in the prescribed order:

I. Does it belong to the workspace of the PM?
Thanks to the polynomials Si(x, y, z) in Eq. (4.26) corresponding to serial singularities, a
point (x, y, z) lies in the workspace when Si(x, y, z) < 0 ∀ i ∈ {1, 2, 3, 4}.

II. Does there exist at least one working mode?
A working mode implies a real solution to the Inverse Kinematics Model (IKM). Given
(x, y, z), a solution to IKM involves finding the actuated joint variables. This could be
done by first obtaining the coordinates of point Bi, which is the intersection of a circle
with center Ai, radius p and a sphere with center Ci, radius q. In C3, a circle and a sphere
always intersect at two points. Hence, in R3, there are at most 24 = 16 IKM solutions.
Thus, a real solution to IKM exists if coordinates of Bi turn out to be real.

III. Aren’t there any internal collisions?
The links are approximated as capsules to determine their interferences. A capsule is a

S

R

Q

P

d
2

d
1

Figure 2.20 – Link interferences as collision between two capsules

cylinder between two hemispheres as shown in Fig. 2.20. They are defined by line segments
and a radius. Two capsules PQ and RS with radii d1 and d2 intersect if and only if the
distance between line segments PQ and RS is less than d1 + d2. There are umpteen ways
to calculate the distance between two line segments. The algorithm used here is based on
the approach by Eberly [Ebe07].
Couples of eight line segments AiBi of length p, capsule radius 0.1p and BiCi of length q,
capsule radius 0.1q, i = 1, 2, 3, 4 are checked for collision. Out of these

(8
2
)

= 28 combina-
tions, there is a definite intersection between four of them sharing the point Bi. Thus, if
there is an intersection between at least one of the remaining 24 couples, the PM is deemed
to have internal collisions.

IV. Is the inverse conditioning number of the forward Jacobian matrix κ > κth?
Based on the theory of reciprocal screws, the reduced kinematic modeling of the 4-rRUU
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PM can be expressed as

Ar
0tr = Br θ̇ =⇒


(0−−→PC1 × 0u1)T 0uT1
(0−−→PC2 × 0u2)T 0uT2
(0−−→PC3 × 0u3)T 0uT3
(0−−→PC4 × 0u4)T 0uT4


[

0ω
0vP

]
= Br


θ̇1
θ̇2
θ̇3
θ̇4

 (2.79)

where θ̇ is the set of actuated joint rates and 0tr is the reduced twist of the moving
platform with respect to the fixed base i.e., it contains the angular velocity vector of the
moving platform and the linear velocity vector of its circum-center. Since 4-rRUU PM in its
Schönflies operation mode has only one component of its angular velocity, 0tr is essentially
a 4 × 1 vector. Ar is the 4 × 4 reduced forward Jacobian matrix and it incorporates the
actuation wrenches of the PM such that its columns correspond to non-zero values of 0t

with 0ui =
−−→
BiCi

|
−−→
BiCi|

. Br is the reduced inverse Jacobian matrix. It is diagonal with its

elements being the scalar product of actuation wrenches and the actuated joint twists.
Ar is homogenized by dividing its elements in the first column by r1 since r1 is the norm
of vectors −−→PCi. Thus, the inverse condition number, κ is calculated. κ gives a measure
of how close the manipulator is to a parallel singularity. If it is small, the matrix is said
to be ill-conditioned and is almost singular while if it is close to 1, the matrix is far from
singularities. A threshold of κth = 0.3 is set and it is checked if κ > κth.

Consequently, the number of points satisfying conditions I-IV are counted and are divided by
the total number of points considered, to obtain Wax ∈ [0, 1], where ax = 1, 2, 3 for 4-RxUU,
4-RyUU and 4-RzUU PMs, respectively. Considering the min(W1,W2,W3) leads to design pa-
rameters with larger workspaces for all three orientations of the base R-joint axes. This value
is subtracted by 1 to ensure the preference of smaller values compared to larger ones in both
objective functions.
Fig. 2.21 shows the feasible solutions, highlighting those that lie on the Pareto front. Some

Pareto-optimal designs are also depicted. The Pareto-optimal design with r0 = 1, r1 = 0.4, p =
1.q = 1.4 is selected as a potential candidate for the prototype.
The goal of constructing a prototype of the 4-rRUU PM is to use it for milling operations. A

milling cutter will be mounted on the moving platform, whose axis will be normal to the latter
as roughly represented in Fig. 2.22 (not drawn to scale). The workpiece is assumed to be a
cuboid of dimension 0.12 m × 0.05 m × 0.05 m. To place the workpiece, it is necessary choose a
location in the workspace that is free of internal collisions and far from singularities and is done
as follows:
The minimum condition number among 4-RxUU, 4-RyUU and 4-RzUU PMs is calculated for

each of their working modes. The maximum of these values is plotted in Fig. 2.23 throughout
the translational workspace. A point F with x = 0.2, y = 0.1, z = 0.6 is chosen as the midpoint
of the cuboidal workpiece. Accordingly, the necessary actuated joint torques and velocities can
be calculated as follows:

τ = JTF, θ̇ = (J−1) 0tr (2.80)
with J = A−1

r Br J−1 = B−1
r Ar, (2.81)

where τ = [τ1, τ2, τ3, τ4] and θ̇ = [θ̇1, θ̇2, θ̇3, θ̇4] are sets of actuated joint torques and velocities,
respectively. F = [M,Fx, Fy, Fz] and 0tr = [ω, vx, vy, vz] are the external forces and velocities
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Figure 2.21 – Pareto-optimal solutions to the design optimization of the 4-rRUU PM.
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applied on the moving platform, respectively. The direction of angular velocity ω and moment
M depend on the orientation of base R-joint axes. Mx = My = 0, Mz = Fxrt, where rt is the
tool radius. The algorithm to plot κm in Fig. 2.23 and the choice of point F ensure that there
exists at least one IKM solution for each orientation of the base R-joint axes where the actuated
torques and velocities are smooth.
Figure 2.24 shows the variation of actuated joint torques and velocities for the IKM solution
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Design parameters (in m) r0 r1 p q
0.6 0.24 0.6 0.84

External forces, F Mz(Nm) Fx(N) Fy(N) Fz(N)
0.06 20 20 20

Moving platform velocities 0tr ω(rads−1) vx(ms−1) vy(ms−1) vz(ms−1)
0 0.5 0 0

Table 2.5 – Inputs to calculate actuated joint torques and velocities

with the largest κ that corresponds to Fig. 2.23. In this figure, the design parameters are scaled
so that the fixed base of the PM is confined within a square of side 1 m. The tool radius is
assumed to be 0.003 m and the remaining assigned values are listed in Table 2.5.
From Fig. 2.24, the nominal absolute torque and velocity are observed to be 10 Nm and 250 rpm,
respectively. Based on these specifications, motors are bought out. The CAD model of the 4-
RxUU prototype is shown in Appendix-A along with the manufacturing drawings.

2.2 Influence of design parameters on operation modes

The 3-RPS PM is a three degree-of-freedom (DOF) spatial mechanism, initially proposed by
Hunt [Hun83]. This manipulator allows one pure vertical translation and two rotations about
axes parallel to the horizontal plane, but since those axes do not remain fixed when the manipu-
lator moves, the two rotations generate two parasitic horizontal translations. The mechanism is
composed of three identical limbs connecting its base to its moving platform. Each limb consists
of a revolute joint, a prismatic joint and a spherical joint mounted in series.
Several arrangements of the joints are possible, e.g. the R-joint axes in the base frame can be
tangential to a circle, parallel or intersect at a common point.
Several research works have dealt with the kinematic analysis of the 3-RPS PM. Huang and
Fang described the constraints of the manipulator [HF95] using screw theory. The number of
solutions to the direct kinematics was first published by Tsai [Tsa99]. Self-motions [Sch+13]
were investigated by Schadlbauer et al. in which a spatial 3-RPS Manipulator was considered
with R-joints tangential to the base circum-circle. Workspace and joint space analysis [Cha+14]
using quaternions was done by Chablat et al., and more special configurations of the 3-RPS
manipulator [Nur+14] like the 3-RPS cube manipulator as well as the synthesis of design pa-
rameters with respect to specific operation modes [NCW15b] were both investigated by Nurahmi
et al. Moreover, a complete algebraic analysis of the 3-RPS PM was published, using Study’s
kinematic mapping in [Sch+14] and in [SWH12]. Gallardo et al. analyzed the kinematics of the
3-RPS PM by using screw theory [GOR08].
The motion capabilities of the 3-RPS PM were exploited in telescope applications studied by Car-
retero et al. [Car+97] and in machine tool heads, investigated by Hernandes et al. [Her+08]. The
application for medical purposes like human machine interactions were investigated in [Ver+09],
including the control of the manipulator with PID controllers.
Apparently, the 3-RPS PM is one of the celebrated PMs with only two operation modes which
makes it the right candidate to commence the study on how the architecture of a PM influences
its number of operation modes. Therefore, the subject of this section is about the determination
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of some conditions on the design parameters of 3-RPS manipulators with coplanar revolute joint
axes for those manipulators to have two operation modes [Nay+18].

2.2.1 Manipulator Architectures
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Figure 2.26 – A RPS limb

The investigated spatial PM shown in Fig. 2.25 consists of a moving platform connected to
a fixed base with three limbs. Each limb is composed of a revolute joint, a prismatic joint and a
spherical joint mounted in series. The three prismatic joints are actuated. Figure 2.26 represents
a RPS limb. The base of the 3-RPS manipulator is specified by 3 base-points A1, A2 and A3
in the fixed frame F0. The fixed frame is defined such that A1 is the origin of the coordinate
frame, A2 is along the x-axis and A3 is an arbitrary point in the XY -plane. B1, B2 and B3 are
the vertices of the triangular moving-platform, B1 is the origin of the moving-platform frame
F1, B2 is along the x-axis of F1 and B3 lies in the xy-plane.
The ith revolute joint axis of direction ni is perpendicular to the direction of the ith prismatic
joint, namely,

ni ·
−−−→
AiBi = 0, i = 1, 2, 3 (2.82)

2.2.2 Kinematic Modeling

To derive the constraint equations of the 3-RPS PMs with coplanar revolute joint axes, the
homogeneous coordinates of point Ai and vector ni are firstly expressed in frame F0 while that
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of the point Bi are expressed in frame F1:

0a1 =(1, 0, 0, 0), 0a2 = (1, a12, 0, 0), 0a3 = (1, a13, a23, 0), (2.83)
1b1 =(1, 0, 0, 0), 1b2 = (1, b12, 0, 0), 1b3 = (1, b13, b23, 0), (2.84)
0n1 =(0, n11, n21, n31), 0n2 = (0, n12, n22, n32), 0n3 = (0, n13, n23, n33), (2.85)

with the first entry of each vector being the homogenizing coordinate 2. Since points Bi are given
in the moving frame, a transformation is applied to obtain it in F0 frame. Study’s kinematic
mapping can be used for this purpose. The transformation to obtain 0bi from 1bi is given in
Eq. (1.34a).

The geometric constraints of the PM can be derived as follows. As the prismatic joints
are actuated, the distance between points Ai and Bi is equal to the prismatic joint length ri.
Therefore, the following first three distance constraints arise:

gi : ( 0ai − 0bi)T ( 0ai − 0bi)− r2
i = 0, i = 1, 2, 3. (2.86)

The next three geometric constraints of the manipulator are derived from the perpendicular-
ity between the revolute joint and the prismatic joint direction within each limb, namely, from
Eq. (2.82):

gi+3 : 0nTi ( 0ai − 0bi) = 0, i = 1, 2, 3. (2.87)

As a result, the six constraint equations are expressed as follows after some mathematical sim-
plifications:

g1 := (x0
2 + x1

2 + x2
2 + x3

2)r1
2 − 4 y0

2 − 4 y1
2 − 4 y2

2 − 4 y3
2 = 0 (2.88a)

g2 := (x0
2 + x1

2 + x2
2 + x3

2)(r2
2 − b2

12 − a12
2) + (2x0

2 + 2x1
2 − 2x2

2 − 2x3
2)a12b12

+ (−4x0y1 + 4x1y0 − 4x2y3 + 4x3y2)a12 + (4x0y1 − 4x1y0 − 4x2y3 + 4x3y2)b12

− 4 y0
2 − 4 y1

2 − 4 y2
2 − 4 y3

2 = 0 (2.88b)
g3 := (x0

2 + x1
2 + x2

2 + x3
2)(r2

3 − a13
2 − a2

23 − b2
13 − b2

23) + (2x0
2 + 2x1

2 − 2x2
2

− 2x3
2)a13b13 + (−4x0x3 + 4x1x2)a13b23 + (−4x0y1 + 4x1y0 − 4x2y3 + 4x3y2)a13

+ (4x0x3 + 4x1x2)a23b13 + (2x0
2 − 2x1

2 + 2x2
2 − 2x3

2)a23b23 + (−4x0y2 + 4x1y3

+ 4x2y0 − 4x3y1)a23 + (4x0y1 − 4x1y0 − 4x2y3 + 4x3y2)b13 + (4x0y2 + 4x1y3

− 4x2y0 − 4x3y1)b23 − 4 y0
2 − 4 y1

2 − 4 y2
2 − 4 y3

2 = 0 (2.88c)
g4 := (2x0y1 − 2x1y0 + 2x2y3 − 2x3y2)n11 + (2x0y2 − 2x1y3 − 2x2y0 + 2x3y1)n21 = 0

(2.88d)
g5 := (2x0y1 − 2x1y0 + 2x2y3 − 2x3y2)n12 + (2x0y2 − 2x1y3 − 2x2y0 + 2x3y1)n22

+ a12n12(x0
2 + x1

2 + x2
2 + x3

2) + (−x0
2 − x1

2 + x2
2 + x3

2)b12n12

+ (−2x0x3 − 2x1x2)b12n22 = 0 (2.88e)
g6 := (2x0y1 − 2x1y0 + 2x2y3 − 2x3y2)n13 + (2x0y2 − 2x1y3 − 2x2y0 + 2x3y1)n23

− (a13n13 + a23n23)(x0
2 + x1

2 + x2
2 + x3

2) + (−x0
2 − x1

2 + x2
2 + x3

2)b13n13

+ (−x0
2 + x1

2 − x2
2 + x3

2)b23n23 + (−2x0x3 − 2x1x2)b13n23 + (2x0x3

− 2x1x2)b23n13 = 0 (2.88f)

2. A vector expressed in F0 is denoted as 0{·} whereas a vector expressed in F1 is indicated as 1{·}.
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It should be noted that those six equations are a function of fifteen design parameters a12, a13,
a23, b12, b13, b23, nij (i, j ∈ {1, 2, 3}), three actuated prismatic joint variables r1, r2, r3 and the
Study parameters.

2.2.3 Operation modes

This section aims to find the conditions on the fifteen design parameters such that the 3-RPS
manipulator with coplanar revolute joints can exhibit more than one operation mode. Since the
R-joint axes are assumed coplanar, n31 = n32 = n33 = 0.

From the standpoint of algebraic geometry, it is known that the existence of more than one
operation mode requires the factorization of a polynomial belonging to the ideal of constraint
polynomials (preferably the ones independent of actuated joint variables) [Sch+14]. In this
context, an ideal I is considered such that it is a subset of the field of Study parameters:

I = 〈g4, g5, g6〉 | I ⊆ K[x0, x1, x2, x3, y0, y1, y2, y3] (2.89)

From the definition of an ideal, if a polynomial g ∈ I and h ∈ K, K being the field over which
the ideal I is defined, then hg ∈ I [CLO07]. From Eqs. (2.88) and (2.89), a polynomial g is
defined such that

g = h1g4 + h2g5 + h3g6 ∈ I, where hi 6= 0 ∈ K[x0, x1, x2, x3, y0, y1, y2, y3], i = 1, 2, 3 (2.90)

For simplicity, hi is only allowed to be a function of design parameters. This assumption forces
the polynomial g to be quadratic. To this end, the problem boils down to find the coefficients
hi such that g can be factorized. In search of linear factors, two general linear equations are
introduced in Eq. (2.91) and are multiplied to obtain a general quadratic polynomial s12 in the
kinematic image space, P7.

s1 : m1x0 +m2x1 +m3x2 +m4x3 +m5y0 +m6y1 +m7y2 +m8y3 = 0 (2.91)
s2 : n1x0 + n2x1 + n3x2 + n4x3 + n5y0 + n6y1 + n7y2 + n8y3 = 0
s12 = s1 · s2

where mk and nk, k = 1, ..., 8 are constants. If mk and nk can be determined as functions
of design variables, the ideal I can be decomposed into two ideals I1 = 〈g4, g5, g6, s1〉 and
I2 = 〈g4, g5, g6, s2〉. If I1 and I2 are not contained in each other, or if they do not share the same
radical ideal, the manipulator at hand must have two operation modes characterized by those
sub-ideals.
Equating the respective coefficients of g and s12 leads to a system of 36 linear equations in 31
unknowns. Solving for all the parameters b12, b13, b23, a12, a13, a23, h1, h2, h3, mk, nk, k = 1, ..., 8,
yields 36 solutions. It is noteworthy that some equations are dependent and the system is
underdetermined. Nonetheless, the solve function in Maple parametrizes the solutions in terms
of one or more unknowns. Investigating the solution set reveals that there are some trivial
solutions (complex ones and the ones with hi = 0, a12 = 0, a13 = 0, a23 = 0, b12 = 0, b13 = 0 or
b23 = 0) and some are special cases of the general one (nij = 0, i = 1, 2, j = 1, 2, 3). The focus
is on the two general solutions:
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Solution 1

m1 =

(
n13 ±

√
n132 + n232

)
m4

n23
, m2 = m3 = 0, m4 = m4,m5 = m6 = m7 = m8 = 0, (2.92a)

n1 =
2
(
n13 ±

√
n132 + n232

)
b23h3

m4
, n2 = n3 = 0, n4 = 2 b23h3n23

m4
, n5 = n6 = n7 = n8 = 0,

(2.92b)

a12 = (n11n22 − n12n21) (a13n13 + a23n23)
(n11n23 − n13n21)n12

, a13 = a13, a23 = a23 (2.92c)

b12 = − b23
(
n13

2 + n23
2) (n11n22 − n12n21)

(n12n23 − n13n22) (n11n23 − n13n21) , b13 = −b23 (n12n13 + n22n23)
n12n23 − n13n22

, b23 = b23 (2.92d)

h1 = h3 (n12n23 − n13n22)
n11n22 − n12n21

, h2 = −h3 (n11n23 − n13n21)
n11n22 − n12n21

, h3 = h3 (2.92e)

Solution 2

m1 = 0, m2 =

(
n13 ±

√
n132 + n232

)
m3

n23
, m3 = m3, m4 = m5 = m6 = m7 = m8 = 0, (2.93a)

n1 = 0, n2 = 2b23h3n23
2(

n13 ±
√
n132 + n232

)
m3

, n3 = −2 b23h3n23
m3

, n4 = n5 = n6 = n7 = n8 = 0,

(2.93b)

a12 = (n11n22 − n12n21) (a13n13 + a23n23)
(n11n23 − n13n21)n12

, a13 = a13, a23 = a23 (2.93c)

b12 = b23
(
n13

2 + n23
2) (n11n22 − n12n21)

(n12n23 − n13n22) (n11n23 − n13n21) , b13 = b23 (n12n13 + n22n23)
n12n23 − n13n22

, b23 = b23 (2.93d)

h1 = h3 (n12n23 − n13n22)
n11n22 − n12n21

, h2 = −h3 (n11n23 − n13n21)
n11n22 − n12n21

, h3 = h3 (2.93e)

Upon substitution of Solution 1 into Eq. (2.90) or Eq. (2.91) that describe the general quadric,
the following conic comes out:

s12 = g = 2 b23h3
(
2n13x0x3 − n23x0

2 + n23x3
2
)

(2.94)

The conic is degenerate and can be factorized as follows:

s12 = g = 2 b23h3
n23

(
x3
√
n132 + n232 + n13x3 − n23x0

) (
x3
√
n132 + n232 − n13x3 + n23x0

)
,

(2.95)

= −2b23 h3 n23
(
x0 − x3

(√
n̂2 + 1 + n̂

)) (
x0 + x3

(√
n̂2 + 1− n̂

))
, n̂ = n13

n23
, n23 6= 0.

(2.96)

bringing to light two operation modes characterized by:

Operation mode 1 : x0 − x3
(√

n̂2 + 1 + n̂
)

= 0

Operation mode 2 : x0 + x3
(√

n̂2 + 1− n̂
)

= 0, n̂ = n13
n23

, n23 6= 0.
(2.97)
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In the same vein, upon substituting Solution 2 into Eq. (2.90) or Eq. (2.91) results in the general
quadric

s12 = g = −2
(
2n13x1x2 − n23x1

2 + n23x2
2
)
b23h3, (2.98)

which splits into two polynomials characterizing the following two operation modes:

Operation mode 1 : x1 − x2
(√

n̂2 + 1 + n̂
)

= 0

Operation mode 2 : x1 + x2
(√

n̂2 + 1− n̂
)

= 0, n̂ = n13
n23

, n23 6= 0
(2.99)

As a result, when the design parameters b12, b13 and b23 follow the ratio

b12 : b13 : b23 = (n11n22 − n12n21)
(
n13

2 + n23
2
)

: (n12n13 + n22n23) (−n13 n21 + n11n23)
:± (−n13 n22 + n12n23) (−n13 n21 + n11n23) , (2.100)

and parameters a12, a13 and a23 satisfy the relation

(n11n23 − n13n21) a12n12 + (n12n21 − n11n22) (+a13n13 + a23n23) = 0, (2.101)

then, the 3-RPS PM with coplanar revolute joint axes has two operation modes characterized
by Eqs. (2.97) or (2.99). To derive these characteristic polynomials starting from the plane
constraints, the scalar coefficients of their linear combination must follow the ratio

h1 : h2 : h3 = n12n23 − n13n22 : n11n23 − n13n21 : n11n22 − n12n21. (2.102)
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The condition in Eq. (2.100) can be geometrically interpreted as the similarity (also called
as homothety) between the moving platform triangle and the triangle enclosed by the three
R-joint axes. This claim is proven as follows. Figure 2.27 shows the moving platform triangle
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and the triangle enclosed by the revolute joints. The sides of the moving platform triangle are
b1 =

√
(b13 − b12)2 + b2

23, b2 = |b13 − b12| and b3 = |b12|. Knowing the sides, the cosine of the
angles β1, β2 and β3 can be determined using the cosine rule. Similarly, the cosine of the angles
γ1, γ2 and γ3 between the R-joint axes n1, n2 and n3, can be determined. Equating the cosine
of respective angles results in three equations 3.

cos(βi) = cos(γi) =⇒
b2
j + b2

k − b2
i

2bjbk
= njnk
||nj ||||nk||

i, j, k = (123) (2.103)

Solving the equations for b12, b13 and b23 yields the conditions in Eq. (2.100) proving that the
considered triangles are similar (or homothetic).

