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Abstract:

The study of fractal properties in biological time series is of increasing interest. Nevertheless,
the literature highlights an ambiguity on the causal explanation of the presence of these time
series which do not make it possible to distinguish between the effective adaptation made by a
subject or his overall adaptability capacities. The aim of this dissertation is to decorrelate
these two notions, notably by linking the behavioral level to the cerebral level. Our first study
allowed to highlight that the mono-fractal properties could reflect the adaptability of the
subjects whereas the multifractal properties would be related to the effective adaptation
carried out during the task. The second study showed a correlation between the multifractal
properties and the number of brain networks implemented, reflecting the effective adaptation
to the experimental constraints imposed. The results of this work have allowed us to better
understand the functional meaning of fractal analyzes in terms of effective adaptation and

adaptability.

Key words: Adaptation, tapping, fractals, cerebral networks, functional near infrared

spectroscopy, dynamical system, connectivity.

Résumé:

L’¢tude des propriétés fractales des séries biologiques fait I’objet d’un intérét croissant.
Néanmoins, la littérature met en évidence une ambiguité quant a 1’explication causale de la
présence de ces séries temporelles ne permettant pas de distinguer entre 1’adaptation effective
réalisée par un sujet ou ses capacités d’adaptabilité globales. La présente these a pour objectif
de décorréler ces deux notions, notamment en liant le niveau comportemental au niveau
cérébral. Notre premicre étude a permis de mettre en évidence que les propriétés mono-
fractales pourraient refléter 1’adaptabilité des sujets tandis que les propriétés multifractales
seraient liées a I’adaptation effective réalisée au cours de la tache. La seconde étude a mis en
¢vidence une corrélation entre les propriétés multifractales et le nombre de réseaux cérébraux
mis en ceuvre, reflétant 1’adaptation effective aux contraintes expérimentales imposées. Les
résultats de ces travaux de thése nous ont permis de mieux comprendre la signification

fonctionnelle des analyses fractales en termes d’adaptation effective et d’adaptabilité.

Mots cles : Adaptabilité, adaptation, tapping, fractales, réseaux cérébraux, spectroscopie

dans le proche infrarouge, systeme dynamique, connectivite.
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Chapter 1

General Introduction



1.1 A complexity theory approach

“Complexity theory is destined to be the dominant scientific trend on the 1990’s”

Lewin, R., 1992. Complexity: Life at the Edge of Chaos (Back Cover).

Complexity considered in a broad sense has common properties whatever the field of
application happens to be. In a complex system, the whole is considered as being more — and
sometimes less — than the sum of its parts. The system is composed of multiple elements that
interact in a non-simple way (Simon, 1991). Imagine or return in a simple way to our first
chemistry courses. Although at the bottom of the class the table of Mendeleiev indicates
numerous elements, these parts taken individually cannot explain some emergent properties
like the di-hydrogen combustion reaction. In the same way, the exchanges between
individuals can create in a sense some masterful discoveries like the 2017 Nobel Prize for the
discovery of gravitational waves. While this system was generally defined at the edge of the
chaos, complex system theory now generally adopts a position between two extremes, not in
the extreme at once too chaotic nor conversely too rigid. Whatever the metaphor used, a
consensus seems to have developed on the functional organization (or topology) adopted by
these systems. For Henry Atlan (1979), the complexity lies in between crystal and smoke in
being neither too rigid, nor too “random”. On the one hand, crystal is considered to have an
organization of its elements that is too rigid between the elements. In this sense, too much
disruption of the system can break the crystal. Such a system tends to fall into a too strongly
predictable and deterministic way. On the other hand smoke is considered to be a set of totally
independent elements (Figure 1A). This organization does not allow creating any kind of
structure and therefore remains completely unpredictable. According to Edgard Morin (1994),
such types of systems are between order and disorder phenomena. Kauffman (1991) proposes
to define a complex system as being between chaos (defined as a complete disorder of the
system) and anti-chaos (a strictly rigid organization). Moreover, Paul Valéry considers that
“two dangers are constantly threatening the world (complex by definition): order and
disorder”. This author does not hesitate to add that “between order and disorder reigns a
delicious moment”. Nevertheless, this positioning between two extremes leads to a dynamic
property of complex systems. It does not seem possible to imagine a third “rigid” extreme
system situated equidistant from complete order and complete disorder. Complex systems will
therefore oscillate between those two phenomena and will involve a dynamics or oscillation

between more or less order and more or less disorder.



Regular Random

Complexity

Figure 1A: Effect of topological links modification on the system. On the left: a too rigid
system in which all the elements are connected to each other in an identical manner (low cost
but low communication between elements). On the middle: two more complex systems
comprised between low connections and fully connected network organizations. On the right:
a fully connected network where all nodes are connected (high cost). Both, the left and the

right system could be eather random or rigid organization.

As the nature of complexity is hard to reveal due to the large number of applications in
multiple fields, some researchers proposed to classify the definition (or approach) of
complexity in three divisions depending on the discipline/field perspective (Mason, 2001).
First, they called “Algorithmic complexity” as a mathematical complexity and a difficulty to
describe system characteristics. The drawback of this approach is formulated as algorithmic
complexity that “may incorrectly equate data with knowledge”. Lots of real life systems lie
beyond algorithmic expressions. Second, they used the term “Deterministic complexity”
which originates from the chaos theory. These approaches posit that the system (dynamic per
se) can create a stable pattern composed of few elements and can shift (or phase-transit) to
another pattern to adapt to external or internal constraints. Nevertheless they considered this
approach as a biased concept as it is composed of only two or three variables to explain more
complex phenomena. Finally, the third class of complexity was called “Aggregated
complexity” and the interest of this approach is based on interactions between multiple
elements to create complex behavior. This class gives more importance to the links between
the multiple elements that make up the system (dynamic interaction-dominant system) rather
than to the number of elements constituting the system (component-dominant system), which
would reflect a complicated but not complex system. Combining these second (deterministic)

and third (aggregated) definitions fits well with the theoretical approach previously proposed
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by Morin and others and studies in the field of human movement science. Complexity (or
complex systems) is generally defined only in opposition to simplicity and/or predictability
(Morin, 1994). In our everyday life and current language, complexity is understood as
complication. Complication refers to the idea that the system is composed of a huge number
of components. Interactions between components are generally considered to be of second
order and therefore of less importance (if not ignored). The first main point of this dissertation
is therefore to adopt an approach that take into account the links between elements which will

prove to be a common basis whether from a theoretical or a methodological point of view.

In the (specific) field of human motor control science, this complex system approach based on
the study of the links between the elements rather than the analysis of the elements in an
isolated way has been of increasing interest for many years (Sleimen-Malkoun et al., 2014;
Delignieres & Marmelat, 2012; Diniz et al., 2011; Wijnants et al., 2009). Indeed, earlier
approaches proposed in this field (isolated component analysis), can be complemented by the
analysis of their relationships to have a more precise overview of the operation of the systems.
In this sense, researchers have generally analysed the performance produced during a task
using measures like the two first statistical moments (mean and standard deviation), thus
considering that data distributions are Gaussian throughout time or repetitions. This approach
does not make it possible to study the links (or dependencies) between the successive data
obtained. For example, for a simple finger-tapping task, the accuracy (performance) of the
participant could be investigated using the lag between the metronome (external cue) and the
finger tap (motor behavior) or the drift for a synchronization-continuation task. High
variability or