Besides, Eq. (2.101) has a geometrical meaning too. It can be written as the determinant of
a matrix, P:

|P| =

∣∣∣∣∣∣∣∣
n11 n21 0

n12 n22 −n12a12

n13 n23 −n13a13 − n23a23

∣∣∣∣∣∣∣∣ = 0 (2.104)

|P| is the Grassmannian of three lines L1, L2 and L3 which are the projections of planes P1,
P2 and P3 onto the XY -plane as shown in Fig. 2.28. The equation of a line Li, i = 1, 2, 3,
orthogonal to R-joint axis ni and passing through a point Ai is n1ix0 +n2iy0−nTi ai, i = 1, 2, 3.
Therefore, |P| = 0 implies that lines Li are concurrent, namely, planes P1, P2 and P3 intersect
at line M.

Thus, a 3-RPS PM with coplanar revolute joint axes will have two operation modes if the
following geometric conditions are satisfied:
i. The moving platform triangle is homothetic to the triangle enclosed by the revolute joint

axes.
ii. The three planes normal to the three revolute joint axes, respectively, have a common line

of intersection.
It can be shown that the above conditions are also necessary for the existence of two operation
modes as explained thereafter.

Equations (2.97) and (2.99) are the polynomials characterizing the two operation modes.
The transition between them is when both polynomials vanish at the same time, i.e., when
x0 = x3 = 0 for Solution 1 and when x1 = x2 = 0 for Solution 2. Transition pose is known to
be a constraint singularity and in case of Solution 1, it corresponds to configurations in which
the moving platform is upside down as explained in [Sch+14; Sch+13]. For Solution 2, the
transition pose corresponds to configurations in which the moving platform is in an upright
position parallel to the fixed base. The existence of two operation modes definitely implies a
constraint singularity that separates those operation modes but the reciprocity is not necessarily
true as explained in subsection 2.2.4. This fact is exploited to prove the necessary conditions
for a 3-RPS PM to have two operation modes.
A PM reaches a constraint singularity when its constraint wrench system is rank deficient [ZBG02a;
ZBG02b; AMC16]. At this instant, the PM gains at least one dof. The constraint wrench system
of a 3-RPS PM shown in Fig. 2.25 is spanned by three forces f1, f2 and f3 that are parallel to

3. The notation (1,2,3) represents a cyclic permutation. It means that i, j, k are initially assigned to values
1,2,3, respectively, 2,3,1, subsequently and 3,1,2, finally.
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the revolute joint axes n1,n2 and n3 and pass through points B1, B2 and B3, respectively. A
constraint singularity implies that the variety spanned by these three lines has a rank lower than
3. This can happen only when these lines reduce to a planar pencil of lines, i.e., when they are
coplanar and concurrent. The Plücker coordinates of the force lines can be written as follows:

f1 = [ 0n1,
0b1 × 0n1] (2.105a)

f2 = [ 0n2,
0b2 × 0n2] (2.105b)

f3 = [ 0n3,
0b3 × 0n3] (2.105c)

Coplanarity condition

Any two lines intersect when the reciprocal product of their Plücker coordinates vanishes.
Therefore, the coplanarity condition can be formulated as the mutual vanishing of the reciprocal
product between the force lines yielding the following three equations:

E1 := 2 b12 (x0x2 − x1x3) (n11n22 − n12n21)
x02 + x12 + x22 + x32 = 0 (2.106a)

E2 := 2 (n11n23 − n13n21) (b13x0x2 − b13x1x3 − b23x0x1 − b23x2x3)
x02 + x12 + x22 + x32 = 0 (2.106b)

E3 : −2 (n12n23 − n13n22) (b12x0x2 − b12x1x3 − b13x0x2 + b13x1x3 + b23x0x1 + b23x2x3)
x02 + x12 + x22 + x32 = 0

(2.106c)

Solving the previous system of equations in Eq. (2.106) for Study parameters x0, x1, x2, x3 gives
two solutions:

x0 = x3 = 0, (2.107)
x1 = x2 = 0. (2.108)

Calculating 0bi, i = 1, 2, 3 with solutions (2.107) or (2.108) shows that the z-coordinates of the
resulting points are the same proving that they indeed lie in a plane parallel onto the XY -plane.

Concurrency condition

Case 1: x0 = x3 = 0
The z-coordinate of points Bi is expressed −2(x1y2 − x2y1)

x2
1 + x2

2
. Without loss of generality, these

lines can now be projected to the XY -plane to simplify the concurrency condition. Their
projections have the equations:

Li := −n2iX + n1iY − (−n2i
0bix + n1i

0biy) = 0, i = 1, 2, 3, (2.109)

where 0biy and 0biy are the x- and y-coordinates of point Bi, respectively. Therefore, the
condition for concurrency of the three lines defined by equations Li = 0 is∣∣∣∣∣∣∣
−n21 n11 n21

0b1x − n11
0b1y

−n22 n12 n22
0b2x − n12

0b2y
−n23 n13 n23

0b3x − n13
0b3y

∣∣∣∣∣∣∣
= (b12n11n22n23 − b12n13n21n22 − b13n11n22n23 + b13n12n21n23 − b23n11n13n22 + b23n12n13n21)(x2

2 − x2
1)

+ 2(b12n11n12n23 − b12n12n13n21 − b13n11n13n22 + b13n12n13n21 + b23n11n22n23 − b23n12n21n23)x1x2

= 0 (2.110)
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Equating the coefficients to zero leads to the following relations between the design parameters:

b12 = − (n11n22 − n12n21) b23
(
n13

2 + n23
2)

(−n13 n22 + n12n23) (−n13 n21 + n11n23) , b13 = −(n12n13 + n22n23) b23
n12n23 − n13n22

, b23 = b23

(2.111)
which are exactly those defined by Eq. (2.92d).
Furthermore, upon substitution of the values of b12 and b13 and x0 = x3 = 0 in constraint
equations g1 = g2 = g3 = 0 defined by Eqs. (2.88d)- (2.88f) and eliminating b23, results in the
following equation:

(n11n23 − n13n21) a12n12 + (n12n21 − n11n22) (+a13n13 + a23n23) = 0, (2.112)

which is the relation derived in Eq. (2.101).
Case 2: x1 = x2 = 0

In this case, we obtain the following symmetric relations between the design parameters:

b12 = (n11n22 − n12n21) b23
(
n13

2 + n23
2)

(−n13 n22 + n12n23) (−n13 n21 + n11n23) , b13 = (n12n13 + n22n23) b23
n12n23 − n13n22

, b23 = b23,

(2.113)
(n11n23 − n13n21) a12n12 + (n12n21 − n11n22) (+a13n13 + a23n23) = 0, (2.114)

that corresponds to the relations derived in Eqs. (2.93d) and (2.101), respectively.
As a conclusion, the following theorem can be stated:

Theorem 6. A 3-RPS PM with coplanar revolute joint axes will have two operation modes if
and only if the following geometric conditions are satisfied
i. Moving platform triangle is homothetic to the triangle enclosed by the revolute joint axes.
ii. The three planes normal to the three revolute joint axes, respectively, have a common line

of intersection.

Since the relationship between the number of operation modes and architecture is established,
the design parameters can be chosen in such a way that a constraint singularity is avoided.
In case the revolute joint axes are no longer coplanar, equating a general quadric in P7 defined in
Eq. (2.91) with the linear combination of the plane constraint polynomials g4, g5 and g6 shown
in Eqs. (2.88d)-(2.88f), does not yield any solution. The problem of finding the influence of
design parameters on the operation modes of a general 3-RPS PM is left for future work.

2.2.4 Examples

In this section, some example 3-RPS manipulators are considered to verify the proposed
conditions.

Example 1: 3-RPS PM with n23 = 0

The well-known 3-RPS PM introduced by Hunt [Hun83] has been the spotlight of numerous
research topics and applications [HF95; Sch+13; Cha+14; Nur+14; Sch+14; SWH12; GOR08;
Ver+09]. Its architecture is shown in Fig. 2.29. The moving platform and the base are equilateral
triangles with circum-radius b and a, respectively. The R-joint axes are coplanar and tangential
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Figure 2.29 – A 3-RPS parallel manipulator with n23 = 0

to the base circum-circle. The P-joint in each leg is normal to its corresponding R-joint axis.
The design parameters are listed below:

a12 =
√

3a, a13 =
√

3
2 a, a23 = 3

2a,

b12 =
√

3b, b13 =
√

3
2 b, b23 = 3

2b,

n11 = 1
2 , n21 = −

√
3

2 , n31 = 0, n12 = 1
2 , n22 =

√
3

2 , n32 = 0, n13 = −1, n23 = 0, n33 = 0.
(2.115)

Calculating the right hand side of Eq. (2.100) gives b12 : b13 : b23 =
√

3
2 :

√
3

4 : ±3
4 , which

is consistent with the design parameters listed in Eq. (2.115). It is also straightforward to see
that the design parameters satisfy Eq. (2.101). Thus, according to Theorem 6, the manipulator
must exhibit two operation modes. To determine the characteristic equations of the operation
modes, the plane constraint equations corresponding to Eq. (2.87) are considered:

g4 :=−
√

3x0y2 +
√

3x1y3 +
√

3x2y0 −
√

3x3y1 + x0y1 − x1y0 + x2y3 − x3y2 = 0 (2.116)

g5 :=
√

3x0y2 −
√

3x1y3 −
√

3x2y0 +
√

3x3y1 + x0y1 − x1y0 + x2y3 − x3y2 +
√

3
2 (x0

2 + x1
2 + x2

2

+ x3
2)a−

√
3

2 (2
√

3x0x3 + 2
√

3x1x2 + x0
2 + x1

2 − x2
2 − x3

2)b = 0 (2.117)

g6 :=− 2x0y1 + 2x1y0 − 2x2y3 + 2x3y2 −
√

3
2 (x0

2 + x1
2 + x2

2 + x3
2)a−

√
3

2 (2
√

3x0x3 − 2
√

3x1x2

− x0
2 − x1

2 + x2
2 + x3

2)b = 0. (2.118)

Equation (2.102) can be used to find the constants h1, h2 in terms of h3 to be multiplied to
the constraint polynomials g4, g5 and g6, respectively to obtain a factorable polynomial g. For
this manipulator, the design parameters yield h1 = h3 and h2 = h3. Thus from Eqs. (2.90)
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and (2.116)
g = h1g4 + h2g5 + h3g6 = h3(g4 + g5 + g6) = −6h3bx0x3 (2.119)

showing that the manipulator at hand can have two operation modes characterized by x0 = 0
and x3 = 0 as already presented in [Sch+14; SWH12]. In fact, substituting n23 = 0 in Eq. (2.94)
results in the factorable polynomial x0x3.

Example 2: 3-RPS PM with n13 = 0
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Figure 2.30 – A 3-RPS parallel manipulator with n13 = 0

Another special case of the 3-RPS PM is when the R-joint axes are intersecting as shown in
Fig. 2.30. The base and the platform are still equilateral triangles with circum-radius a and b,
respectively. Also, the P-joints are orthogonal to their corresponding R-joint axes in each leg.
The design parameters for this manipulator are listed below:

a12 =
√

3a, a13 =
√

3
2 a, a23 = 3

2a,

b12 =
√

3b, b13 =
√

3
2 b, b23 = 3

2b,

n11 =
√

3
2 , n21 = 1

2 , n31 = 0, n12 =
√

3
2 , n22 = −1

2 , n32 = 0, n13 = 0, n23 = 1, n33 = 0
(2.120)

The ratio between b12, b13 and b23 calculated using Eq. (2.100) gives b12 : b13 : b23 = −
√

3
2 :

−
√

3
4 : ±3

4 , which is consistent with the design parameters listed in Eq. (2.120). Thus, the
condition i. of Theorem 6 is satisfied. It can also be verified by the fact that the R-joint axes
intersect in a point, which is homothetic with the moving platform equilateral triangle. On the

other hand, the left hand side of Eq. (2.101) gives −3
√

3a
2 6= 0 proving that this manipulator can

have only one operation mode. As a matter of fact, inspecting Fig. 2.30 reveals that the planes
normal to ni and passing through Ai do not have a common line of intersection and hence this
manipulator cannot exhibit more than one operation mode since condition ii. of Theorem 6 is
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not satisfied. It is noteworthy that when a = b, the manipulator at hand has only one degree
of freedom, where the moving platform can only translate along the Z-axis. Figure 2.31a shows
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Figure 2.31 – Slight modification of design parameters can influence the number of operation
modes

the projections of planes Pi as lines Li onto the XY -plane.
Nonetheless, the design parameters can be altered so that the condition ii. is satisfied. Chang-
ing nij , i = 1, 2, j = 1, 2, 3 might alter condition i. of Theorem 6, hence a12, a13 or a23 can be
changed so that condition i. is kept intact. From Eq. (2.101), writing a12 as a function of other
design parameters and substituting the values form Eq. (2.120) yields a12 = −

√
3a. The design

with a12 = −
√

3a is shown in Fig. 2.31b and it exhibits two operation modes. Ã2 represents
the initial position of point A2. In fact, a13 or a23 can also be changed similarly to obtain the
designs shown in Figs. 2.31c and 2.31d, respectively. In these figures, Ã3 represents the initial
position of point A3. Calculating hi, i = 1, 2, 3 from Eq. (2.102) and substituting in the general
quadric of Eq.(2.90) gives the characteristic polynomial of each operation mode as x0 − x3 and
x0 + x3.
Consequently, it provides an interesting example of how architecture of a manipulator influences
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its number of operation modes. The procedure explained can be used to design 3-RPS PMs to
have the necessary number of operation modes. Moreover, for a 3-RPS PM with two operation
modes, the constraint singularity between the operation modes can be escaped by slightly mod-
ifying the design parameters such that one of the conditions in Theorem 6 is not fulfilled.

2.2.5 Example 3: Arbitrary design parameters

Finally, a numerical example is studied with the following arbitrary design parameters:

a13 = 2, a23 = 2, b23 = 3, n11 = −3, n21 = 5, n31 = 0,
n12 = −3, n22 = 2, n32 = 0, n13 = 2, n23 = 1, n33 = 0
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Figure 2.32 – A 3-RPS parallel manipulator with two operation modes char-
acterized by x0 − x3(2 +

√
5) = 0 and x0 − x3(2−

√
5) = 0

The remaining design parameters a12, b12 and b13 are calculated from the relations in Eqs. (2.101)
and (2.100) so that the manipulator has two operation modes. Thus, a12 = 18

13 , b12 = ±135
91 and

b13 = ±12
7 . Fig. 2.32 shows the architecture of the manipulator at hand, where it can be pointed

out that condition i. and ii. of Theorem 6 are satisified. Substituting the design parameters
with b12 = −135

91 and b13 = −12
7 in Eq. (2.95) gives

g := (x0 − x3(2 +
√

5))(x0 − x3(2−
√

5)) = 0 (2.121)

whereas, substituting the design parameters with b12 = 135
91 and b13 = 12

7 in Eq. (2.95) gives

g := (x1 − x2(2 +
√

5))(x1 − x2(2−
√

5)) = 0 (2.122)
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The two polynomials x0−x3(2+
√

5) and x0−x3(2−
√

5) or x1−x2(2+
√

5) and x1−x2(2−
√

5)
represent the two operation modes of the mechanism 4.
Assuming the prismatic joints are actuated, the direct kinematics of the manipulator can be
solved by substituting arbitrary values to joint parameters r1 = 2, r2 = 2 and r3 = 3. The
constraint equations g1 = 0 to g6 = 0 and S2

6 = 0 can be written from Eqs. (4.48) and (2.88).
Adding a normalization equation x2

0 +x2
1 +x2

2 +x2
3 = 1 yields a set of eight equations to be solved

for eight Study parameters. Finding the Groebner basis of the ideal of constraint polynomials
with a pure lexicographic monomial ordering x0 <lex x1 <lex x2 <lex x3 <lex y0 <lex y1 <lex
y2 <lex y3 results in a 16-degree univariate polynomial in variable y3. As anticipated, the
polynomial can be factorized into two polynomials of degree 8, each corresponding to the two
operation modes. It shows that a 3-RPS PM can have at most eight solutions to its direct
kinematics in each operation mode. When the joint parameters are fixed, the direct kinematics
of a 3-RPS PM amounts to locating three points on three fixed circles with centers Ai and radii
ri. To this end, a corollary follows as a consequence of Theorem 6:

Corollary 1. For the 3-points on 3-circles problem, if the geometry satisfies the following con-
ditions
i normals to the planes containing the circles and passing through their centers are coplanar,
ii planes containing the circles have a common line of intersection and
iii the triangle formed by the three points is homothetic to the triangle enlosed by three normals

to the planes passing through the centers of the circles,
then the 16-degree univariate characteristic polynomial factorizes into two 8-degree polynomials.

For the above-mentioned example, eight real solutions to its direct kinematics problem are
found. The solutions form four pairs of manipulator postures, one being the mirror image of
another about the XY -plane. Four of these solutions are displayed in Fig. 2.12.

The first two solutions satisfy x0
x3

= 2−
√

5 or x1
x2

= 2+
√

5 and hence belong to the operation

mode corresponding to x0 − x3(2−
√

5) = 0 or x1 − x2(2 +
√

5) = 0, respectively while the last
two satisfy x0

x3
= 2 +

√
5 or x1

x2
= 2−

√
5 and hence belong to the operation mode characterized

by x0 − x3(2 +
√

5) = 0 or x1 − x2(2−
√

5) = 0.

2.3 Conclusions

This chapter dealt with the operation mode analysis of some PMs. The operation modes
were determined using the Study kinematic mapping and the primary decomposition of the ideal
of constraint polynomials. A parallelogram linkage was shown to have three operation modes.
The constraint manifolds were depicted to exhibit its two operation modes with rotational mo-
tion and the third one with a translational motion.
It was also shown that the zero torsion PMs belonging to the 3-[PP]S-Y and 3-S[PP]-Y family
exhibit two operation modes whose physical interpretation is still an open problem.
In the same vein, the constraint equations of a 3-RUU PM were derived by two different ap-
proaches: geometrical approach, where all possible constraints were listed based on the geometry
of the manipulator and Linear Implitization Algorithm (LIA) in which it was enough to specify

4. To be able to factorize the polynomial g, the field of rational numbers must be extended to include√
n2

23 + n2
13 i.e.

√
5 for this example
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(a) x0 = 0.0593, x1 = −0.2925, x2 =
−0.9206, x3 = −0.2515, y0 = 0.0001, y1 =
−0.8954, y2 = 0.3571, y3 = −0.2658 OR
x0 = .9206, x1 = .2515, x2 = 0.0593, x3 =
−.2925, y0 = −.3571, y1 = .2658, y2 =
0.0001, y3 = −.8954.
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(b) x0 = 0.0264, x1 = 0.0940, x2 =
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(c) x0 = 0.2482, x1 = −0.6214, x2 =
−0.7407, x3 = 0.0586, y0 = −0.2019, y1 =
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(d) x0 = −0.6304, x1 = 0.0743, x2 =
−0.7582, x3 = −0.1488, y0 =
−0.3408, y1 = 0.5290, y2 = 0.1872, y3 =
0.7541 OR
x0 = .7582, x1 = .1488, x2 = −.6304, x3 =
0.0743, y0 = −.1872, y1 = −.7541, y2 =
−.3408, y3 = .5290.

Figure 2.33 – Solutions to direct kinematics of a 3-RPS manipulator with arbitrary design pa-
rameters
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the degree of equations and the algorithm did its job. Both approaches have a boon and a bane
such that it is possible to miss a constraint by merely observing the manipulator geometry while
it is hard to interpret the physical meaning of the equations derived through LIA. However, it
turned out that the ideals spanned by the constraint polynomials in both approaches were the
same let alone their varieties. As a result, the simplest set of equations was chosen for further
analysis. Due to the complexity of the mechanism, a primary decomposition of these ideals
was impossible in order to characterize the operation modes. Nonetheless, the direct kinematics
problem was solved and a factor of the resulting univariate polynomial implied a pure transla-
tional operation mode of the PM.
Similarly, knowing the geometric constraints of a RUU limb, the constraint equations were de-
rived for a dual reconfigurable 4-rRUU PM consisting of a reconfigurable revolute joint based
on the double-Hooke’s joint linkage. It was shown how a double-Hooke’s joint linkage can be
exploited to impact an architectural reconfigurability to a 4-RUU PM. The resulting dual re-
configurable 4-rRUU PM was shown to exhibit at least the following operation modes: a pure
translational operation mode and Schönflies motion modes with different axes of rotation de-
pending on the orientation of base revolute joint axes.

Furthermore, the influence of design parameters on the number of operation modes of a
3-RPS PM with coplanar revolute joints was studied.
The constraint equations of a general 3-RPS PM were derived. The linear combination of plane
constraint polynomials were equated to a general quadric in P7 and the coefficients were solved
to obtain two solutions with some relations between design parameters. These relations were
substituted back into the general quadric and it factorized into two polynomials characterizing
two operation modes. The conditions on the design parameters for the existence of two operation
modes in 3-RPS manipulator with coplanar revolute joints was summarized as a theorem with
proof. The first condition is the homothety between the moving platform triangle and the
triangle enclosed by revolute joint axes, while the second condition is when three planes on
which the spherical joints are confined to move have a common line of intersection. Two special
cases were considered: one that has two operation modes and the other one with one operation
mode. For the latter manipulator, it was shown that one can modify the design parameters to
be able to have two operation modes. Finally, a numerical example was considered following the
proposed theorem. Its characteristic 16-degree univariate polynomial was derived to show that
it splits into two polynomials of degree 8 each, representing two operation modes. The direct
kinematic solutions lying in each operation mode were shown.



Chapter 3

Comparison between parallel
manipulators

3.1 Introduction

The PMs of type 3-[PP]S-Y were studied in Chapter 2 and it was shown that they exhibit
two operation modes. Since their number of dof and motion types are the same, they can be
used for similar applications although their parasitic motions (horizontal displacements due to
horizontal axes rotations) may differ.
This chapter aims at finding a common ground to compare the mechanisms belonging to the
3-[PP]S-Y family. Several techniques have already been introduced in the literature to compare
PMs. A comparison study of four 3-dof translational PMs was performed by Tsai and Joshi
based on their well conditioned workspace, stiffness and inertia properties [TJ01]. Pond and
Carretero compared the 3-PRS, 3-RPS and the Tricept PMs by formulating their dimensionally
homogeneous square Jacobian matrices and then calculating the condition number and singular
values of the Jacobian [PC07]. Li et al. compared 3-PRS PMs with different limb arrangements
with respect to their parasitic motions [Li+11] and listed 1T2R PMs without parasitic mo-
tions [LH10]. In this chapter, the comparison of mechanisms belonging to the 3-[PP]S-Y family
is performed [NCW18b] with respect to their singularity free orientation workspace and their
parasitic motions. An index, named Maximum Inscribed Circle Radius (MICR), introduced
in [Nay+17b] is used to quantify the singularity free orientation workspace of the manipulators.
The maximum parasitic motion, denoted as µ within the Maximum Inscribed Circle is used as a
second performance index. Furthermore, the manipulators are compared based on their design
parameters and actuation scheme. The kinematic and singularity analysis problems are tackled
locally using screw theory and globally using algebraic geometry tools [SWH12]. Finally, the
Pareto optimal (the set of non-dominated) solutions obtained with respect to the two objective
functions MICR and µ are ranked based on their kinematic complexities using the complexity
indices defined in [Kha+07; Car+10b]. It should be noted that joint limits and internal collisions
are not entirely considered in this chapter.

The 3-[PP]S PMs are shown in Fig. 2.6 and their different actuation schemes are listed in
Table 2.1. It is recalled here that they all exhibit two operation modes characterized by x0 = 0
and x3 = 0.
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3.2 Singularity Analysis and Parasitic Motions
For each operation mode, the motion of the moving platform can be parametrized by Z and

any two of the orientation parameters xi [NCW15a]. It simplifies the singularity analysis and
the singular surfaces can be visualized in the three dimensional Euclidean space, E3. However,
the rotations of the moving-platform are not pure. Indeed some undesired translational motions,
called parasitic motions, arise. This section is dedicated to the evaluation of the singularity-free
orientation workspace and the parasitic motions of PMs belonging to the 3-[PP]S-Y family. The
forward kinematic Jacobian matrix is derived in two ways: (i) differentiating the constraint equa-
tions with respect to the output variables (ii) using screw theory. It is shown how screw theory
methods simplify the determination of the Jacobian matrix for different actuation schemes. An
index is defined to assess the maximum singularity-free orientation workspace of the mechanisms
under study. Additionally, their parasitic motions are also assessed.

3.2.1 Kinematic Jacobian Matrix obtained by differentiating the constraint
equations

The kinematic Jacobian matrix is defined for each operation mode as a matrix composed
of the first order partial derivatives of the constraint equations with respect to the parameters
x0, x1, x2, x3, X, Y and Z [Hus+07; HS10], i.e.,

Jk =
(
∂gm
∂xi

,
∂gm
∂X

,
∂gm
∂Y

,
∂gm
∂Z

)
where k = 1, 2 ; m = 1, ..., 7 ; i = 0, ..., 3 (3.1)

where, gm, m = 1, ..., 7 are the constraint equations for the manipulator at hand. Thus, the
manipulator reaches a kinematic singularity when det(Jk) = 0. The vanishing condition of
det(Jk) results in a hyper-variety for each operation mode:

S1: x3 · f1(x1, x2, x3, X, Y, Z) = 0 and S2: x0 · f2(x0, x1, x2, X, Y, Z) = 0 (3.2)

The polynomials f1 and f2, whose degree depends on the PM at hand describe the singularities
in each operation mode, which depend on the actuation scheme. x0 = x3 = 0 describes the
constraint singularity that exhibits the transition between K1 and K2.
It is noteworthy that this method is not always convenient to use as equations g4, g5 and
g6 depend on the manipulator actuation scheme. For instance, the equations for the 3-RPS
manipulator expressed in Sec. 2.1.2 depend on the actuated prismatic joint lengths. Besides,
it should be noted that the derivation of equations g4, g5 and g6 as a function of the actuated
revolute joint angles is usually tedious. To overcome this problem, screw theory techniques are
adopted to derive the kinematic Jacobian matrices of the PMs.

3.2.2 Kinematic Jacobian Matrix obtained based on Screw Theory

Based on the theory of reciprocal screws, the velocity model of a parallel manipulator can
be expressed as

At = Bρ̇ (3.3)

where ρ̇ is the actuated joint rate vector. t is the moving platform twist with respect to the
fixed base i.e., it contains the angular velocity vector of the moving platform and the linear
velocity vector of the MP geometric center. A is called the forward Jacobian matrix and it
incorporates the actuation and constraint wrenches of the PM while B is named the inverse
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Jacobian matrix [JT02]. For a non redundantly actuated and non overconstraint PM, A is a
6× 6 square matrix whereas B is a 6× n matrix where n is the number of actuated joints. To
compare the manipulators of the 3-[PP]S-Y family, only the parallel singularities are considered
such that A is rank deficient. Since A is square, configurations satisfying det(A) = 0 are
singular. Moreover, the manipulators belonging to the 3-[PP]S family cannot meet any serial
singularity corresponding to the rank deficiency of B except the 3-RRS PM.

For instance, the kinematic modeling of the 3-RPS and 3-RPS PMs following Eq. 3.3 can be
expressed as

A3−RPS
0t = B3−RPS ρ̇ =⇒



(0R1
1b1 × 0u1)T 0uT1

(0R1
1b2 × 0u2)T 0uT2

(0R1
1b3 × 0u3)T 0uT3

(0R1
1b1 × 0s1)T 0sT1

(0R1
1b2 × 0s2)T 0sT2

(0R1
1b3 × 0s3)T 0sT3


0t =

[
I3×3
03×3

]ρ̇1
ρ̇2
ρ̇3

 (3.4)

A3−RPS
0t = B3−RPS θ̇ =⇒



(0R1
1b1 × 0v1)T 0vT1

(0R1
1b2 × 0v2)T 0vT2

(0R1
1b3 × 0v3)T 0vT3

(0R1
1b1 × 0s1)T 0sT1

(0R1
1b2 × 0s2)T 0sT2

(0R1
1b3 × 0s3)T 0sT3


0t =

[
I3×3
03×3

]θ̇1
θ̇2
θ̇3

 (3.5)

(3.6)

where, 0ui is a unit vector along the prismatic joint direction and expressed in Σ0, 0si is the
unit vector along the ith revolute joint axis, 0vi is a vector normal to both 0ui and 0si. Matrices
A3−RPS and A3−RPS incorporate the actuation and constraint wrenches of the 3-RPS and 3-RPS
PMs, respectively [JT02]. For the i-th leg of these manipulators, the constraint wrench, 0ζ̂c0i
and the actuation wrench, 0ζ̂a0i are represented in Figs. 3.1 and 3.2 and are expressed in frame
Σ0 as follows:

3− RPS PM : 0ζ̂c0i =
[

0si
0R1

1bi × 0si

]
0ζ̂a0i =

[
0ui

0R1
1bi × 0ui

]
(3.7)

3− RPS PM : 0ζ̂c0i =
[

0si
0R1

1bi × 0si

]
0ζ̂a0i =

[
0vi

0R1
1bi × 0vi

]
(3.8)

Thus, from Eqs. (2.16), (2.18) and (2.19), the determinant of the forward Jacobian matrix
A3−RPS and A3−RPS in Eqs. (3.4) and (3.5) can be calculated in terms of x0, x1, x2, x3, X, Y, Z
and of the design parameters. The derivation of the forward Jacobian matrix by differentiating
the constraint equations is tedious when a revolute joint is actuated whereas using screw theory,
it is straightforward regardless of the actuation scheme. Therefore, the forward singularities
for different actuation schemes of 3-[PP]S PMs are determined using screw theory when the
determinant of matrix A in Eq. (3.3) vanishes.

3.2.3 Singularity loci in the orientation workspace

The singularities can be expressed in the orientation workspace by parametrizing the orien-
tation of the platform in terms of Tilt-and-Torsion (T&T) angles, φ (azimuth), θ (tilt) and σ
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wrenches for the 3-RPS PM
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Figure 3.2 – Actuation and constraint
wrenches for the 3-RPS PM

(torsion) [BZG02; BR99] as recalled in Fig. 1.23. As shown in [BZG02], those angles are more
suitable for 3-[PP]S manipulators, which are known to be zero torsion mechanisms (σ is always
equal to 0 or π depending on the operation mode). The orientation quaternions can be expressed
in terms of the T&T angles as shown in Eq. (1.43).
Quaternions are used to obtain algebraic constraint equations so that the algebraic geometry
techniques can be used to analyze those equations. For instance, primary decomposition of the
ideal of the constraint polynomials described in Eq. (2.31) yields the exact number of operation
modes and their characterization. However, the parametrization is changed to T&T angles to
be able to visualize the singularities and maximum parasitic displacements in the orientation
workspace. Moreover, they offer a more intuitive approach to deal with zero-torsion mechanisms
that are compared in this chapter. This is why the change of parameters from quaternions to
T&T angles is done.

The change of parametrization results in only three parameters expressing the orientation of
the moving-platform. Furthermore, for operation mode K1, characterized by x0 = 0, Eq. (1.43)
gives σ = π. Similarly, for operation mode K2, characterized by x3 = 0, Eq. (1.43) gives σ = 0.
Substituting the values of σ in the remaining equations, leads to xi expressed as functions of φ
and θ angles, only.
In order to plot the singularity loci of the manipulator into the orientation workspace, the
determinant of the forward Jacobian matrix of the manipulator should be expressed as a function
φ and θ angles, only. All remaining variables should be eliminated from the determinant of the
forward Jacobian matrix. X and Y can be eliminated using Eqs. (2.21) and (2.22) for the
3-[PP]S-Y PMs as follows:

X = h2
(
x1

2 − x2
2
)

Y = −2h2x1x2 (3.9)

To this end, the determinant of the forward Jacobian matrix is a function of Z, xi, i = 0, 1, 2, 3
and of the actuated joint variables. The actuated joint variables can be eliminated using equa-
tions g4 = g5 = g6 = 0 as shown in Sec. 2.1.2. Additionally, from Eq. (1.43), xi can be expressed
as functions of φ and θ angles leading to the final expression of the determinant of the forward
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Jacobian matrix in terms of Z, θ and φ.

3.2.4 Maximum Inscribed Circle Radius (MICR)

From a practical point of view, it is desirable to use a PM in its singularity free region. A
performance index, named Maximum Inscribed Circle Radius (MICR) and defined in [Nay+17b],
is used in this section to quantify the capability of the Parallel Manipulator (PM) in terms of
orientation motions. For a given altitude Z, this index gives the maximum tilt angle θ that the
moving-platform can reach for any azimuth angle φ without reaching any parallel singularity:

MICR = max
0≤θ≤π

{θ,∀φ ∈ [0, π], det(A) 6= 0} (3.10)

MICR values are calculated for all the mechanisms at hand in their operation modes for three
ratios for h2

h1
= {1

2 , 1, 2} and two ratios for Z

h1
= 1, 2. The ratios Z

h1
and h2

h1
make sure that the

MICR values can be used to compare the mechanisms and their operation modes no matter the
platform and base sizes. Thus, MICR is used to compare the PMS belonging to the 3-[PP]S-Y
family.

3.2.5 Parasitic Motions

For the 3-[PP]S-Y family of PMs, the workspace is expressed in terms of Z, φ and θ. Since
the torsion angle σ can only attain the values 0 or π depending on the operation mode, the
constrained motions are along the x and y axes. The parasitic displacements along the x and y
coordinates of the moving platform are expressed in terms of Z and xi in Equations (3.9).

To compare the parasitic motions of PMs belonging to the 3-[PP]S-Y family, the maximum
displacement within the Maximum Inscribed Circle (MIC) [Nay+17b] is considered. Here, the
following index is defined to quantify the parasitic motions of the moving-platform along x0 and
y0 axes. A parameter with units of length is defined such that

µ = max
(√

X2 + Y 2
)

when 0 ≤ θ ≤MICR ; −π ≤ φ ≤ π (3.11)

µ can be expressed in terms of h2, θ and φ for these manipulators.

3.2.6 Internal collisions

A drawback of using parallel manipulators for potential applications is the existence of
internal collisions, which do exist in PMs belonging to the 3-[PP]S-Y family listed in Table 2.1.
For these manipulators, three kinds of internal collisions should be considered:

1. Collisions between limbs.
2. Collisions between limbs and the moving or fixed platform triangles.
3. Collision between the fixed and moving-platform triangles.

An accurate collision analysis requires the shape and thickness of the limbs as well as the range
of motion of the spherical joints. Although collisions are plotted for an example in the subse-
quent section, they are not exclusively considered for comparing the PMs at hand.
However, it can be observed that most applications of the 3-[PP]S-Y PMs [Car+99; Wah02;
Tet+16; Yan+11] require them to be in the second operation mode (characterized by x3 = 0),
due to the existence of internal collisions in their first operation mode (x0 = 0). This is partially
accounted for a new complexity index introduced on the next section.
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Figure 3.3 – 3-RPS PM architecture

3.3 Example: The 3-RPS PM

In this section, the 3-RPS PM is considered and the forward Jacobian matrix is formulated,
leading to the determination of MICR for different sizes of its fixed base and moving platforms.
Furthermore, the parasitic motions are visualized within the Maximum Inscribed Circle (MIC)
by plotting µ vs. φ and θ 1.

The architecture of the 3-RPS PM belonging to the family of 3-[PP]S-Y of PMs is shown in
Figure 3.3.

The determinant of A3-RPS calculated from Eq. (3.4) turns out to be a function of x0, x1,
x2, x3, X, Y , Z, h1 and h2. X and Y are substituted from Eq. (3.9) and then T&T angle
substitutions are done (Eq. (1.43)) resulting in the determinant of the forward Jacobian matrix
to be a function of Z, h1, h2, θ, φ and σ. For operation mode 1, after substituting σ = π and
assigning h1 = 1 and h2 = 2, the implicit plot of the Jacobian can be drawn by varying Z, φ
and θ as shown in Fig. 3.4a. For operation mode 2 with σ = 0, the implicit plot is shown in
Fig. 3.4b.

A slice of these surfaces at Z = h1 = 1 gives the singularity loci as shown in Fig. 3.5.
Along with the singularity loci, the so called intersection loci, depicting the collision between

each pair of limbs A1B1, A2B2 and A3B3 are also plotted. To simplify the problem, they are
calculated as follows.
The limbs are assumed to have no thickness and the spherical joints are assumed to have full
range of motion. Thus, the problem is reduced to find all possible intersections between three
pairs of line segments. For instance, to find the intersection loci of line segments A1B1 and

1. Radian is used as the angular unit throughout the text but degree is used in figures for better clarity.
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Figure 3.4 – 3-RPS singularity surfaces for h2
h1

= 2

A2B2, their vector equations are written as follows:

r1 = a1 + (b1 − a1)t1 t1 ∈ [0, 1] (3.12)
r2 = a2 + (b2 − a1)t2 t2 ∈ [0, 1] (3.13)

where r1 and r1 are position vectors of a point on line segments A1B1 and A2B2, respectively.
An intersection occurs when r1 = r2. Eliminating t1 and t2 from this equation gives an implicit
curve in terms of θ and φ where the considered line segments intersect under the condition
t1, t2 ∈ [0, 1]. The intersection between the other two pairs of limbs are determined in a similar
manner, resulting in the intersection loci as plotted in blue in Fig. 3.5. It is apparent that the
internal collisions dominate in operation mode 1 leading the MICR values without practical use.
Nonetheless, it is possible to establish a singularity and collision-free workspace by releasing the
constraint associated to MIC center lying at θ = φ = 0 deg. However, this is left for future
work.

MICR, defined in Eq. (3.10). is also marked in these figures. For different ratios of h2 to h1,
the variations in MICR values are plotted in Figs. 3.6 and 3.7.

From Eqs. (1.43) and (3.9), the maximum displacement within the Maximum Inscribed
Circle (MIC) is written as

µ = max
(√

X2 + Y 2
)

= max
(
h2

2 sin
(
θ

2

)4)
when 0 ≤ θ ≤MICR ; −π ≤ φ ≤ π (3.14)

By varying Z from 0 to 4, θ from 0 to MICR and φ from −π to π, µ is plotted for the 3-RPS
PM as shown in Figs. 3.8 and 3.9. It is observed that the parasitic motion increases as the ratio
h2
h1

increases. But, the larger the h2
h1

ratio, the smaller the MICR and hence, the smaller the
singularity free workspace.
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Figure 3.5 – 3-RPS singularity loci (green), link interference loci (blue) and the maximum in-

scribed singularity-free circle (red), h2
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3.4 Comparison of 3-[PP]S-Y PMs based on their MICR and
parasitic motions

For most applications, it is better to have a large singularity-free orientation workspace with
small parasitic motions. To find out the most suitable manipulator for this purpose, MICR
vs. µ is plotted for all the mechanisms listed in Table 2.1 in their two operation modes, each
for three ratios of h2

h1
= {1

2 , 1, 2} and two ratios of Z
h1

= {1, 2}. These points are plotted for
the aforementioned ratios in Figures 3.10 to 3.15. From Eq. (3.9), it is noticed that parasitic
motions are higher for larger singularity free regions. The abscissa is chosen to be π-MICR since
the minimum of this function is preferred and the ordinate is chosen to be µ. For a PM from
the 3-[PP]S-Y family, π-MICR and µ values are preferred to be smaller. Thus, plotting π-MICR
vs. µ results in a Pareto front as shown in Figs. 3.10 to 3.15.

Among the manipulators listed in Table 2.1, it is noticed that the 3-PhPvS PM behaves
exactly like the 3-PvPhS PM and the 3-PhPvS PM like the 3-PvPhS PM. Hence, only the 3-
PhPvS PM is considered for analysis. Due to the arrangement of prismatic joints, 3-PvRS and
3-PhPvS are inherently singular at any configuration and hence they are not considered here.
Indeed, for these manipulators, the three actuation forces are coplanar and intersect at a point
resulting in only two independent forces. In addition, the PMs 3-RPS and 3-RRS; 3-PhRS and
3-PhPvS; behave alike due to identical arrangement of their passive joints. It should be noted
that the leg links of the 3-RRS PM are considered to be of length h1 so that the moving platform
can reach the maximum value of Z(= 2h1) considered to compare the manipulators at hand.

In Fig. 3.12, the MICR and µ values are marked for the 3-RPS PM when h2
h1

= 2 and Z

h1
= 1.

These points correspond to the MICR and µ values spotted in the MICR and µ vs. Z

h1
plots in

Sec. 3.3.
To compare the 3-[PP]S-Y family of PMs, their MICR vs. µ values are plotted for different

ratios of h2
h1

and Z

h1
in Figs. 3.16 and 3.17. The former figure shows the Pareto optimal solutions
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3-[PP]S PM h2
h1

Z

h1

3-RPS OM2 1/2 1,2
3-PhPvS OM1 1/2 2
3-PhRS OM1 1/2 2
3-PhPvS OM2 1/2 2
3-PhRS OM2 1/2 2
3-PvRS OM1 1/2 2
3-PvRS OM2 1/2 2
3-RPS OM1 1/2 1,2
3-RRS OM1 1/2 1,2
3-RPS OM1 1/2 1,2
3-RPS OM2 1/2 1,2
3-RRS OM2 1/2 1,2
3-RRS OM1 1/2 1
3-PhRS OM1 1/2 1,2
3-PhRS OM2 1/2 2

Table 3.1 – Pareto-optimal solutions (Fig. 3.16)

3-[PP]S PM h2
h1

Z

h1

3-RPS OM1 2 1,2
3-RPS OM2 2 1,2
3-PhPvS OM1 2 2
3-PhRS OM1 2 2
3-PhPvS OM2 2 2
3-PhRS OM2 2 2
3-RRS OM2 2 1,2
3-PvPS OM2 2 2
3-RPS OM2 2 1,2
3-RRS OM2 2 1,2
3-PhRS OM1 2 1,2
3-RPS OM1 2 1,2
3-RRS OM1 2 1,2
3-PvRS OM1 2 2
3-RRS OM1 2 1

Table 3.2 – Solutions that do not dominate any
other solutions (Fig. 3.17)

listed in Table 3.1 while the latter shows the solutions that do not dominate any other solutions
listed in Table 3.2. Their respective configurations are also displayed in these figures. Operation
mode 1 is represented with crossed legs or upside down moving platform. But, this need not
always be the case. In fact, the generic pose of the 3-[PP]S family of PMs in each of their
operation modes is still an open problem. It is noteworthy that the ordinate is chosen to be
logµ so that small and large values of µ are clearly visible in the same graph.

Some observations that can be drawn from these curves are that all the Pareto optimal
solutions consist of 3-[PP]S-Y type PMs with h2

h1
= 1

2 meaning that the circum-radius of the
base is double that of the platform. The solutions that do not dominate any other solution
include only 3-[PP]S-Y type PMs with h2

h1
= 2 implying that the height of the platform is

double the circum-radius of the base. Furthermore, the 3-PhRS PM in operation mode 1 with
h2
h1

= 1
2 ,

Z

h1
= 1 and the 3-PhRS PM in operation mode 2 with h2

h1
= {1

2 , 1},
Z

h1
= 1 have the

least µ of all the PMs under study. On the contrary, the 3-RPS PM in its first operation mode

with h2
h1

= 2, Z
h1

= 1 has the largest µ.
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3.5 Ranking the Pareto optimal solutions based on complexity
indices

Some complexity indices were introduced in [Car+10b; Kha+07] to evaluate the complexity
of serial and parallel manipulators at their conceptual design stage. Those indices can be used to
rank the parallel manipulators at hand. The complexity is not considered as a separate objective
function along with MICR and µ. It is given a lesser priority to compare the PMs belonging
to the 3-[PP]S-Y family due to the fact that the complexity indices are independent of h2

h1
and

Z

h1
. Moreover, due to little differences between architectures of the 3-[PP]S-Y PMs, most of the

indices defined in [Kha+07] yield the same complexity. In order to avoid this problem and to
rank the Pareto optimal solutions listed in Table 3.1 in order of complexity, two more indices
are introduced in this chapter. In total, the following six complexity indices are used to compare
the Pareto-optimal solutions listed in Table 3.1:

3.5.1 Joint-number complexity KN

The joint-number complexity KN is defined as

KN = 1− exp(−qNN), (3.15)

where N is the number of joints in the PM and qN is the resolution parameter defined by

qN =
{
− ln(0.1)/Nmax, for Nmax > 0;

0, for Nmax = 0. (3.16)

For all the 3-[PP]S-Y PMs considered here, N = Nmax = 9 and hence kN = 0.9.

3.5.2 Joint-type complexity KJ

As the name suggests, the joint-type complexity KJ is associated with the type of joints in
the PM. The 3-[PP]S-Y PMs consist of only revolute, prismatic and spherical joints and it leads
to the definition of KJ as follows:

KJ =
nRKG|R + nPKG|P + nSKG|S

n
, (3.17)

where nR, nP and nS are the numbers of revolute, prismatic and spherical joints, respectively
with n = nR+nP+nS . KG|x is the geometric complexity of the pair x as introduced in [Kha+07]:
KG|R = 0.5234, KG|P = 1 and KG|S = 0. The values of KJ for the Pareto optimal solutions are
listed in Table 3.3.

3.5.3 Loop complexity KL

The loop complexity of a PM is defined as:

KL = 1− exp(−qLL), L = l − lm, (3.18)

where l is the number of kinematic loops and lm is the minimum number of loops required to
produce a special displacement group or subgroup. Since each PM belonging to the 3-[PP]S-Y
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family has non-pure rotations about two horizontal axes and a vertical translation, the three
degrees of freedom can be realized using a single kinematic chain. Hence, for all the 3-[PP]S-Y
PMs, l = 2 and lm = 0. qL is defined the same way as in Eq. (3.16):

qL =
{
− ln(0.1)/Lmax, for Lmax > 0;

0, for Lmax = 0. (3.19)

where, Lmax = L = 2 for all the Pareto optimal solutions resulting in KL = 0.9.

3.5.4 Link diversity KB

Link diversityKB is defined to quantify the geometric constraints between neighboring joints.
For a revolute joint, its axis of rotation is considered whereas for a prismatic joint, its direction.
Five possible joint-constraint types between the neighboring joint axes/directions were reported
in [Kha+07]:

1. Type B1: Orthogonal intersection.
2. Type B2: Nonorthogonal intersection.
3. Type B3: Parallelism.
4. Type B4: Orthogonal but not intersecting.
5. Type B5: Skew.

Thus, the geometric-constraint diversity was defined as:

KB = B

Bmax
, B = −

c∑
i=1

bi log2(bi), bi = Mi∑c
i=1Mi

, (3.20)

where B is the entropy of the joint-constraint types and Bmax = 2.32 [Kha+07]. c is the
number of distinct joint-constraint types and Mi is the number of instances of each type of
joint-constraints.

For 3-[PP]S-Y PMs, the joint-constraint between the first two joints in each limb is of type
B1 except for the 3-RRS PM where the revolute joint axes are parallel and is of type B3. The
constraint type is always B5 between the second and the spherical joint while it is either B2 or
B3 between different limbs. There are three instances of each type due to three limbs and hence
for any 3-[PP]S-Y PM, bi = 3

9 , i = 1, 2, 3. This leads to B = log2(3) and KB = 0.6832.

Two more complexity indices are introduced in [NCW18b] to facilitate the ranking of the
Pareto optimal 3-[PP]S-Y PMs:

3.5.5 Actuator-position complexity KP

Actuator-position complexity KP is defined as:

1
m

m∑
i=1

pi − 1
ni

, (3.21)

where m is the number of limbs, ni is the total number of joints in the i-th limb and pi is the
location of the actuated joint i.e. pi = k if k-th joint is actuated. For 3-[PP]S-Y PMs, KP = 0
if the first joint is actuated and KP = 1/3 if the second joint is actuated. It is noteworthy that
the actuator position index can be applied to any other SM or a PM even if the position of the
actuator differs from one limb to another.
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3.5.6 Operation mode complexity KOM

Operation mode complexity KOM is defined specifically for 3-[PP]S-Y PMs. As seen in
Sec. 2.1.2, a 3-[PP]S-Y PM has two different operation modes. In the first operation mode, the
moving platform is rotated upside down by 180 degrees with respect to the fixed base. As a
result of this complexity analysis, it is prone to have internal collisions as compared to operation
mode 2, as shown for a 3-RPS PM in Sec. 3.3. Although a detailed collision analysis is necessary
to overcome this issue, it is partially overcome by introducing a new complexity index as follows:

KOM = 1 for OM1 (3.22)
KOM = 0 for OM2 (3.23)

3.5.7 Total complexity

Total complexity K ∈ [0, 1] of a kinematic chain was defined as a convex combination of the
different complexity indices [Kha+07]. In the context of 3-[PP]S-Y PMs, it is redefined as

K = wNKN + wJKJ + wLKL + wBKB + wPKP + wOMKOM (3.24)

where wN , wJ , wL, wB, wP and wOM denote their corresponding weights, such that

wN + wJ + wL + wB + wP + wOM = 1

Assigning equal weights to all complexity indices implies

K = 1
6(KN +KJ +KL +KB +KP +KOM ) (3.25)

The Pareto optimal solutions listed in Table 3.1 are ranked in ascending order of complexity
in Table 3.3. It is apparent that the 3-RPS, 3-PvRS and 3-PhRS PMs in OM2 dominate their
counterparts with higher singularity-free orientation workspaces, lower parasitic motions and
are the simplest ones, their complexity being equal to 0.4985. The 3-PhPvS PM in OM1 is
the most complex Pareto optimal solution with a complexity equal to 0.7472. Since KN ,KL

and KB are the same for all the 3-[PP]S-Y PMs, the weights wN , wL and wB do not affect the
complexity ranking. However, when wL = 1

3 and wP = 1
12 , 3-RRS PM in OM2 becomes the

simplest PM belonging to the 3-[PP]S-Y family. Eventually, the weights can be chosen according
to the application.
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Rank Pareto optimal solutions KN KJ KL KB KP KOM K

1 3-RPS OM2 0.9 0.5078 0.9 0.6832 0 0 0.4985
3-PvRS OM2 0.9 0.5078 0.9 0.6832 0 0 0.4985
3-PhRS OM2 0.9 0.5078 0.9 0.6832 0 0 0.4985

2 3-RRS OM2 0.9 0.3489 0.9 0.6832 0.3333 0 0.5276
3 3-PhRS OM2 0.9 0.5078 0.9 0.6832 0.3333 0 0.5541

3-RPS OM2 0.9 0.5078 0.9 0.6832 0.3333 0 0.5541
4 3-PhPvS OM2 0.9 0.6667 0.9 0.6832 0.3333 0 0.5805
5 3-RR OM1 0.9 0.3489 0.9 0.6832 0 1 0.6387
6 3-PvRS OM1 0.9 0.5078 0.9 0.6832 0 1 0.6552

3-PhRS OM1 0.9 0.5078 0.9 0.6832 0 1 0.6552
7 3-RRS OM1 0.9 0.3489 0.9 0.6832 0.3333 1 0.6942
8 3-PhRS OM1 0.9 0.5078 0.9 0.6832 0.3333 1 0.7207

3-RPS OM1 0.9 0.5078 0.9 0.6832 0.3333 1 0.7207
9 3-PhPvS OM1 0.9 0.6667 0.9 0.6832 0.3333 1 0.7472

Table 3.3 – Complexity indices of Pareto optimal 3-[PP]S-Y PMs in ascending order

3.6 Conclusions

In this chapter, different operation and actuation modes of the 3-[PP]S-Y zero torsion par-
allel manipulators were compared based on their singularity free orientation workspace and
parasitic motions. The manipulators belonging to the 3-[PP]S-Y family of PMs were consid-
ered and kinematic constraint equations were derived for their general architectures. A primary
decomposition of the ideal of the constraint polynomials showed that they have two operation
modes. Furthermore, their forward kinematic Jacobian matrices were derived for the mecha-
nisms at hand. The determinant of the Jacobian matrix was expressed as a function of the
orientation workspace parameters tilt, azimuth and height of the moving-platform, Z. The van-
ishing condition of the determinant was used to visualize the singularity loci in the orientation
workspace. An index, named Maximum Inscribed Circle Radius (MICR), was used to quantify
the singularity free orientation workspace of the manipulators. The maximum parasitic motion
within the Maximum Inscribed Circle denoted as µ was used as a second performance index. For
h2
h1

= 1
2 , 1, 2 and Z

h1
= 1, 2, MICR vs. µ values were plotted for all the mechanisms in Table 2.1.

The 3-RPS PM was taken as an example to illustrate the methodology to find the MICR and
µ values. For all manipulators belonging to the 3-[PP]S-Y family, the plots of (180-MICR) vs.
µ were drawn such that a minimum of these objective functions is the preferred solution. Dif-
ferent plots were drawn for different ratios of the circumference of the moving-platform to the
circumference of the fixed base. Ultimately, (180-MICR) vs. log10(µ) points were plotted in the
same graph for all the mechanisms for easier comparison. A Pareto front was observed in the
plot and manipulator configurations were represented for the Pareto-optimal solutions and the
solutions that do not dominate any other solution. It was concluded that the Pareto optimal
solutions only include the PMs from the 3-[PP]S-Y family with the circum-radius of the base
twice as that of the platform. The solutions that do not dominate any other solutions include
the PMs from the 3-[PP]S-Y family with the circum-radius of the platform twice as that of the
base. Therefore, the MICR vs. µ plots could be used to compare the 3-[PP]S family of PMs
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K Pareto optimal 3-[PP]S-Y parallel manipulators

0.4985

3-RPS OM2 3-PvRS OM2

3-PhRS OM2

0.5276

3-RRS OM2

0.5541

3-PhRS OM2
3-RPS OM2

0.5805

3-PhPvS OM2

0.6387
3-RRS OM1

0.6552

3-PvRS OM1 3-PhRS OM1

0.6942
3-RRS OM1

0.7207

3-PhRS OM1

3-RPS OM1

0.7472

3-PhPvS OM1

Table 3.4 – Pareto optimal 3-[PP]S-Y parallel manipulators configurations in ascending order of
complexity
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especially while choosing them for a particular application. Furthermore, the complexity indices
of the Pareto optimal solutions were calculated. For equal weights of all complexity indices, it
was shown that the 3-RPS, 3-PvRS and 3-PhRS PMs in their second operation mode are the
simplest ones amongst 3-[PP]S-Y PMs.



Chapter 4

Kinematics and singularity analyses of
series-parallel manipulators

Series-parallel manipulators (S-PMs) are the descendants of PMs which constitute the latter
in a serial arrangement. To study the kinematic and singularity analysis of S-PMs knowing
the properties of their modules, an S-PM with two lower mobility PMs in series is considered.
The 3-RPS-3-SPR S-PM is an S-PM composed of two parallel modules with coupled degrees of
freedom. The proximal module is the 3-RPS parallel mechanism which performs a translation
and two non pure rotations about non fixed axes, which induce two translational parasitic mo-
tions [Hun87] while the distal module is the 3-SPR PM that has the same type of dof [Nay+17b].
Hu et al. [HLYZ12] analyzed the workspace of this manipulator. Alvarado et al. [GA+15] erro-
neously claimed that this S-PM has 5 dof. The reader is referred to Nayak et al. [NCW18d] for
a better understanding of the mobility of this S-PM. Nayak et al. [NCW18d] proved that the
full-cycle mobility of this manipulator is equal to six. Nonetheless, there is very little research
on the singularities of S-PMs. It is known that if any of the parallel modules are in a singular
configuration, the S-PM is also singular [Tan00] but the singularities that arise due to the serial
arrangement of the PMs are generally left out. This chapter focuses on the enumeration of
those serial singularities in the 3-RPS-3-SPR S-PM [NCW18c]. It is shown that six independent
parameters can be used to describe the kinematics of this manipulator. Furthermore, direct and
inverse kinematics problems for the 3-RPS-3-SPR S-PM are solved using Study parametrization.

4.1 Architecture of the 3-RPS-3-SPR series parallel manipulator
The architecture of the 3-RPS-3-SPR S-PM under study is shown in Fig. 4.1. It consists of

a proximal 3-RPS PM module and a distal 3-SPR PM module. The 3-RPS PM is composed of
three legs each containing a revolute, a prismatic and a spherical joint mounted in series, while
the legs of the 3-SPR PM have these lower pairs in reverse order. Thus, the three equilateral
triangular shaped platforms are the fixed base, the coupler and the end effector, coloured brown,
green and gray, respectively. The vertices of these platforms are named Ai, Bi and Ci, i = 1, 2, 3,
respectively. Hereafter, the subscript 0 corresponds to the fixed base, 1 to the coupler platform
and 2 to the end-effector. A coordinate frame Fi is attached to each platform such that its origin
Oi lies at its circumcenter. The coordinate axes, xi points towards the vertex P1, P = A,B,C yi
is parallel to the opposite side P3P2 and by the right hand rule, zi is normal to platform plane.
Besides, the circum-radius of the i-th platform is denoted as hi. pi and qi, i = 1, ..., 6 are unit
vectors along the prismatic joints while ui and vi, i = 1, ..., 6 are unit vectors along the revolute
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joint axes. αi is the plane passing through Ai with its normal along ui. Similarly, βi is the plane
passing through Ci with its normal along vi. The spherical joint center Bi is constrained to lie
in planes αi and βi simultaneously.
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Figure 4.1 – A 3-RPS-3-SPR series-parallel manipulator

4.2 Parametric representation of the 3-RPS-3-SPR series-parallel
manipulator

This section describes the parametrization of the 3-RPS-3-SPR series-parallel manipulator
shown in Fig. 4.1. It will be proved that six independent parameters are sufficient to describe the
position and orientation of the moving platform. These parameters are obtained by individually
parametrizing the proximal and the distal modules.
To recall, Study’s kinematic mapping [Hus+07] maps each spatial Euclidean displacement of
SE(3) onto a point in the 7-dimensional projective space, P7. In this parametrization, a point
[x, y, z] is transformed to [x′, y′, z′] according to:

[1, x′, y′, z′]T = M[1, x, y, z]T (4.1)

where M is the transformation matrix (see Eq. (1.34a)). The parameters xi, yi, i ∈ {0, ..., 3}
present in the transformation matrix M are called the Study-parameters. A Euclidean transfor-
mation can be represented by a point p ∈ P7 if and only if Eq. (1.35) and the inequality (1.36)
are satisfied:

A geometric constraint for each leg of the 3-RPS parallel manipulator is that the spherical
joint center is restricted to move in the plane whose normal is directed along the revolute
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joint axis. Let f0, f1, f2, f3, g0, g1, g2, g3 be the Study parameters. Using Study’s kinematic
mapping [Hus+07; HS13], three plane constraint equations Ei = 0, i = 1, 2, 3 can be written as
functions of the Study parameters fi, gi, i = 0, 1, 2, 3. Along with the Study’s quadric E4, there
are four constraint equations irrespective of the actuation scheme:

E1 := f0f3 = 0 (4.2)
E2 := f1

2h1 − h1f2
2 + 2 f0g1 − 2 f1g0 − 2 f3g2 + 2 g3f2 = 0 (4.3)

E3 := −2 f0f3h1 + f1f2h1 − f0g2 + f1g3 + f2g0 − f3g1 = 0 (4.4)
E4 := f0g0 + f1g1 + f2g2 + f3g3 = 0 (4.5)

where h1 is the circum-radius of the coupler platform. A different set of Study parameters,
[c0, c1, c2, c3, d0, d1, d2, d3] are considered to parameterize the distal module to distinguish the
two modules. The constraint equations for the 3-SPR PM can be obtained by considering the
conjugate of the dual quaternion of the 3-RPS PM [SH18]. In other words, assigning

f0 = c0, f1 = −c1, f2 = −c2, f3 = −c3, g0 = d0, g1 = −d1, g2 = −d2, g3 = −d3 (4.6)

in Eq. (4.2) to (4.5) yields the necessary equations.
Each module is a three dof parallel manipulator and to express these mobilities in terms of
three parameters, the mechanism should be considered in one of its operation modes. For
example, for the 3-RPS module, f3 = 0 represents one of its two operation modes [Sch+14].
In this operation mode, f0 can never be zero. This fact can be exploited to avoid any point
[f0, f1, f2, f3, g0, g1, g2, g3] of P7 to lie on the exceptional generator f0 = f1 = f2 = f3 = 0. This
is done by using the normalizing condition, f0 = 1. By substituting f3 = 0 and f0 = 1 in
Eqs. (4.3) to (4.5), g0, g2 and g3 can be linearly solved as follows:

g0 = 1/2
f1h1

(
f1

2 − 3 f2
2
)

f1
2 + f2

2 + 1
(4.7)

g2 = −1/2
f1
(
2 f1

2g1 + f1
2h1 + 2 f2

2g1 − 3 f2
2h1 + 2 g1

)
f2
(
f1

2 + f2
2 + 1

) (4.8)

g3 = −1/23 f1
2f2

2h1 − f2
4h1 + 2 f1

2g1 + f1
2h1 + 2 f2

2g1 − f2
2h1 + 2 g1

f2
(
f1

2 + f2
2 + 1

) (4.9)

Thus, the Euclidean transformation matrix for the proximal module in its operation mode f3 = 0
can be written as a function of only three parameters f1, f2 and g1:

T1 =



1 0 0 0

h1
(
f1

2 − f2
2
)

f1
2 + f2

2 + 1
f1

2 − f2
2 + 1

f1
2 + f2

2 + 1
2f1f2

f1
2 + f2

2 + 1
2f2

f1
2 + f2

2 + 1

− 2h1f2f1

f1
2 + f2

2 + 1
2f1f2

f1
2 + f2

2 + 1
−f1

2 − f2
2 − 1

f1
2 + f2

2 + 1
− 2f1

f1
2 + f2

2 + 1
2f1

2g1 + f1
2h1 + 2f2

2g1 − f2
2h1 + 2 g1

f2
(
f1

2 + f2
2 + 1

) − 2f2

f1
2 + f2

2 + 1
2f1

f1
2 + f2

2 + 1
−f1

2 + f2
2 − 1

f1
2 + f2

2 + 1


(4.10)

Similarly for the distal 3-SPR module in its operation mode corresponding to c3 = 0, normalizing
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c0 = 1 and eliminating d0, d2 and d3, the transformation matrix can be derived as follows:

T2 =



1 0 0 0

−

c1
4h1 − 6 c1

2c2
2h1 + c2

4h1 + 4 c1
2d1

− c1
2h1 + 4 c2

2d1 + c2
2h1 + 4 d1

(c12 + c22 + 1)2
c1

2 − c2
2 + 1

c12 + c22 + 1
2c1c2

c12 + c22 + 1
2c2

c12 + c22 + 1

−

2c1(2 c1
2c2

2h1 − 2 c2
4h1 − 2 c1

2d1
+ c1

2h1 − 2 c2
2d1 − 2 c2

2h1 − 2 d1)
(c12 + c22 + 1)2 c2

2c1c2
c12 + c22 + 1 −c1

2 − c2
2 − 1

c12 + c22 + 1 − 2c1
c12 + c22 + 1

2 c1
4d1 − c1

4h1 + 4 c1
2c2

2d1 + 6 c1
2c2

2h1
+ 2 c2

4d1 − c2
4h1 + c1

2h1 − c2
2h1 − 2 d1

(c12 + c22 + 1)2 c2
− 2c2
c12 + c22 + 1

2c1
c12 + c22 + 1 −c1

2 + c2
2 − 1

c12 + c22 + 1



(4.11)

Therefore, a transformation matrix between the base frame F0 and the moving frame F2 can be
expressed as T = T1.T2 and is a function of six independent parameters. For instance, when
both modules are in the operation mode represented by f3 = 0 and c3 = 0, T is a function
of f1, f2, g1, c1, c2 and d1 and as a result, indicates that it is indeed a six dof mechanism. All
possible configurations of the S-PM with its individual modules in different operation modes,
include the following cases:

Case a. c3 = f3 = 0
Case b. c0 = f0 = 0
Case c. c0 = f3 = 0
Case d. c3 = f0 = 0 (4.12)

It will be shown in the subsequent sections how simple it is to adapt the results of Case a. to
the remaining three cases.

Consequently, matrices T1,T2 and T can be used to express the co-ordinates of all the
vectors in one frame, preferably the fixed co-ordinate frame F0 as follows:

0rA1 = [1, h0, 0, 0]T ; 0rA2 = [1, −h0
2 ,
√

3h0
2 , 0]T ; 0rA3 = [1, −h0

2 , −
√

3h0
2 , 0]T

1rB1 = [1, h1, 0, 0]T ; 1rB2 = [1, −h1
2 ,
√

3h1
2 , 0]T ; 1rB3 = [1, −h1

2 , −
√

3h1
2 , 0]T

2rC1 = [1, h2, 0, 0]T ; 2rC2 = [1, −h2
2 ,
√

3h2
2 , 0]T ; 2rC3 = [1, −h2

2 , −
√

3h2
2 , 0]T

0u1 = = [0, 0, 1, 0]T ; 0u2 = [1, −
√

3
2 , −1

2 , 0]T ; 0u3 = [1,
√

3
2 , −1

2 , 0]T

2v1 = = [0, 0, 1, 0]T ; 2v2 = [1, −
√

3
2 , −1

2 , 0]T ; 2v3 = [1,
√

3
2 , −1

2 , 0]T

0rBi = T1
1rBi ; 0rCi = T 2rCi ; 0vi = T 2vi, i = 1, 2, 3. (4.13)

4.3 Singularities of the 3-RPS-3-SPR S-PM
It is noticed that the 3-RPS-3-SPR series-parallel manipulator can reach two kinds of singu-

larities: a parallel singularity in which at least one of its modules is in a parallel singularity or a
serial singularity 1 which occurs due to the serial arrangement of the two modules. This section

1. A serial singularity is defined here as a configuration in which the S-PM experiences a loss of degree(s) of
freedom or, equivalently, a drop in the order of the twist system
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briefs the derivation of the forward and inverse kinematic Jacobian matrices with a hope to
find out if a given configuration is singular, at least numerically. It also explains a geometrical
approach to determine the singularities in which the characteristic tetrahedron [EULL02] of the
S-PM under study can be expressed algebraically. The bijective mapping between the degen-
eracy of the tetrahedron and serial singularities can then be exploited to enlist all the serial
singularities.

4.3.1 Forward and inverse kinematic Jacobian matrices

If the proximal (P ) and distal (D) modules are considered individually, the twist i.e., angular
velocity vector of a body and linear velocity vector of a point on the body, of their respective
moving platform with respect to their fixed base can be expressed as a function of the actuated
joint rates [JT02] as follows:

AP
0tP1/0 = BP ṗ13 =⇒



(0rO1A1 ×0 p1)T 0pT1
(0rO1B1 ×0 p2)T 0pT2
(0rO1C1 ×0 p3)T 0pT3
(0rO1A1 ×0 u1)T 0uT1
(0rO1B1 ×0 u2)T 0uT2
(0rO1C1 ×0 u3)T 0uT3


[ 0ωP1/0

0vPO1/0

]
=
[
I3×3
03×3

]ṗ1
ṗ2
ṗ3

 (4.14)

AD
1tD2/1 = BD q̇13 =⇒



(1rO2A1 ×1 q1)T 1qT1
(1rO2B1 ×1 q2)T 1qT2
(1rO2C1 ×1 q3)T 1qT3
(1rO2A1 ×1 v1)T 1vT1
(1rO2B1 ×1 v2)T 1vT2
(1rO2C1 ×1 v3)T 1vT3


[ 1ωD2/1

1vDO2/1

]
=
[
I3×3
03×3

]q̇1
q̇2
q̇3

 (4.15)

where 0tP1/0 is the twist of the coupler with respect to the base expressed in F0 and 1tD2/1 is the
twist of the end effector with respect to the coupler expressed in F1. AP and AD are called
forward Jacobian matrices and they incorporate the actuation and constraint wrenches of the
3-RPS and 3-SPR PMs, respectively [JT02]. BP and BD are called inverse Jacobian matrices
and they are the result of the reciprocal product between wrenches of the mechanism and twists
of the joints for the 3-RPS and 3-SPR PMs, respectively. ṗ13 = [ṗ1, ṗ2, ṗ3]T and q̇13 = [q̇1, q̇2, q̇3]T
are the prismatic joint rates of the proximal and distal modules, respectively. krPQ denotes the
vector pointing from a point P to point Q expressed in frame Fk.

It is noteworthy that if matrix AP (resp. AD) is singular, then the proximal (resp. distal)
module will be in a parallel singular configuration. The entries of matrices AP and AD represent
the Plücker coordinates of six independent lines in P3. When any two or more of these lines
are dependent, the configuration corresponds to a parallel singularity. Many scientific papers
deal with this singularity type of both modules [Sch+14; Nay+17b; Kal+15; Sch+13; AMC16;
Ami+12a; Ami+12b; MNC16]. It is noteworthy that the 3-RPS-3-SPR S-PM is in a parallel
singularity if and only if any of its modules is in a parallel singularity as proved in the following
subsection.

On the other hand, due to the serial stacking of the 3-RPS and 3-SPR PMs, the S-PM can
also have some serial singular configurations even if the individual modules are non-singular 2.
Hence, a kinematic Jacobian matrix of the S-PM is necessary to explore the serial singularities.

2. The 3-RPS and the 3-SPR PMs do not have any serial singularities as long as the prismatic link lengths pi

and qi, i = 1, 2, 3 do not vanish
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If both AP and AD are nonsingular, the so called serial Jacobian matrix of the S-PM can be
expressed as follows [NCW18d]:

JS-PM =
[

2Ad1 A−1
P BP

0R1 A−1
D BD

]
(4.16)

with 2Ad1 =
[

I3×3 03×3
−0r̂O1O2 I3×3

]
, 0r̂O1O2 =

 0 −0zO1O2
0yO1O2

0zO1O2 0 −0xO1O2

−0yO1O2
0xO1O2 0


and 0R1 =

[
0R1 I3×3
I3×3

0R1

]

where 2Ad1 is called the adjoint matrix. 0r̂O1O2 is the cross product matrix of vector 0rO1O2 =
[0xO1O2 ,

0 yO1O2 ,
0 zO1O2 ], pointing from point O1 to point O2 expressed in frame F0. 0R1 is called

the augmented rotation matrix between frames F0 and F1 and it contains the rotation matrix
0R1 from frame F0 to frame F1. JS-PM fits into the kinematic model of the S-PM in the following
way:

0t2/0 = JS-PM

[
ṗ
q̇

]
(4.17)

where 0t2/0 is the twist of the moving platform with respect to the fixed base expressed in F0
and ṗ = [ṗ1, ṗ2, ṗ3]T and q̇ = [q̇1, q̇2, q̇3]T are the joint rates of the proximal and the distal mod-
ules, respectively. The rank of this matrix provides the local mobility of the S-PM [NCW18d].
Moreover, when JS−PM is singular, the series-parallel manipulator at hand is in a serial singu-
larity. When a manipulator configuration is given, it is straightforward to calculate numerically
the serial kinematic Jacobian matrix from Eq. (4.16) and to deduce if it is a serial singular
configuration. However, it is tedious to derive a symbolic or an implicit equation that could be
used to enlist all serial singularities. Therefore, a geometric approach is adopted.

Equations (4.16) and (4.17) can be extended to a series-parallel manipulator with n modules
in series as shown in Fig. 4.2. Thus, the moving platform twist with respect to the fixed base
expressed in coordinate frame F0 is as follows :

0tn/0 =
n∑
i=1

0R(i−1)
nAdi (i−1)tMi

i/(i−1) = J6×3n


ρ̇M1

ρ̇M2
...

ρ̇Mn


with 0Ri =

[
0Ri I3×3
I3×3

0Ri

]
, nAdi =

[
I3×3 03×3

−(i−1)r̂OiOn I3×3

]
and

J6×3n =
[
nAd1 A−1

M0
BM0

0R1
nAd2A−1

M1
BM1 ... 0Rn A−1

Mn
BMn

]
(4.18)

where J6×3n is the 6 × 3n kinematic Jacobian matrix of the n-module S-PM manipulator. Mi

stands for the i-th module, AMi and BMi are the forward and inverse Jacobian matrices of Mi,
respectively. ρ̇Mi is the vector of the actuated prismatic joint rates for the i-th module.

4.3.2 Twist and wrench systems of the 3-RPS-3-SPR PM

Each leg of the 3-RPS and 3-SPR parallel manipulators is composed of three joints, but the
order of the limb twist system is equal to five and hence there exist five twists associated to each
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Figure 4.2 – n parallel mechanisms (named modules) arranged in series

leg. Thus, the constraint wrench system of the i-th leg of the 3-RPS and 3-SPR parallel modules
is spanned by a pure force Wi

P and Wi
D shown as the black and red vectors, respectively in

Fig. 4.4. These forces are reciprocal to all the joint twists in each leg, in the respective modules.
The three forces in each module span its wrench system WP or WD which is the third special
three-system of screws [Hun87]:

0WP =
3⊕
i=1

0Wi
P = span

{[ 0u1
0rO2B1 ×0 u1

]
,

[
0u2

0rO2B2 ×0 u2

]
,

[
0u3

0rO2B3 ×0 u3

]}
0WD =

3⊕
i=1

0Wi
D = span

{[ 0v1
0rO2B1 ×0 v1

]
,

[
0v2

0rO2B2 ×0 v2

]
,

[
0v3

0rO2B3 ×0 v3

]}
0WS−PM = 0WP ∩ 0WD

dim(0WP ) = dim(0WD) = 3

(4.19)

Alternatively, the twist system of the 3-RPS-3-SPR S-PM is the union of the twist systems
of two modules. The twist systems of each module are the orthogonal vector subspaces of the
respective wrench systems and are also the third special three-system of screws [Hun87]:

0TP =0 W⊥P
0TD =0 W⊥D
0TS−PM = 0TP ∪ 0TD

dim(0TP ) = dim(0TD) = 3

(4.20)

The mobility of the 3-RPS-3-SPR S-PM is equal to the dimension of the overall twist system,



Singularities of the 3-RPS-3-SPR S-PM 131

dim( 0TS−PM ). For a general configuration, when the twist systems of each module are inde-
pendent i.e., dim(0TP ∩ 0TD) = 0, the mobility was established to be six in [NCW18d]:

dim( 0TS−PM ) = dim(0TP ∪ 0TD) = dim(0TP ) + dim(0TD)− dim(0TP ∩ 0TD)
= dim(0TP ) + dim(0TD)
= 3 + 3 = 6

(4.21)

As a conclusion, the following Theorem is stated.

Theorem 7. A parallel singularity of an S-PM arises if and only if at least one of its modules
reaches a parallel singularity.

Proof: When the actuators are blocked, the twist system of any module in a parallel singu-
larity is of order more than zero or, equivalently, the wrench system is of order less than six.
The sufficient condition is that if at least one module is in a parallel singularity, then the S-PM
is in a parallel singularity. In this case, from Eq. (4.21), if the order of the twist system is more
than zero for any module, it is reflected in the order of the twist system of the whole S-PM. The
necessary condition can be proved as follows. If none of the modules is in a parallel singularity,
the wrench system of each module is of order six when the actuated joints are blocked. Thus,
the order of the wrench system of the full S-PM is also of order six and thus the S-PM is not in
a parallel singularity.

4.3.3 Enumeration of serial singularities

A serial singularity is encountered
— when there exists a wrench common to both modules of the S-PM or, equivalently, if the

dimension of the intersection of the two wrench systems is more than zero:

dim(0WP ∩ 0WD) > 0 (4.22)

— if the union of the two wrench systems is of dimension lower than six. Indeed,

dim(0WP ∪ 0WD) = dim(0WP ) + dim(0WD)− dim(0WP ∩ 0WD)
= 3 + 3− dim(0WP ∩ 0WD) (4.23)

From Eqs. (4.22) and (4.23), dim(0WP ∪ 0WD) < 6
A straightforward sufficient condition for Eq. (4.22) or (4.23) to hold is that at least one

revolute joint axis in the base is parallel to the corresponding revolute joint axis in the mov-
ing platform. In other words, 0ui || 0vi for any i = 1, 2, 3. For the i-th leg, by equating the
coordinates of vectors 0ui and 0vi, three systems of equations are obtained from Eq. (4.13) in
parameters c1, c2, f1 and f2. Solving the system of equations for three of the four parameters,
say, c1, f1 and c2 leads to the following algebraic expressions corresponding to the serial singular
configurations:

0u1 || 0v1 =⇒ c1 = 0, f1 = 0
0u2 || 0v2 =⇒ c1 = −

√
3c2, f1 = −

√
3f2

0u3 || 0v3 =⇒ c1 =
√

3c2, f1 =
√

3f2
0ui || 0vi ∀i = 1, 2, 3 =⇒ c1 = −f1, c2 = −f2 (4.24)
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Figure 4.3 – Serial singular configurations with parallel revolute joint axes
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When all the base revolute joint axes are parallel to their corresponding platform revolute joint
axes, the fixed base and the moving platform are parallel to each other. In this case, the
transformation matrix T is the Identity matrix resulting in T1 = T−1

2 . Figure 4.3 shows the
four cases for arbitrary design parameters. In the first three cases, the constraint wrench τ0
prevents the moving-platform from rotating about its axis. Thus, the manipulator has only 5
dof. When the base is parallel to the moving platform, the constraint wrench system of the whole
manipulator is spanned by three forces τ01, τ02 and τ03 leading to an instantaneous three dof
S-PM. The degrees of freedom include a pure vertical translation and two non-pure horizontal
rotations. In this case, the last condition shown in (4.24) can be substituted in the expression

of T to find the coordinates of the platform circumcenter O2 to be [0, 0, 2(d1 + g1)
f2

], where only
a z-translation is allowed. There can be other similar configurations in which the base and the
platform are parallel with translations along all three coordinate axes. It is noteworthy that the
algebraic relations governing the serial singular configurations described so far are independent
of the parameters h0, h1, h2, g1 and d1.

There exist other serial singular configurations in which the constraint wrenches at each
spherical joint are not coincident and hence form the first special two system of screws [Hun87].
The following section describes a methodology to determine these singularities.

4.3.4 Characteristic tetrahedron of serial singularities

At each spherical joint, if the constraint forces are not coincident, they form a force pencil.
A characteristic tetrahedron is defined combining the planes of the three pencils along with the
coupler platform plane passing through the spherical joints as shown in Fig. 4.4.
A Theorem proposed by Uphoff et al.. in [EULL02] is used to identify the remaining serial
singularities.

Theorem 8 ((ref. [EULL02])). A platform manipulator is in a wrench singularity if and only
if the characteristic tetrahedron is singular

In this context, the wrench singularities correspond to the serial singularities of the S-PM.
The method was initially designed to determine the parallel singularities of a parallel manipulator
and the same method is used here to enumerate serial singularities of a S-PM [NCW18c]. The
homogeneous co-ordinates of the planes (the normal vector to the plane, wi and a point on the
plane are known) representing the faces of the tetrahedron are expressed as follows:

Π1 : a = [w01, w1] = [−rTB1(u1 × v1), (u1 × v1)T ]
Π2 : b = [w02, w2] = [−rTB2(u2 × v2), (u2 × v2)T ]
Π3 : c = [w03, w3] = [−rTB3(u3 × v3), (u3 × v3)T ]
Π4 : d = [w04, w4]

= [−rTB1((rB1 − rB2)× (rB1 − rB3)), ((rB1 − rB2)× (rB1 − rB3))T ] (4.25)

All the vectors are expressed in frame F0. Hence, a serial singularity occurs when the determinant
of the matrix of plane coordinates [a b c d] vanishes. A similar approach using Grassman-Cayley
algebra was used to find singularities of a six-dof manipulator, 3-PPPS in [Car+10a]. From



134 Kinematics and singularity analyses of series-parallel manipulators

u
2

u
1

u
3

v
2

v
1

v
3

B
1

B
2

B
3

∏
1

∏
3

∏
2

∏
4

Figure 4.4 – The characteristic tetrahedron of the 3-RPS-3-SPR S-PM

Eqs. (4.13) and (4.25),

|a b c d| = − 27 (c1f1 + c2f2 − 1)h1
3

2 (c12 + c22 + 1)3
(
f1

2 + f2
2 + 1

)3 (4 c1
4f1f2

2 − 8 c1
3c2f1

2f2 − 8 c1
3c2f2

3

+ 4 c1
3f1

2f2
2 − 4 c1

3f2
4 + 4 c1

2c2
2f1

3 + 12 c1
2c2

2f1f2
2 − 8 c1

2c2f1
3f2

+ 4 c1c2
2f1

4 + 12 c1c2
2f1

2f2
2 − 4 c2

4f1
3 − 8 c2

3f1
3f2 + c1

4f1 − 8 c1
3c2f2

+ 3 c1
3f1

2 − 3 c1
3f2

2 + 6 c1
2c2

2f1 − 6 c1
2c2f1f2 + 3 c1

2f1
3 + 3 c1

2f1f2
2

+ 3 c1c2
2f1

2 − 3 c1c2
2f2

2 − 6 c1c2f1
2f2 − 6 c1c2f2

3 + c1f1
4 + 6 c1f1

2f2
2

− 3 c1f2
4 − 3 c2

4f1 − 6 c2
3f1f2 − 3 c2

2f1
3 − 3 c2

2f1f2
2 − 8 c2f1

3f2 + c1
3

+ 3 c1
2f1 − 3 c1c2

2 − 6 c1c2f2 + 3 c1f1
2 − 3 c1f2

2 − 3 c2
2f1 − 6 c2f1f2

+ f1
3 − 3 f1f2

2) (4.26)

Thus, the points on the surface |a b c d| = 0 correspond to serial singular configurations for the
3-RPS-3-SPR S-PM. From Eq. (4.26), the manipulator is in a serial singular configuration when
either c1f1 + c2f2 − 1 = 0 or the second factor, a 7-degree polynomial, p7(c1, f1, c2, f2) = 0 3. In
order to enumerate different serial singularities, the conditions for rank deficiency of the matrix
[a b c d] listed in Table 1 of [EULL02] are studied.

3. A 3D animation of the singular surface by varying c1, c2, f1 and f2 from -3 to 3 is uploaded in https:
//www.dropbox.com/s/dzif65bhx59nxd6/sing1.mp4?dl=0 for the first factor of Eq. (4.26) and in https://www.
dropbox.com/s/koezrl6xom3pmmr/singp7.mp4?dl=0 for the second factor of Eq. (4.26).

https://www.dropbox.com/s/dzif65bhx59nxd6/sing1.mp4?dl=0
https://www.dropbox.com/s/dzif65bhx59nxd6/sing1.mp4?dl=0
https://www.dropbox.com/s/koezrl6xom3pmmr/singp7.mp4?dl=0
https://www.dropbox.com/s/koezrl6xom3pmmr/singp7.mp4?dl=0
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Case 1: 4 faces meet in a point Two subcases must be considered depending on whether
the point of intersection is real or lies at infinity. In both cases, the variety spanned by the 6
constraint wrench lines is a general linear complex [Mer89] and the 3-RPS-3-SPR S-PM instan-
taneously behaves as a 5 dof mechanism.
a. A real point: Considering the second factor of Eq. (4.26) p7(c1, c2, f1, f2), substituting
arbitrary values for any three of the four parameters and finding the fourth one shows that the
faces of the characteristic tetrahedron intersect in a point. One such configuration is shown in
Fig. 4.5a. Point P is the intersection point of the four planes Πj , j = 1, 2, 3, 4.
b. A point at infinity: This happens when the intersection lines of the planes are parallel. In
other words, it is sufficient to check if the ideal point (nothing but the point at infinity of a line)
of one of these lines lies in the other three planes. Let the ideal point of line of intersection L12
of planes Π1 and Π2 be P∞12 . It is sufficient to check if this point lies on the line of intersection
L34 of planes Π3 and Π4. However, this approach is computationally expensive and yields no
results. Therefore, it is first checked whether point P∞12 lies on the line of intersection L13 of
planes Π1 and Π3 as follows:

rP∞
12

: (0, l12) = (0,w1 ×w2) (4.27)
L13 : (l13, l13) = (w1 ×w3, w01w3 − w03w1) (4.28)

r∞P∞
12
∧ L12 = 0 : w3 · l12 = 0, −w03l12 + w3 × l12 = 0 (4.29)

Solving Eq. (4.29) for c1, f1, c2 and f2 yields the relationship c1f1+c2f2−1 = 0 or c1f2−c2f1 = 0.
The former relationship corresponds to the intersection of the planes in a real line. It will be
discussed in the following paragraph. The latter corresponds to the configuration where the
planes Π1,Π2 and Π3 share the same ideal point. It can also mean that they have a common
line of intersection at infinity, which will be dealt with in the next paragraph. In other words,
their lines of intersection are parallel. Formulating another equation such that the point P∞12
lies in the plane Π4 and solving the two equations results in the following relationships:

c1f2 − c2f1 = 0
rP∞

12
· ([w04, w4]) = 0

}
=⇒

f1 = − c1
c2

1 + c2
2
, f2 = − c2

c2
1 + c2

2

OR

c1 = − f1
f2

1 + f2
2
, c2 = − f2

f2
1 + f2

2

(4.30)

If the parameters c1, c2, f1 and f2 satisfy the foregoing conditions, the S-PM is in a serial
singularity with the planes of its characteristic tetrahedron intersecting in a point at infinity.
One such configuration is depicted in Fig. 4.5b.

Case 2: 3 sides meet in a line : The first factor of Eq. (4.26), c1f1+c2f2−1 = 0 corresponds
to the serial singularity in which the variety spanned by the 6 constraint wrench lines is a special
linear complex [Mer89] and the mechanism has 5 dof. To prove that c1f1 + c2f2 = 1 corresponds
to the singularity when 3 sides of the characteristic tetrahedron meet in a line, two sub cases
are considered when the line of intersection of the three sides is
a. Real line: The condition c1f1 + c2f2 − 1 = 0 is derived using line geometry. For a line
intersection of the three planes, it is sufficient to prove the incidence of the intersection line of
first two sides with the third one. The Plücker coordinates of the line of intersection, L12 of
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Figure 4.5 – Serial singularity when all faces of the characteristic tetrahedron meet in a point

planes Π1 and Π2 are calculated. The line L12 and the plane Π3 are incident if and only if the
following conditions are satisfied [PW01].

L12 : (l12, l12) = (w1 ×w2, w01w2 − w02w1) (4.31)
Π3 ∧ L12 = 0 : w3 · l12 = 0, −w03l12 + w3 × l12 = 0 (4.32)

The four equations in Eq. (4.32) are solved for parameters c1, c2, f1 and f2 to obtain the solution
f2 = −c1f1 − 1

c2
with arbitrary values for c1, c2 and f1. It means that if the choice of these

parameters are bound by the relation c1f1 + c2f2 − 1 = 0, the three sides intersect in a line
and is consistent with the first factor of Eq. (4.26). Figure 4.6a shows one of the serial singular
configurations in which the three sides meet in a line L. It implies that six constraint forces
intersect the line L and hence belong to a singular linear line complex.
b. Line at infinity: In this case, the side planes are all parallel to each other which is

possible only when the fixed base and the moving platform planes are parallel to each other.
Since the 3-RPS-3-SPR PM has 6 dof, the only possibilities for the platform and the base to
remain parallel is when the moving platform has pure translational motions or has a rotation
about the z0-axis along with translational motions. The former case is studied in Subsec. 4.3.3
where corresponding revolute joint axes are parallel to each other leading to a 3 dof freedom
mechanism. The latter case is investigated by considering the transformation matrix T, and
forcing the rotation matrix to be of pure rotation about z0-axis. This is done by equating T(2, 4)
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Figure 4.6 – Serial singular configurations when three sides of the characteristic tetrahedron
meet in a line

and T(3, 4) to zero and solving for two of the four parameters c1, c2, f1 and f2:

T(2, 4) = −T(4, 2) = 0
T(3, 4) = −T(4, 3) = 0

}
=⇒

f1 = c1
c2

1 + c2
2
, f2 = c2

c2
1 + c2

2

OR

c1 = f1
f2

1 + f2
2
, c2 = f2

f2
1 + f2

2

(4.33)

The relations in Eq. (4.33) satisfy the equation c1f1 + c2f2 − 1 = 0. Hence, this equation
is a necessary and a sufficient condition for three sides to have a common line of intersection
and it instantaneously reduces the degree of freedom of the S-PM at hand by 1. Furthermore,
by substituting Eq. (4.33) in T, the magnitude of rotation about the z0-axis is given by σ =
tan−1( 2c1c2

c2
2 − c2

1
) = tan−1( 2f1f2

f2
2 − f2

1
). A serial singular configuration in which σ = 67◦ is shown in

Fig. 4.6b. Note that in theory the platform can have an upright position or an upside down
position and yet stay parallel to the base.

Case 3: 2 sides and base meet in a line Considering a side plane Πi, i = 1, 2, 3 and
the base plane Π4, their line of intersection must pass through Bi. To prove if Πi, Πj and Π4,
i, j = 1, 2, 3 have a common line of intersection, it is sufficient to prove that the points Bi and
Bj simultaneously lie on the planes Πj and Πi, respectively. If there exists a line common to all
the three planes, it should be along BiBj as shown in Fig. 4.7. For instance, if planes Π1, Π2
and Π4 are considered, simultaneous incidence of point B1 on Π2 and that of point B2 on Π1
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Figure 4.7 – Can two sides and base of the characteristic tetrahedron of the 3-RPS-3-SPR S-PM
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must be satisfied and is expressed by the following equations:

rB1 · ([w02, w2]) = 0 =⇒
− 2
√

3c1c2f1 − 2
√

3c1f1f2 + 3 c1
2f1 + 3 f1

2c1 − 3 f2
2c1 − 3 c2

2f1 − 3 c1 − 3 f1 = 0 (4.34)
rB2 · ([w01, w1]) = 0 =⇒
− 4
√

3c1c2f2 − 4
√

3c2f1f2 + 4 c2c1f1 + 4 f2c1f1 + c1
√

3 +
√

3f1 − 3 c2 − 3 f2 = 0 (4.35)

Finding the Groebner basis of the polynomials in Eqs. (4.34) and (4.35) with a graded reverse
lexicographic ordering (tdeg in Maple) of the parameters c1 <grlex c2 <grlex f1 <grlex f2, results
in a basis of four polynomials. The four equations can then be solved for c1, c2, f1 and f2. Two
solutions are obtained, the first one turns out to be a complex solution and the second one is
exactly the last case of (4.24). The second solution should also be rejected since it is assumed
for this analysis that none of the faces of the characteristic tetrahedron degenerates into a line.
Also for other combinations of sides and their intersections with the base plane, the following
equations are solved for the parameters:

rB2 · ([w03, w3]) = 0 =⇒
3 c1

2f2 − 2 c1c2f1 − 2 c1f1f2 − 3 c2
2f2 + 3 c2f1

2 − 3 c2f2
2 + 3 c2 + 3 f2 = 0 (4.36)

rB3 · ([w02, w2]) = 0 =⇒
c1

2f1 − 2 c1c2f2 + c1f1
2 − c1f2

2 − c2
2f1 − 2 c2f1f2 + c1 + f1 = 0 (4.37)

rB1 · ([w03, w3]) = 0 =⇒
− 4
√

3c1c2f2 − 4
√

3c2f1f2 − 4 c1c2f1 − 4 c1f1f2 + c1
√

3 +
√

3f1 + 3 c2 + 3 f2 = 0 (4.38)
rB3 · ([w01, w1]) = 0 =⇒
2
√

3c1c2f1 + 2
√

3c1f1f2 + 3 c1
2f1 + 3 c1f1

2 − 3 c1f2
2 − 3 c2

2f1 − 3 c1 − 3 f1 = 0 (4.39)

In each case, the solutions obtained are either complex or correspond to the last case of (4.24),
showing that the S-PM at hand cannot have a configuration in which any two sides and the base
of its characteristic tetrahedron meet in a line.
Another approach to solve this case is by finding the condition for incidence of an intersection
line between two sides and the base [PW01]:
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Lij : (lij , lij) = (wi ×wj , w0iwj − w0jwi) (4.40)
Π4 ∧ Lij = 0 : w4 · lij = 0, −w03lij + w4 × lij = 0, i = 1, 2, 3 (4.41)

Equation (4.41) does not yield any real or non-trivial solutions. As a result, it is proved by
contradiction that the 3-RPS-3-SPR S-PM cannot have a serial singular configuration in which
any two sides and the base of the characteristic tetrahedron meet in a line.

Cases 4 and above The remaining cases in Table 1 of [EULL02] include two sides meet in
a plane, one side and base meet in a plane, two sides and base meet in a plane, two faces meet
in a plane. Since the S-PM cannot attain a configuration of Case 3, it is certain that it cannot
reach any configuration corresponding to the remaining cases. For example, if two sides could
meet in a plane, this case should have appeared as a solution to Eqs. (4.34) and (4.35) and in
which case, there definitely would have existed a line of intersection between the meeting plane
and the base.

To this end, all possible serial singularities are listed in Tab. 4.1

Geometrical
condition

Algebraic
expression

Instantaneous
dof

An example
configuration

Parallel revolute joints
i. 0u1 || 0v1 c1 = 0, f1 = 0 5 Fig. 4.3a
ii. 0u2 || 0v2 c1 = −

√
3c2, f1 = −

√
3f2 5 Fig. 4.3b

iii. 0u3 || 0v3 c1 =
√

3c2, f1 =
√

3f2 5 Fig. 4.3c

iv.
parallel base and platform
(platform pure translation)

0ui || 0vi ∀i = 1, 2, 3
c1 = −f1, c2 = −f2 3 Fig. 4.3d

Degeneracy of the characteristic tetrahedron [EULL02]

v. 4 faces meet in a point
(general linear complex [Mer89])

a. a real point p7(c1, c2, f1, f2) = 0 (Eq. (4.26)) 5 Fig. 4.5a

b. a point at infinity c1 = − f1
f2

1 + f2
2
, c2 = − f2

f2
1 + f2

2
5 Fig. 4.5b

vi. 3 sides meet in a line
(special linear complex)

a. a real line c1f1 + c2f2 − 1 = 0 5 Fig. 4.6a
b. a line at infinity

parallel base and platform
(rotation about z0-axis)

c1 = f1
f2

1 + f2
2
, c2 = f2

f2
1 + f2

2
5 Fig. 4.6b

Table 4.1 – Enumeration of serial singularities for the 3-RPS-3-SPR S-PM

It is recalled here that the singularity analysis performed in this section is by considering
both modules in the operation mode corresponding to c3 = f3 = 0. In fact, there are three
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other possibilities, c0 = f0 = 0, c0 = f3 = 0 and c3 = f0 = 0. For these cases, the algebraic
expressions for serial singularities can be obtained by the following replacements to the ones
listed in Tab. 4.1. These replacements hold true only for the orientation parameters. Favorably,
the serial singular configurations for f3 = c3 = 0 expressed in Tab. 4.1 are only functions of
orientation parameters ci, fi, i = 1, 2 as shown below:

Case a. c3 = f3 = 0 : Listed in Tab. 4.1
Case b. c0 = f0 = 0 : f2 → −f1, f1 → f2, c1 → −c2, c2 → c1

Case c. c0 = f3 = 0 : c1 → −c2, c2 → c1

Case d. c0 = f3 = 0 : f2 → −f1, f1 → f2 (4.42)

Proof: For the 3-RPS (fi, i = 0, 1, 2, 3) and the 3-SPR (ci, i = 0, 1, 2, 3) parallel manipulator
modules, the orientation Study parameters can be expressed in terms of the Tilt and Torsion
angles [BZG02], azimuth (φ), tilt (θ) and torsion (σ) as follows:

f0 = cos(θ1
2 ) cos(σ1

2 ) c0 = cos(θ2
2 ) cos(σ2

2 )

f1 = sin(θ1
2 ) cos(φ1 −

σ1
2 ) c1 = − sin(θ2

2 ) cos(φ2 −
σ2
2 )

f2 = sin(θ1
2 ) sin(φ1 −

σ1
2 ) c2 = − sin(θ2

2 ) sin(φ2 −
σ2
2 )

f3 = cos(θ1
2 ) sin(σ1

2 ) c3 = − cos(θ2
2 ) sin(σ2

2 ) (4.43)

The operation mode c0 = 0 or f0 = 0 renders the torsion angle σ1 = 0 or σ2 = 0 and if f3 = 0
or c3 = 0, σ1 = 180◦ or σ2 = 180◦, respectively. Furthermore, if, for instance in the operation
mode corresponding to f0 = 0, the 3-RPS PM can never have f3 = 0, thus the parameters fi,
i = 0, 1, 2, 3 can be normalized by forcing f3 = 1. Consequently, the operation modes (OM) as
functions of tilt and azimuth angles can be represented for each module as follows:

3-RPS OM-1 3-SPR OM-1
f0 = 1 c0 = 1

f1 = tan(θ1
2 ) cos(φ1) c1 = − tan(θ2

2 ) cos(φ2)

f2 = tan(θ1
2 ) sin(φ1) c2 = − tan(θ2

2 ) sin(φ2)

f3 = 0 c3 = 0

3-RPS OM-2 3-SPR OM-2
f0 = 0 c0 = 0

f1 = tan(θ1
2 ) sin(φ1) c1 = − tan(θ2

2 ) sin(φ2)

f2 = − tan(θ1
2 ) cos(φ1) c2 = tan(θ2

2 ) cos(φ2)

f3 = 1 c3 = 1
(4.44)

Thus, it is obvious that for the 3-RPS PM, algebraic expressions in OM-2 can be obtained from
those in OM-1 replacing f2 by −f1 and f1 by f2. For the 3-SPR PM, these replacements will be



Direct Kinematics Model(DKM) 141

c2 by c1 and c1 by −c2. Accordingly, all the serial singular configurations of the 3-RPS-3-SPR
PM can be enumerated starting from Case a (where both modules are in OM-1) of Eq. (4.42).

4.4 Direct Kinematics Model(DKM)

The six prismatic joints of the 3-RPS-3-SPR S-PM are assumed to be actuated. The direct
kinematics model gives the pose, i.e., the position and orientation, of the moving platform for
given prismatic joint lengths. For the 3-RPS and the 3-SPR PMs, the prismatic joint lengths
are named p1, p2, p3 and q1, q2, q3, respectively. If Study parameters x0, x1, x2, x3, y0, y1, y2 and
y3 represent the pose of the moving platform relative to the base, the direct kinematics problem
aims to find xi and yi, i = 0, 1, 2, 3 given pj and qj , j = 1, 2, 3.

As mentioned in Sec. 4.2, the transformation matrix between the fixed base and the moving
platform, T is determined to be a function of f1, f2, g1, c1, c2 and d1 for the case c3 = f3 = 0.
Therefore, the sphere constraint equations [Sch+14] for each module after factoring out the
non-zero terms are expressed as follows:

|| 0rBi − 0rAi ||2 = p2
i i = 1, 2, 3 =⇒

S1 :=
(
−p1

2 + h0
2 − 4h0h1 + 4h1

2
)
f1

4f2
2 + 4 f1

4g1
2 + 4h1f1

4g1 + h1
2f1

4

+ (−2 p1
2 + 2h0

2 − 8h1
2)f1

2f2
4 + 8 f1

2f2
2g1

2 − 8h1f1
2f2

2g1 + (−2 p1
2

+ 2h0
2 − 6h0h1 − 2h1

2)f1
2f2

2 + 8 f1
2g1

2 + 4h1f1
2g1 + (−p1

2 + h0
2

+ 4h0h1 + 4h1
2)f2

6 + 4 f2
4g1

2 − 12h1f2
4g1 + (−2 p1

2 + 2h0
2 + 2h0h1

+ 5h1
2)f2

4 + 8 f2
2g1

2 − 12h1f2
2g1 +

(
−p1

2 + h0
2 − 2h0h1 + h1

2
)
f2

2

+ 4 g1
2 = 0 (4.45a)

S2 :=
(
4h0

2 + 8h0h1 + 4h1
2 − 4 p2

2
)
f1

4f2
2 + 16 f1

4g1
2 + 16h1f1

4g1 + 4h1
2f1

4

+
(
16
√

3h0h1 + 16
√

3h1
2
)
f1

3f2
3 + 16

√
3f1

3f2g1h1 + 8
√

3f1
3f2h1

2

+
(
8h0

2 + 40h1
2 − 8 p2

2
)
f1

2f2
4 + 32 f1

2f2
2g1

2 + 16h1f1
2f2

2g1 + (8h0
2

+ 4h1
2 − 8 p2

2)f1
2f2

2 + 32 f1
2g1

2 + 16h1f1
2g1 + (16

√
3h0h1

− 16
√

3h1
2)f1f2

5 + 16
√

3f1f2
3g1h1 +

(
16
√

3h0h1 − 16
√

3h1
2
)
f1f2

3

+ 16
√

3f1f2g1h1 +
(
4h0

2 − 8h0h1 + 4h1
2 − 4 p2

2
)
f2

6 + 16 f2
4g1

2

+
(
8h0

2 − 16h0h1 + 8h1
2 − 8 p2

2
)
f2

4 + 32 f2
2g1

2 + (4h0
2 − 8h0h1

+ 4h1
2 − 4 p2

2)f2
2 + 16 g1

2 = 0 (4.45b)

S3 :=
(
4h0

2 + 8h0h1 + 4h1
2 − 4 p3

2
)
f1

4f2
2 + 16 f1

4g1
2 + 16h1f1

4g1 + 4h1
2f1

4

+
(
−16
√

3h0h1 − 16
√

3h1
2
)
f1

3f2
3 − 16

√
3f1

3f2g1h1 − 8
√

3f1
3f2h1

2

+
(
8h0

2 + 40h1
2 − 8 p3

2
)
f1

2f2
4 + 32 f1

2f2
2g1

2 + 16h1f1
2f2

2g1 + (8h0
2

+ 4h1
2 − 8 p3

2)f1
2f2

2 + 32 f1
2g1

2 + 16h1f1
2g1 + (−16

√
3h0h1

+ 16
√

3h1
2)f1f2

5 − 16
√

3f1f2
3g1h1 +

(
−16
√

3h0h1 + 16
√

3h1
2
)
f1f2

3

− 16
√

3f1f2g1h1 +
(
4h0

2 − 8h0h1 + 4h1
2 − 4 p3

2
)
f2

6 + 16 f2
4g1

2
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+
(
8h0

2 − 16h0h1 + 8h1
2 − 8 p3

2
)
f2

4 + 32 f2
2g1

2 + (4h0
2 − 8h0h1

+ 4h1
2 − 4 p3

2)f2
2 + 16 g1

2 = 0 (4.45c)

|| 0rCi − 0rBi ||2 = q2
i i = 1, 2, 3 =⇒

S4 :=
(
4h1

2 − 4h1h2 + h2
2 − q1

2
)
c1

4c2
2 + 4 c1

4d1
2 − 4 c1

4d1h1 + c1
4h1

2

+
(
−8h1

2 + 2h2
2 − 2 q1

2
)
c1

2c2
4 + 8 c1

2c2
2d1

2 + 8 c1
2c2

2d1h1 + (−2h1
2

− 6h1h2 + 2h2
2 − 2 q1

2)c1
2c2

2 + 8 c1
2d1

2 − 4 c1
2d1h1 + (4h1

2 + 4h1h2

+ h2
2 − q1

2)c2
6 + 4 c2

4d1
2 + 12 c2

4d1h1 + (5h1
2 + 2h1h2 + 2h2

2

− 2 q1
2)c2

4 + 8 c2
2d1

2 + 12 c2
2d1h1 +

(
h1

2 − 2h1h2 + h2
2 − q1

2
)
c2

2

+ 4 d1
2 = 0 (4.46a)

S5 :=
(
h1

2 + 2h1h2 + h2
2 − q2

2
)
c1

4c2
2 + 4 c1

4d1
2 − 4 c1

4d1h1 + c1
4h1

2

+
(
4
√

3h1
2 + 4

√
3h1h2

)
c1

3c2
3 − 4

√
3c1

3c2d1h1 + 2
√

3c1
3c2h1

2

+
(
10h1

2 + 2h2
2 − 2 q2

2
)
c1

2c2
4 + 8 c1

2c2
2d1

2 − 4 c1
2c2

2d1h1 + (h1
2

+ 2h2
2 − 2 q2

2)c1
2c2

2 + 8 c1
2d1

2 − 4 c1
2d1h1 + (−4

√
3h1

2

+ 4
√

3h1h2)c1c2
5 − 4

√
3c1c2

3d1h1 +
(
−4
√

3h1
2 + 4

√
3h1h2

)
c1c2

3

− 4
√

3c1c2d1h1 +
(
h1

2 − 2h1h2 + h2
2 − q2

2
)
c2

6 + 4 c2
4d1

2 + (2h1
2

− 4h1h2 + 2h2
2 − 2 q2

2)c2
4 + 8 c2

2d1
2 +

(
h1

2 − 2h1h2 + h2
2 − q2

2
)
c2

2

+ 4 d1
2 = 0 (4.46b)

S6 :=
(
−h1

2 − 2h1h2 − h2
2 + q3

2
)
c1

4c2
2 − 4 c1

4d1
2 + 4 c1

4d1h1 − c1
4h1

2

+
(
4
√

3h1
2 + 4

√
3h1h2

)
c1

3c2
3 − 4

√
3c1

3c2d1h1 + 2
√

3c1
3c2h1

2

+
(
−10h1

2 − 2h2
2 + 2 q3

2
)
c1

2c2
4 − 8 c1

2c2
2d1

2 + 4 c1
2c2

2d1h1 + (−h1
2

− 2h2
2 + 2 q3

2)c1
2c2

2 − 8 c1
2d1

2 + 4 c1
2d1h1 + (−4

√
3h1

2

+ 4
√

3h1h2)c1c2
5 − 4

√
3c1c2

3d1h1 +
(
−4
√

3h1
2 + 4

√
3h1h2

)
c1c2

3

− 4
√

3c1c2d1h1 +
(
−h1

2 + 2h1h2 − h2
2 + q3

2
)
c2

6 − 4 c2
4d1

2 + (−2h1
2

+ 4h1h2 − 2h2
2 + 2 q3

2)c2
4 − 8 c2

2d1
2 +

(
−h1

2 + 2h1h2 − h2
2 + q3

2
)
c2

2

− 4 d1
2 = 0 (4.46c)

By substituting the prismatic joint lengths pi and qi, Eqs. (4.45a) to (4.46c) can be solved for
the parameters f1, f2, g1, c1, c2 and d1. Since each module can have up to eight direct kinematics
solutions [Sch+14; Nay+17b] in each operation mode, the 3-RPS-3-SPR S-PM can have up to
64 solutions for its direct kinematics problem in each case of Eq. (4.42). The transformation
matrix between the fixed frame F0 and the moving platform frame F2 is established as T in
Sec. 4.2. By expressing this matrix in dual quaternion form or mapping it to a point in P7

leads to the representation of the S-PM at hand in terms of the orientation Study parameters
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xi, i = 0, 1, 2, 3 as follows: 
x0
x1
x2
x3

 =


c1f1 + c2f2 − 1
−c1 − f1
−c2 − f2
c1f2 − c2f1

 (4.47)

The expressions for the translational Study parameters yi, i = 0, 1, 2, 3 as functions of f1, f2, g1, c1, c2
and d1 are shown in the Appendix of [NCW18c]. Note that every term in the right-hand side of
Eq. (4.47) is divided by c1f1 + c2f2 − 1 6= 0. The case c1f1 + c2f2 − 1 = 0 is a particular singu-
larity condition identified as the case vi. a. in Table 4.1. It is easy to verify from Eq. (4.47) and
the expressions of yi that the Study parameters xi, yi, i = 0, 1, 2, 3 satisfy the Study’s quadric
equation:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (4.48)

The Plücker coordinates (p01, p02, p03, p23, p31, p12) of the corresponding Finite Screw Axis (FSA)
are given by [Wei35]

p01 = (−x2
1 − x2

2 − x2
3)x1, p23 = x0y0x1 − (−x2

1 − x2
2 − x2

3)y1

p02 = (−x2
1 − x2

2 − x2
3)x2, p31 = x0y0x2 − (−x2

1 − x2
2 − x2

3)y2

p03 = (−x2
1 − x2

2 − x2
3)x3, p12 = x0y0x3 − (−x2

1 − x2
2 − x2

3)y3

(4.49)

The following conclusions are drawn from Eqs. (4.47) and (4.49):
— x0 = 0 implies that the transformation is a finite screw motion [Sch+14] with an angle of

180◦, also called as a π screw by Study. It corresponds to the singularity condition vi.a.
in Tab. 4.1.

— x1 = x2 = 0 makes p01 = p02 = 0, implying that the direction of the FSA is vertical. It
corresponds to the singularity condition iv. in Tab. 4.1 where the platform and the base
are parallel to each other.

— x3 = 0 makes p03 = 0, implying that the FSA is parallel to the x0y0 plane. In this case,
c1f2 = c2f1. If c1 = 0, then it corresponds to the singular configuration i. in Tab. 4.1.

In fact, the direct kinematics problem is solved by first calculating the parameters f1, f2, g1, c1, c2, d1
and then finding the Study parameters xi, yi, i = 0, 1, 2, 3 of the whole series-parallel manipula-
tor. To derive six equations in input prismatic joint lengths pj , qj , j = 1, 2, 3 and output Study
parameters xi, yi, i = 0, 1, 2, 3 is algebraically cumbersome and is still an open problem.

4.5 Inverse Kinematics Model (IKM)

The inverse kinematics problem of the manipulator under study aims at finding the prismatic
joint lengths as functions of the moving platform pose. Given the Study parameters, xi, yi,
i = 0, 1, 2, 3 representing the transformation between the moving platform and the fixed base,
the prismatic joint lengths pj , qj , j = 1, 2, 3 must be determined. In other words, given points
Ci and Ai, point Bi, i = 1, 2, 3 (refer Fig. 4.1) must be determined.

Let the given transformation matrix between the fixed frame F0 and the moving platform
frame F2 be M. Thus, the coordinates of point Ci expressed in F2 as shown in Eq. (4.13) can
be represented in F0 as 0rCi = M 2rCi . Let the homogeneous coordinates of point Bi expressed
in coordinate frame F0 be 0rBi = [1, Bxi, Byi, Bzi]. The homogeneous coordinates of planes αi
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and βi shown in Fig. 4.1 are:

αi : [−rTAi
ui, uTi ]

βi : [−rTCi
vi, vTi ]

where all the vectors are expressed in frame F0. To determine the points Bi, the constraints
to be respected are: point Bi must lie in the plane αi and βi simultaneously and the distance
between points Bi and Bj , i 6= j = 1, 2, 3 must be equal to the side length of the coupler
triangular platform,

√
3h1, h1 being the circum-radius. Three constraints in each leg lead to a

total of nine algebraic constraint equations:

PointBi belongs to plane αi:
F1 := By1 = 0 (4.50)
F2 := −

√
3Bx2 − By2 (4.51)

F3 :=
√

3Bx3 − By3 (4.52)
PointBi belongs to plane βi:

F4 := (−2x0x3 + 2x1x2) Bx1 +
(
x0

2 − x1
2 + x2

2 − x3
2
)

By1 + (2x0x1+

2x2x3)Bz1 + 2x0y2 + 2x1y3 − 2x2y0 − 2x3y1 = 0 (4.53)

F5 :=
(
−
√

3x0
2 −
√

3x1
2 +
√

3x2
2 +
√

3x3
2 + 2x0x3 − 2x1x2

)
Bx2 + (−2

√
3x0x3

− 2
√

3x1x2 − x0
2 + x1

2 − x2
2 + x3

2)By2 + (2
√

3x0x2 − 2
√

3x1x3 − 2x0x1

− 2x2x3)Bz2 − 2
√

3x0y1 + 2
√

3x1y0 + 2
√

3x2y3 − 2
√

3x3y2 − 2x0y2 − 2x1y3

+ 2x2y0 + 2x3y1 = 0 (4.54)

F6 :=
(√

3x0
2 +
√

3x1
2 −
√

3x2
2 −
√

3x3
2 + 2x0x3 − 2x1x2

)
Bx3 + (2

√
3x0x3

+ 2
√

3x1x2 − x0
2 + x1

2 − x2
2 + x3

2)By3 + (−2
√

3x0x2 + 2
√

3x1x3 − 2x0x1

− 2x2x3)Bz3 + 2
√

3x0y1 − 2
√

3x1y0 − 2
√

3x2y3 + 2
√

3x3y2 − 2x0y2 − 2x1y3

+ 2x2y0 + 2x3y1 (4.55)
||rBi − rBj ||2 = 3h2

1 i 6= j = 1, 2, 3 =⇒
F7 := (Bx1 − Bx2)2 + (By1 − By2)2 + (Bz1 − Bz2)2 − 3h1

2 = 0 (4.56)
F8 := (Bx1 − Bx3)2 + (By1 − By3)2 + (Bz1 − Bz3)2 − 3h1

2 = 0 (4.57)
F9 := (Bx2 − Bx3)2 + (By2 − By3)2 + (Bz2 − Bz3)2 − 3h1

2 = 0 (4.58)

Fi, i = 1, ..., 9 can be solved for the nine parameters Bxj , Byj and Bzj , j = 1, 2, 3 to further
obtain the prismatic joint lengths.
After substituting the Study parameters and the design parameters, a Groebner basis of the
constraint polynomials can be obtained over the ring C[h0, h1, h2] as a function of Bxj , Byj
and Bzj , j = 1, 2, 3. A graded reverse lexicographic ordering of these variables results in a
univariate polynomial of degree eight in any variable Bxj , Byj or Bzj . It shows that the inverse
kinematics problem of the S-PM at hand has a maximum number of eight solutions. This is not
surprising because the problem can be considered as placing three points Bi on three skew lines
Li, i = 1, 2, 3, where Li is the line of intersection of planes αi and βi shown in Fig. 4.1. This
is a classical geometrical problem and it has been proven [ZMG09] that the maximum number
of solutions is indeed eight with a minimal octic univariate polynomial. The interesting feature
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of the inverse kinematics of the 3-RPS-3-SPR S-PM is that the univariate polynomial factors
into four quadratic polynomials. Further examination reveals that the four factors belong to
four different combinations of the operation modes of each module like the four cases shown in
Eq. (4.42). Since the transition between two operation modes is a constraint singularity, one
of the singularities separating the IKM solutions is a constraint singularity [Sch+14] in each
module.

The IKM is solved for an example with Study parameters: (x0 : x1 : x2 : x3 : y0 : y1 : y2 :
y3) = (2.8215 : −1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 : 1.6012 : −3.3256). The design
parameters are chosen to be h0 = 2, h1 = 1, h2 = 2. Eight real solutions to IKM are found as
shown in Table 4.2. The corresponding configurations of the S-PM are displayed in Fig. 4.8.

IKM
solution Bx1 By1 Bz1 Bx2 By2 Bz2 Bx3 By3 Bz3

1 1.190 0.0 1.095 0.922 -1.597 1.710 -0.398 -0.689 1.051
2 -0.385 0.0 2.289 -0.049 0.084 3.986 -0.773 -1.339 3.317
3 - 0.867 0.0 2.650 0.562 - 0.972 2.550 - 0.412 - 0.712 1.140
4 - 1.500 0.0 3.130 0.169 - 0.293 3.470 - 0.564 - 0.976 2.060
5 0.893 0.0 1.320 0.991 - 1.710 1.540 - 0.517 - 0.895 1.780
6 - 1.080 0.0 2.810 0.461 - 0.797 2.790 - 0.841 - 1.450 3.720
7 1.210 0.0 1.080 0.724 - 1.250 2.170 - 0.384 - 0.665 0.975
8 - 1.600 0.0 3.210 - 0.032 0.055 3.940 - 0.845 - 1.460 3.750

Table 4.2 – Solutions to inverse kinematics of the 3-RPS-3-SPR S-PM when h0 = 2, h1 = 1, h2 = 2
and (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) = (2.822 : −1.291 : −0.335 : 1.243 : 2.184 : 1.154 : 1.601 :
−3.326).

Moreover, the operation mode (OM) of each module is mentioned by recalling the cases from
Eq. (4.42):

— Case a. (IKM solutions 1 and 2 in Table 4.2) c3 = f3 = 0 =⇒ 3-RPSOM1 − 3-SPROM1
— Case b. (IKM solutions 3 and 4 in Table 4.2) c0 = f0 = 0 =⇒ 3-RPSOM2 − 3-SPROM2
— Case c. (IKM solutions 5 and 6 in Table 4.2) c0 = f3 = 0 =⇒ 3-RPSOM2 − 3-SPROM1
— Case d. (IKM solutions 7 and 8 in Table 4.2) c3 = f0 = 0 =⇒ 3-RPSOM1 − 3-SPROM2
There are two inverse kinematic solutions in each of these cases. How these two solutions are

separated is still an open issue and is the subject of future work. Figure 4.9 presents the eight
solutions to the inverse kinematics problem of the manipulator as eight possibilities to locate
the three points, Bi on three skew lines Li : αi ∧ βi, i = 1, 2, 3.

4.6 Conclusions

Although the S-PM under study might never see the light of an industrial application, it
poses many interesting theoretical problems to be solved especially due to the coupled dof of its
constituent modules, giving rise to parasitic motions. Moreover, the singularity analysis of this
kind of S-PMs is generally ignored in the literature. Therefore, the focus of this chapter was on
the determination of its mobility and serial singularities, the latter using an approach that was
centered only on PMs.

Study parametrization of individual modules of the 3-RPS-3-SPR Series-Parallel Manipulator
(S-PM) was used to determine six parameters that characterize the manipulator. The kinematic
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Figure 4.8 – Eight inverse kinematic solutions for the 3-RPS-3-SPR S-PM when h0 = 2, h1 =
1, h2 = 2 and (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) = (2.8215 : −1.2912 : −0.3348 : 1.2434 : 2.1837 :
1.1542 : 1.6012 : −3.3256).
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Figure 4.9 – Eight solutions to IKM as locating 3 points on 3 lines problem
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Jacobian matrix was derived and can be used to numerically determine whether a manipulator
configuration is singular or not. Moreover, the serial singularities that arise due to the stacking
of the two parallel modules were enumerated by mapping these singularities to the degeneracy of
the characteristic tetrahedron of the S-PM. Both geometric conditions and algebraic expressions
for the serial singularities were established and listed in Table 4.1. The Direct Kinematics Model
(DKM) of the 3-RPS-3-SPR S-PM was solved to find out that the maximum number of solutions
to the DKM was the product of the maximum number of solutions to the DKM of each module.
When each module is restricted to lie in one of the operation modes, the maximum number of
assembly modes is up to 64. Furthermore, the Inverse Kinematics Model (IKM) was solved to
find out that the univariate polynomial splits into four factors based on the operation mode in
which each module lies. The maximum number of solutions to the IKM was found to be eight
and an example was shown to depict those eight solutions.



Chapter 5

Synthesis of compliant mechanisms
based on constraint singularities of
parallel manipulators

In the context of this doctoral thesis, synthesis through rigid-body displacement is advanta-
geous due to the extensive choice of existing rigid-body mechanisms and their modeling tools.
Parallel or closed-loop rigid-body architectures gain an upper hand here as their intrinsic prop-
erties favor the characteristics of compliant mechanisms like compactness, symmetry to reduce
parasitic motions, low stiffness along the desired degrees of freedom (DOF) and high stiffness
in other directions. Moreover, compliant mechanisms usually work around a given position for
small range of motions and hence they can be designed by considering existing parallel ma-
nipulators in parallel singular configurations. Rubbert et al. used an actuation singularity for
type-synthesis of a compliant medical device [Rub+14b; Rub+14a].
Another interesting kind of parallel singularity for a parallel manipulator that does not depend
on the choice of actuation is a constraint singularity [ZBG02a]. It divides the workspace of
a parallel manipulator into different operation modes resulting in a reconfigurable mechanism.
Algebraic geometry tools have proved to be efficient in performing global analysis of parallel ma-
nipulators and recognizing their operation modes leading to mobility-reconfiguration [Hus+07;
Nur+16; He+16]. Though there are abundant reconfigurable rigid-body mechanisms in the lit-
erature, the study of reconfigurable compliant mechanisms is limited. Hao studied the mobility
and structure reconfiguration of compliant mechanisms [Hao16] while Hao and Li introduced a
position-space-based structure reconfiguration (PSR) approach to the reconfiguration of com-
pliant mechanisms and to minimize parasitic motions [HLK16; LH15].
In this chapter, a planar equilateral four-bar linkage is considered at a constraint singularity con-
figuration to synthesize a reconfigurable compliant four-bar mechanism [Nay+17a]. A reconfig-
urable compliant gripper is further designed that can exhibit multiple grasping modes [Hao+18].

5.1 Constraint singularities of an equilateral four-bar mecha-
nism

The operation modes of an equilateral four-bar linkage were determined in Chapter 2 and are
shown in Figs. 2.3, 2.4 and 2.5. These operation modes are separated by two similar constraint
singularities shown in Fig. 5.1.
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Figure 5.1 – Constraint singularities of the four-bar mechanism.

They can be algebraically represented by x1 = x3 = 4x2
2 − l2x2

4 = 0. From Eqn. (2.4), these
singularities occur when b = 0, φ = 0 and a = ±l. These two configurations correspond to the
two points Q1 and Q2 in the image space shown in Fig. 2.2. At a constraint singularity, any
mechanism gains one or more degrees of freedom. Therefore, in case of the four-bar linkage
with equal link lengths, the DOF at a constraint singularity is equal 2. In this configuration,
points A, B, C and D are collinear and the corresponding motion type is a translational motion
along the normal to the line LABCD passing through the four points A, B, C and D combined
with a rotation about an axis directed along z0 and passing through LABCD. Eventually, it is
noteworthy that two actuators are required in order to control the end-effector in those constraint
singularities in order to manage the operation mode changing.

5.2 Design and analysis of a compliant four-bar mechanism
In this section, two compliant four-bar mechanisms, compliant four-bar mechanism-1 and

compliant four-bar mechanism-2, are proposed based on the operation modes and constraint
singularities of the four-bar rigid-body mechanism shown in Fig. 5.1b. Moreover, the desired
motion characteristics of the compliant four-bar mechanism-2 are verified by nonlinear FEA
simulations.

Based on the constraint singularity configuration of the four-bar rigid-body mechanism rep-
resented in Fig. 5.1, a compliant four-bar mechanism can be designed through kinematically
replacing the rigid rotational joints with compliant rotational joints [HLK16]. Each of the com-
pliant rotational joints can be any type compliant rotational joint such as cross-spring rotational
joint, notch rotational joint and cartwheel rotational joint [How01]. As shown in Fig. 5.2, a com-
pliant four-bar mechanism, termed as the compliant four-bar mechanism-1, has been designed
by replacing the four rigid rotational joints with three cross-spring rotational joints (RJ-0, RJ-1
and RJ-3) and one leaf-type isosceles-trapezoidal rotational joint that provides remote rotation
centre (RJ-2).

For small motion ranges, the compliant four-bar mechanism-1 has the same operation modes
as the four-bar rigid-body mechanism shown in Fig. 5.1, via controlling the rotations of the Bar-
1 and Bar-3. Moreover, both the compliant four-bar mechanism-1 and the four-bar rigid-body
mechanism are plane motion mechanisms. Additionally, the three cross-spring rotational joints
in the compliant four-bar mechanism-1 can be replaced by other types of rotational joints, which
can form different compliant four-bar mechanisms. In this paper, cross-spring rotational joints
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Figure 5.2 – Compliant four-bar mechanism-1.
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Figure 5.3 – CAD model and prototype of the compliant four-bar mechanism-2.
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are employed due to their large motion ranges while small rotation centre shifts. However, the
leaf-type isosceles-trapezoidal rotational joint in the compliant four-bar mechanism-1 performs
larger rotation centre shifts compared with the cross-spring rotational joint. Therefore, the
compliant four-bar mechanism-1 can be improved by replacing the leaf-type isosceles-trapezoidal
rotational joint with a cross-spring rotational joint. Such an improved design can be seen in
Fig. 5.3, which is termed as the compliant four-bar mechanism-2. Note that, in Fig. 5.3, the
RJ-0 and RJ-2, are traditional cross-spring rotational joints, while both the RJ-1 and the RJ-3
are double cross-spring joints introduced in this paper. Each of the rotational joints, RJ-1 and
RJ-3, consists of two traditional cross-spring rotational joints in series. We specify that the
Bar-0 is fixed to the ground and the Bar-2 is the output motion stage, also named coupler.
The main body including rigid bars and compliant joints of the proposed compliant four-bar
mechanism-2 can be fabricated monolithically using a CNC milling machine. It can also be 3D
printed, and a 3D-printed prototype is shown in Fig. 5.3. The bars of the prototype have many
small through holes, which can reduce material consumption and improve dynamic performance.
Additionally, two cross-shaped parts are added to the actuated bars, which are used to actuate
the mechanism by hands. The operation modes of the compliant four-bar mechanism-2 as output
stage are analyzed in the following sections.

5.2.1 Operation modes of the compliant four-bar mechanism-2

L
R
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y

z

(a) Operation mode I : Rotation in the XY-
plane about the Axis-L.

RL

x

y

z

(b) Operation mode II : Rotation in the XY-
plane about the Axis-R.

RL

x

y

z

(c) Operation mode III : Rotation in the XY-
plane about other axes except the Axis-L
and Axis-R.

RL

x

y

z

(d) Operation mode IV : Pure translations
in the XY-plane along the X and Y axes.

Figure 5.4 – Operation modes of the compliant four-bar mechanism-2.

Like the four-bar rigid-body mechanism shown in Fig. 5.1b, the output motion stage (Bar 2)
of the compliant four-bar mechanism-2 has multiple operation modes under two rotational actu-
ations (controlled by input displacements α and β), as shown in Fig. 5.3. However, the compliant
four-bar mechanism-2 has more operation modes than the rigid counterpart. In order to sim-
plify the analysis, let α and β be non-negative. A coordinate system is defined in Fig. 5.3,
which is located on Bar 2. Based on this assumption, operation modes of the compliant four-bar
mechanism-2 are listed below :
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1. Operation mode I : Rotation in the XY-plane about the Axis-L, when α > 0 and β = 0,
as shown in Fig. 5.4a,

2. Operation mode II : Rotation in the XY-plane about the Axis-R when α = 0 and β > 0,
as shown in Fig. 5.4b,

3. Operation mode III : Rotation in the XY-plane about other axes except the Axis-L and
Axis-R, when α 6= β > 0, as shown in Fig. 5.4c, and

4. Operation mode IV : Pure translations in the XY-plane along the X- and Y-axes, when
α = β > 0, as shown in Fig. 5.4d.

These operation modes are also highlighted through the printed prototype in Fig. 5.4. The
primary motions of output motion stage (Bar-2) are the rotation in the XY plane and the trans-
lations along the X-and Y-axes; while the rotations in the XZ and YZ planes and translational
motion along the Z-axis are the parasitic motions that are not the interest of this paper. More-
over, the rotation angle in the XY-plane and the Y-axis translational motion can be estimated
analytically using Eqs. (5.1) and (5.2). However, the X-axis translational motion cannot be ac-
curately estimated in such a simple way, because it is heavily affected by the shift of the rotation
centres of the two cross-spring rotational joints [ZBY12]. The X-axis translational motion will
be analytically studied in our future work, but will be captured by non-linear FEA.

According to the definition of the location and orientation of the Bar-2 (link BC) with respect
to the fixed frame, we can have the primary displacement of the Bar-2 as:

φ = α− β (5.1)

b = 1
2(LB + LR)(sinα+ sin β) (5.2)

where φ is the rotation about the Z-axis and b is the translational displacement along the Y-axis.
LB and LR are the geometrical dimensions of the reconfigurable mechanism at hand, as defined
in Fig. 5.3.

Using the assumption of small angles, the displacement of the centre of Bar-2 along the
X-axis is normally in the second order of magnitude of the rotational angles, which is trivial and
can be neglected in this paper. Note that this trivial displacement is also affected by the centre
drift of the compliant rotational joints [ZBY12].

A figure here.
The rotational displacement of each compliant rotational joint is expressed below based on

the two input rotational angles:

RJ-0 : θ0 = α (5.3a)
RJ-1 : θ1 = α (5.3b)
RJ-2 : θ2 = 2β − α (5.3c)
RJ-3 : θ0 = β (5.3d)

5.2.2 Simulations of the operation modes

In order to verify the operation modes of the 4R compliant mechanism-2, nonlinear FEA
software is employed to simulate the motions of the compliant four-bar mechanism-2. For the
FEA simulations, let LB be 100 mm, LR and LH be 50 mm, the beam thickness be 1 mm,
the beam width be 23 mm, the Poisson’s ratio be 0.33, and the Young’s modulus be 6.9 GPa.
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Commercial software, COMSOL MULTIPHYSICS, is selected for the nonlinear FEA simula-
tions, using the 10-node tetrahedral element and finer meshing technology (minimum element
size 0.2 mm, curvature factor 0.4, and resolution of narrow regions 0.7). Note that the transla-
tional displacements of the Bar-2 along the X and Y axes are measured at the centre point of
the top surface of the Bar-2 (termed as the interest point), as shown in Fig. 5.3. Results of the
simulations are plotted in Figs. 5.5 to 5.8, and the following conclusions are drawn :

1. The maximum difference between the FEA results and the analytical results in terms of
the Y-axis translation of the interest point (the centre of the top surface of the Bar-2) is
tiny, which is less than 0.5% as shown in Figs. 5.5a, 5.6a, 5.7a and 5.8a.

2. The FEA results of the rotation in the XY-plane match the analytical results very well.
The difference is less than 0.8× 10−3 rad (0.5% of the maximum rotation angle), which is
shown in Figs. 5.5b, 5.6b and 5.7b.

3. It can be seen from Figs. 5.5c, 5.6c, 5.7c, 5.8b and 5.8c that the parasitic motions are
much smaller compared with the primary motions, for all the operation modes.

Overall, for all the operation modes of the compliant four-bar mechanism-2, the obtained ana-
lytical kinematic models are accurate enough to predict the rotation angle in the XY-plane and
the translation displacement along the Y-axis, under specific input actuations. Additionally, the
parasitic motions are much smaller than the primary motions, which ensures that the tiny effect
of the parasitic motions on the primary motions can be ignored in an acceptable way. Therefore,
it has been proved that the compliant four-bar mechanism-2 can be operated in the different
operation modes with high accuracy.

5.3 Application as a compliant gripper

The reconfigurable compliant four-bar mechanism-1 shown in Fig. 5.2 is used to design a
reconfigurable gripper as shown in Fig. 5.9.

It can exhibit four grasping modes based on the actuation of the linear actuator 1 (±α)
or 2 (±β) as displayed in Fig. 5.11. The first three grasping modes are angular, where the
jaws of the gripper rotate about an instantaneous centre of rotation which is different for each
grasping mode. The gripper displays an angular grasping mode when α 6= 0, β = 0 as shown in
Fig. 5.11a, α = 0, β 6= 0 as shown in Fig. 5.11b or when α < 0, β < 0 as shown in the right
Fig. 5.11c. The parallel grasping mode in which the jaws are parallel to one another is achieved
when α > 0, β < 0 as shown in the left Fig. 5.11c. Thus, the reconfigurable compliant gripper at
hand unveils an ability to grasp a plethora of shapes unlike other compliant grippers in literature
that exhibit only one of these modes of grasping [HH16; HK12]. Potential applications include
micromanipulation and grasping lightweight and vulnerable materials like glass, resins, porous
composites, etc. in difficult and dangerous environments. In addition, it can be used for medical
applications to grasp and manipulate living tissues during surgical operations or as a gripper
mounted on a parallel manipulator dedicated to fast and accurate pick-and-place operations.
Figure 5.10 shows the prototype of the reconfigurable compliant gripper.

5.3.1 Gripper design 2

In this section, a multi-operation mode compliant gripper using the compliant four-bar mech-
anism presented in Fig. 5.3 is proposed as shown in Fig. 5.12. Instead of using the cross-spring
joints in the compliant four-bar mechanism, the rectangular short beams (with rotation axis
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(a) Translations along the X and Y axes.

(b) Rotation about the Axis-L.

(c) parasitic motions (rotations about the X- and Y-axes and translation
along the Z-axis).

Figure 5.5 – FEA results for operation mode-I.
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(a) Translations along the X and Y axes.

(b) Rotation about the Axis-L.

(c) parasitic motions (rotations about the X- and Y-axes and translation
along the Z-axis).

Figure 5.6 – FEA results for operation mode-II.
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(a) Translations along the X and Y axes.

(b) Rotation about the Axis-L.

(c) parasitic motions (rotations about the X- and Y-axes and translation
along the Z-axis).

Figure 5.7 – FEA results for operation mode-III.
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(a) Translations along the X and Y axes.

(b) Rotation about the Axis-L.

(c) parasitic motions (rotations about the X- and Y-axes and translation
along the Z-axis).

Figure 5.8 – FEA results for operation mode-IV.
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Figure 5.9 – A novel reconfigurable compli-
ant gripper.

Figure 5.10 – Prototype of the reconfig-
urable compliant gripper.
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(a) Angular grasping mode 1 : α 6= 0, β = 0.

(b) Angular grasping mode 2 : α = 0, β 6= 0.

(c) Left : parallel grasping mode (α > 0, β < 0); Right : angular grasping
mode 3 (α < 0, β < 0).

Figure 5.11 – Four grasping modes of the compliant gripper.



Application as a compliant gripper 161

(a) Two gripper jaws in layers. (b) A multi-operation mode gripper 3D view I.

(c) A multi-operation mode gripper
side view.

(d) A multi-operation mode gripper 3D view II (in defor-
mation).

Figure 5.12 – 3D views of the synthesized multi-operation mode compliant gripper-2
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approximately in the centre) are adopted as the rotational joints as shown in Fig. 5.12a. The
compliant gripper is a two-layer structure with two linear actuators to control the two rotational
displacements (α and β) in each jaw. The top layer actuator is for actuating β while the bottom
layer is for α.

Figure 5.13 – Multi mode compliant gripper consisting of compliant slider-crank mechanisms.

The design of the compliant gripper is further detailed in Fig. 7, with all dominant geo-
metrical parameters labelled except the identical out-of-plane thickness, u of each layer. A pair
of compliant slider-crank mechanism are added in each layer (sharing a revolute joint with the
compliant four-bar mechanism), to convert one linear actuation to two simultaneous rotational
actuations in two jaws. In both layers, compliant slider-crank mechanisms are identical. All
short beams are also identical in the gripper. Figure 5.14 shows the 3D-printed prototype of the
gripper with its control scheme.

5.3.2 Kinetostatic model

Under the assumption of small rotations, the relationship between the linear actuation and
the rotational actuation in the slider-crank mechanism (the left jaw is taken for studying) can
be modelled as follows:

−ab = rα or α = −ab
r

(5.4)

−at = rβ or β = −at
r

(5.5)

where at and ab represent the displacements of the top and bottom actuators along the X-axis,
respectively. A minus sign means that the positive linear actuation causes a negative rotational
actuation. Here, r is the lever arm as shown in Fig. 5.13.

The rotational displacement of RJ-4 in the added slider-crank mechanism can be approxi-
mately obtained as follows. The rotational displacement of RJ-5 in each layer can be ignored



Application as a compliant gripper 163

Figure 5.14 – Multi mode compliant gripper prototype

due to the specific configuration of the added slider-crank mechanism.
RJ-4 in the top layer:

θ4t = β (5.6)
RJ-4 in the bottom layer:

θ4b = α (5.7)
From equations (5.1), (5.2) and (5.4), the input-output kinematic equations of the compliant

gripper can be obtained as follows:

φ = at − ab
r

(5.8)

b = − l

2r (at + ab) (5.9)

Thus, the amplification ratio is a function of design parameter r denoted in Fig. 5.13. Using
the above kinematic equations, the kinetostatic models of the compliant gripper can be derived
from the principle of virtual work [How01], with at and ab being the generalized coordinates.

Ftdat + Fbdab = ∂U

∂at
dat + ∂U

∂ab
dab (5.10)

where Ft and Fb represent the actuation forces of the top and bottom linear actuators along
the X-axis, corresponding to at and ab, respectively. From Eqs. (5.3), (5.6) and (5.7), the total
elastic potential energy of the compliant gripper, U is calculated as follows:

U
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where k0, k1, k2, k3 correspond to the rotational stiffnesses of RJ-0, RJ-1, RJ-2, RJ-3 in the
compliant four-bar mechanism, respectively. k4 is the rotational stiffness of the RJ-4 in each
layer. kp is the translational stiffness of the prismatic joint in each layer.

Note that the reaction forces from gripping objects [HH16] can be included in Eq. (5.10),
which, however, is not considered in this paper.

Combining the results of Eqs. (5.10) and (5.11) leads to:

Ft
2 = ∂U/2

∂at
= k1

(
at
r

) 1
r

+ k2

(
ab
r
− 2at

r

)(−2
r

)
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r

) 1
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(
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) 1
r
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=⇒ Ft = at

(2k1
r2 + 8k2
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r2 + 2k4

r2 + 2kp
)
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(−4k2
r2

)
(5.12)

Fb
2 = ∂U/2

∂ab
= k0
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) 1
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(5.13)

The aforementioned equations can determine the required forces for given input displacements,
which can be rearranged in a matrix form:[

Ft
Fb

]
=
[
k11 k12
k21 k22

] [
at
ab

]
(5.14)

where the stiffness coefficients of the system associated with the input forces and input displace-
ments are

k11 = 2k1
r2 + 8k2

r2 + 2k3
r2 + 2k4

r2 + 2kp

k12 = k21 = −4k2
r2

k22 = 2k0
r2 + 2k2

r2 + 2k4
r2 + 2kp

Therefore, the input displacements can be represented with regard to the input forces as:[
at
ab

]
=
[
c11 c12
c21 c22

] [
Ft
Fb

]
=
[
k11 k12
k21 k22

]−1 [
Ft
Fb

]
(5.15)

We can further obtain the following stiffness equations for all compliant joints used in [HH17],
which can be substituted into Eq. (5.15) to solve the load-displacement equations.

k0 = k2 = k4 = EI

l1
= Eut3

12l1

k1 = k3 = k0
2 = EI

2l1
= Eut3

24l1

kp = 24EI
l32

= 2Eut3

l32

(5.16)

where E is the Young’s modulus of the material and I is the second moment of inertia of the
cross-section areas. With the help of Eqs. (5.9), (5.8) and (5.15), we can have the required
output displacements for given input displacements/forces:[

b
φ

]
=
[
− l

2r − l
2r

1
r −1

r

] [
at
ab

]
=
[
− l

2r − l
2r

1
r −1

r

] [
k11 k12
k21 k22

]−1 [
Ft
Fb

]
(5.17)
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5.3.3 Case study

In this section, a case study with assigned parameters as shown in Table is presented to verify
the analytical models in the previous section. The overall nominal dimension of the compliant
gripper is 130 mm× 70 mm. The Young’s modulus of compliant gripper is given by E = 2.4 GPa,
which corresponds to the material of Polycarbonate with Yield Strength of σs > 60 MPa, and
Poisson’s Ratio of ν = 0.38. Finite element analysis (FEA) simulation was carried out to show

l t r h l1 l2 w1 w2 u

25 1 18 25 5 15 24 19 10

Table 5.1 – Geometrical parameters (in mm).

the four operation modes of the compliant gripper (Fig. 5.15). Here, Solidworks 2017, with a
meshing size of 1.0 mm and other settings, in default is used for FEA. Figure 5.16 illustrates
the kinetostatic analysis of the proposed compliant gripper including the comparisons between
the analytical modeling and FEA. It can be observed that linear relations of all figures have
been captured where lines in either model are parallel to each other. The FEA results have the
same changing trends as the analytical models, but deviate from the analytical models in certain
degrees. The discrepancy between the two theoretical models is due to the linear assumption in
the analytical modeling as well as the center drift of rotational joints.

(a) ab = 1 mm,
at = 0 mm.

(b) at = 1 mm,
ab = 0 mm.

(c) at = 1 mm,
ab = 0.5 mm.

(d) at = 1 mm,
ab = 1 mm.

Figure 5.15 – Grasping modes of the compliant gripper.

In Fig. 5.16a, with the increase of ab, the difference between the two models (analytical and
FEA) goes up if at = 0 mm, while the difference between the two models decreases if at = 0.5 mm
and 1 mm. This is because of different line slops of two models. Generally speaking, the larger
at, the larger the deviation of two models, where the maximal difference in Fig. 5.16a is about
20%. In Fig. 5.16b, the line slopes of two models are almost same, meaning that the increase of
ab has no influence of the discrepancy of two models for any value of at. Also, the larger at, the
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larger the deviation of two theoretical models. Figure 5.16c reveals the same conclusion as that
of Fig. 5.16b. Figure 5.16d shows the similar finding to that of Fig. 5.16a, except the larger at,
the smaller the deviation of two models. It is clearly shown that in Figs. 5.16b, 5.16c and 5.16d,
the general discrepancy of the two models is much lower than that in Fig. 5.16a.

(a) Output rotational angle along the Z-axis.

(b) Output displacement along the Y -axis.
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(c) Input force in the top layer.

(d) Input force in the bottom layer.

Figure 5.16 – Analysis and comparison (input displacement non-negative).
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5.4 Conclusions
A novel idea of designing reconfigurable compliant mechanisms inspired by the constraint

singularities of rigid body mechanisms was presented in this chapter [Nay+17a; Hao+18]. A
rhombus planar rigid four-bar mechanism was analyzed to identify its three operation modes and
two constraint singularities separating those modes. The rigid joints were replaced by compliant
joints to obtain two designs of a reconfigurable compliant four-bar mechanism. The second
design was found to be more accurate and to provide less parasitic motions than the first one,
which is verified by its non-linear FEA simulations in different motion modes. Moreover, the
compliant four-bar mechanism was shown to have four operation modes based on the particular
actuation strategy unlike its rigid counterpart. A preliminary design of a compliant gripper
has been designed based on the reconfigurable compliant four-bar mechanism introduced and
studied in this paper.

Additionally, the analytical kinetostatic mode of the multi-mode compliant gripper was de-
rived, which is verified in the case study. It shows that the FEA results comply with the
analytical models with acceptable discrepancy. The proposed multiple mode compliant grip-
per is expected to be applied in extensive applications such as grasping a variety of shapes or
adapting to specific requirements.



Conclusions and future work

Synopsis

The focus of this doctoral thesis was on the kinematic analysis of some lower mobility parallel
manipulators and their derivatives. Geometric constraints were derived with the help of Blaschke
mapping for a planar equilateral four-bar linkage and using Study’s kinematic mapping for other
PMs whose transformation matrices belonged to E3. The geometrical approach and Linear
Implicitization Algorithm were used to derive and compare the constraint equations of the 3-
RUU PM to finally obtain the same variety.

A global kinematic analysis includes a complete characterization of operation modes which
was accomplished using algebraic geometry tools. The equilateral four-bar linkage was found
to have three operation modes. The transition between two of them, known as a constraint
singularity was later used to design a reconfigurable compliant mechanism. It also lead to the
conception of a novel reconfigurable compliant gripper with multiple grasping modes.

Furthermore, the 3-[PP]S and 3-S[PP] PMs were found to have two operation modes. The
PMs belonging to the 3-[PP]S-Y family were compared on the basis of their singularity-free
orientation workspace and parasitic motions, for their different design parameters, operation
modes and actuation schemes. However, in this case, the singularities were determined using
kinematic Jacobian matrices derived by screw theory. A 3-RPS PM, belonging to the same family
is chosen such that the R-joint axes can have any planar orientations and the relations between
its design parameters are established such that it has two operation modes. Subsequently, a 3-
RPS-3-SPR series-parallel manipulator was analyzed to enumerate the singularities arising due
to the serial stacking of two parallel manipulators.

Additionally, a dual reconfigurable 4-rRUU PM was proposed with a novel reconfigurable
revolute joint based on the double-Hooke’s joint. Its operation modes were determined for some
specific orientations of the rR-joint axes. With a goal to build a working prototype of this
mechanism for machining application, Pareto-optimal solutions were generated to obtain the
optimal design parameters to have the smallest size but the largest singularity and collision-free
workspace.

The contributions of this doctoral thesis are epitomized as follows.

Contributions

1. Operation mode analysis of lower-mobility PMs

The operation modes of the following PMs were determined in Chapter 2:
1. Operation mode analysis of an equilateral planar four-bar linkage was done using Blaschke

mapping from E2 to P3. Its three constraint manifolds corresponding to the three operation
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modes were depicted and singular configurations separating them were represented.
2. Operation modes of 3-[PP]S-Y and 3-S[PP]-Y PMs were determined using Study’s kine-

matic mapping from E3 to P7. PMs belonging to these families were found to have two
operation modes.

3. Constraint equations of a 3-RUU PM were derived using geometrical approach and linear
implitization algorithm to verify that they yield the same variety. However, it was possible
to characterize only a translational operation mode.

4. A 4-rRUU dual reconfigurable PM was found to have either a translational operation mode
or Schönflies mode depending on the orientations of the R-joint axes attached to the base.

2. Influence of design parameters on the number of operation modes

In Chapter 2, the influence of architecture on the operation modes of a PM was explored for
the first time for a 3-RPS PM with co-planar R-joint axes. Initially, the relations between the
design parameters were established for the PM to have two operation modes. Those relations
were further physically interpreted to state a theorem with proof that relates the necessary and
sufficient geometric conditions so that the PM at hand can exhibit two operation modes. It was
also shown how a simple change of design can avoid the constraint singularities.

3. Comparison of a family of zero-torsion parallel manipulators

The PMs belonging to the 3-[PP]S-Y family were considered in Chapter 3 with different sizes
of their fixed bases and moving platforms, operation modes and actuation schemes. For their
comparison, a new performance index, known as the Maximum Inscribed Circle Radius (MICR)
was introduced in order to quantify their singularity-free orientation workspaces. To determine
the singularities, the kinematic Jacobian matrices was derived using screw theory which proved to
be efficient compared to the computationally cumbersome partial differentiation of the constraint
equations with respect to Study parameters. Tilt and Torsion angles are used to parametrize the
orientation workspace since they are well-suited for this family of mechanisms. Consequently,
the CAD models of the Pareto optimal designs with the highest MICR and the least parasitic
motions were shown. Moreover, a new complexity index was introduced to favor the operation
mode with fewer internal collisions and the Pareto optimal designs were ranked based on their
complexities.

4. Mobility, kinematics and singularity analysis of a series-parallel manipula-
tor

The 3-RPS-3-SPR S-PM was studied in Chapter 4 by dividing its configuration space into
four parts, thanks to the two operation modes exhibited by each of its constituent lower-mobility
PM modules. The dimension of its constraint variety was calculated to be six proving that the
S-PM has a global mobility of six. Therefore, a new parametrization of the Study’s quadric was
formulated using six parameters, three from each module. Subsequently, screw theory was used
to derive its kinematic serial Jacobian matrix which was shown to be applicable to any S-PM
including the ones with multiple modules. Along with line geometry, its serial singularities were
enumerated by exploiting an existing result for a PM that bijectively maps the wrench singu-
larities to the collapse of its characteristic tetrahedron. Every serial singularity was represented
in Table 4.1 by a geometric condition, algebraic expression, instantaneous dof and an example
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configuration of the S-PM. the instantaneous dof was calculated as the rank of the serial Jaco-
bian matrix and the order of the global twist system. Also, the inverse kinematics problem of
the S-PM under study was solved as locating 3 points on 3 lines problem.

5. Synthesis of reconfigurable compliant mechanisms

A novel idea to synthesize reconfigurable compliant mechanisms based on constraint singu-
larities of PMs was presented in Chapter 5. It was applied on an equilateral planar four-bar
linkage already analyzed in Chapter 2. One of its constraint singular configurations was chosen
and a reconfigurable compliant mechanism was designed using rigid body replacement method.
The designed compliant mechanism was shown to exhibit a translational motion when both of
its actuators were in sync, a rotational motion otherwise. Thereafter, a novel reconfigurable
compliant gripper was designed displaying multiple grasping modes. Kinetostatic modeling of
the gripper was done and the results were found to match the FEA simulation of the gripper.
Moreover, multiple prototypes of the reconfigurable compliant mechanism and the gripper were
built with a goal to physically comprehend their operation and grasping modes.

6. Prototyping of the dual reconfigurable 4-rRUU PM

The kinematic analysis of 4-rRUU PM in Chapter 2 showed that it can exhibit many operation
modes due to its property of dual reconfigurability. In order to manufacture a working prototype
of this PM for machining applications, a Pareto optimization problem was formulated as shown
in Chapter 2 to obtain a design with the biggest singularity- and collision-free workspace and
the smallest size.

Future work

Complete characterization of operation modes

Due to the complexity of the 3-RUU, a complete characterization of operation modes was
not possible and is still an open problem. Similarly, the operation mode analysis of a 4-rRUU
PM for any orientation of the base R-joint axis is left for future work.

Influence of design parameters on operation modes

Influence of design parameters on the number of operation modes was demonstrated for a
3-RPS PM with coplanar R-joint axes in Chapter 2. However, the case of a 3-RPS PM with
non-coplanar revolute joints is still an open problem.

Nonetheless, the proof of Theorem 6 in Chapter 2 indicates that a 3-RPS PM with planar or
non-coplanar joints will have two operation modes only if there exists a constraint singularity
such that the force lines are dependent. This can happen only when they are concurrent and
coplanar which is not possible unless the R-joint axes are all parallel to a fixed plane. By this
reasoning, the following conjecture can be stated:

Conjecture 1. A general 3-RPS parallel manipulator will have two operation modes if and only
if the following geometric conditions are satisfied
i. the revolute joint axes belong to a singular linear complex.
ii. Moving platform triangle is homothetic to the triangle enclosed by the revolute joint axes.
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iii. The three planes normal to the three revolute joint axes, respectively, have a common line
of intersection.

The conjecture answers why the 3-RPS cube PM analyzed in [Nur+14] has only one operation
mode. Moreover, the conjecture is in accordance with all the 3-RPS PMs analyzed in [NG18]
although a rigorous proof of the conjecture is an open problem. It was attempted using the same
approach shown in Chapter 2 in vain due to the complexity of the equations. The approach
used in [RT18] simplifies the algebraic manipulations to obtain an univariate polynomial of the
3-RPS PM with non-coplanar R-joint axes. This approach seems to be the right candidate to
answer the problem at hand.

The same approach in Chapter 2 could be used to examine the influence of design parameters
on the operation modes of other PMs.

Comparison of other PMs based on the approach proposed in Chapter 3

In Chapter 3, the 3-[PP]S-Y family of PMs were compared. Future work can include a
comparison between 3-[PP]S-∆ and 3-[PP]S-cube PMs for different actuation schemes. Fur-
thermore, the comparison can be done while taking into account joint limits and self collisions.
Additionally, MICR, parasitic motions and proposed complexity indices can be used as a basis
of comparison for other lower mobility PMs.

Kinematics and singularity analyses of other S-PMs

The singularity analysis done in Chapter 4 is confined only to the 3-RPS-3-SPR S-PM with
coincident spherical joints in each limb or any other manipulator where one can realize a char-
acteristic tetrahedron.Nonetheless, when the spherical joints are placed apart, the singularity
analysis is similar to that of a Gough-Stewart platform in which case, the S-PM is singular if
the constraint force lines belong to a linear line complex.

A generalized approach to determine the singularities of any S-PM can be done as follows:
The overall transformation matrix of the S-PM can still be derived by

T = T1FT2 (5.18)

where, T1 and T2 are the transformation matrices of the proximal and the distal modules, re-
spectively and F is the fixed transformation matrix between the moving platform of the proximal
module (where three of the spherical joints are located) and the base of the distal module (where
the remaining three spherical joints lie). Study parameters can be extracted from T and they
can be differentiated with respect to the m-parameters describing the motion of the lower mod-
ule and m-parameters corresponding to the upper module of the S-PM to obtain the 8×m+ n
Jacobian matrix. The simultaneous vanishing of the

( 8
m+n

)
minors of this Jacobian matrix gives

the algebraic singularity conditions of the S-PM. This approach was verified for the 3-RPS-3-SPR
S-PM by calculating its tangent space yielding an 8 × 6 Jacobian matrix. There remain only
10 non-zero minors that yield all the algebraic singularity conditions listed in Table 4.1. How-
ever, to obtain the correct instantaneous dof, it is important not to dismiss the parametrization
singularities.

On the other hand, the future work can deal with writing the constraint equations of the
whole S-PM only as a function of input and output parameters in order to solve the DKM directly
instead of splitting it into two stages as shown in Chapter 4 of this doctoral thesis. Moreover,
the workspace of the S-PM can be plotted and the singularities separating the solutions to IKM
can be explored.
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Synthesis of reconfigurable compliant mechanisms based on constraint singu-
larities of PMs

Despite the work mentioned in Chapter 5, there are other aspects to be considered in the
future, including but not limited to the following:

1. Extending the proposed approach to synthesize reconfigurable compliant mechanisms based
on the constraint singularities of spatial rigid body mechanisms.

2. An analytical nonlinear model for a more accurate kinetostatic modelling of the compliant
gripper proposed herein.

3. Design optimization of the compliant gripper and prototyping based on a specific applica-
tion.

4. Physical testing to verify the established analytical model.
5. Work on the control strategies for the compliant gripper.
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Titre : L’analyse cinématique de manipulateurs parallèles et reconfigurables. 

Mots clés : manipulateurs parallèles, manipulateurs série-parallèle, mécanismes conformes, 
transformation de Study, singularités. 

Résumé : Un manipulateur parallèle à mobilité 
réduite a moins de six degrés de liberté et 
présente généralement différents types de 
mouvement connus sous le nom de modes 
d'opération. 
Ainsi, ce type de manipulateur peut être 

classifié comme reconfigurable selon sa 
capacité de transition entre les différents modes 
d'opération. Cette thèse de doctorat s'articule 
principalement autour de l'analyse cinématique 
de manipulateurs parallèles à mobilité réduite, 
de manipulateurs parallèles en série obtenus à 
partir de leur empilement en série et de 
mécanismes conformes conçus à partir de leurs 
configurations singulières à contraintes.  
 

La transformation cinématique de Study est 
utilisée pour dériver les équations algébriques 
de contraintes. Ensuite, elles sont interprétées 
à l'aide d'outils de géométrie algébrique pour 
effectuer des analyses de mobilité, de 
cinématique et de singularité. Les techniques 
de ‘‘screw theory’’ et ‘‘line geometry’’ sont 
utilisées à côté de l'approche algébrique au 
besoin.  

 

Title : Kinematic analysis of reconfigurable parallel manipulators. 

Keywords : parallel manipulators, series-parallel manipulators, compliant mechanisms, Study's 
kinematic mapping, singularities. 

Abstract : A lower mobility parallel manipulator 
has less than six degrees of freedom and 
usually exhibits different motion types known as 
operation modes.  
Thus, it can be classified as reconfigurable on 

account of its ability to transition between 
different operation modes. This doctoral thesis 
mainly revolves around the kinematic analysis of 
some lower-mobility parallel manipulators, 
series-parallel manipulators obtained from their 
serial stacking and compliant mechanisms 
designed using their constraint singular 
configurations. 

Study's kinematic mapping is used to derive 
the algebraic constraint equations. They are 
further interpreted using algebraic geometry 
tools to perform mobility, kinematic and 
singularity analysis. Screw theory and line 
geometry techniques are used adjacent to 
algebraic approach wherever necessary. 
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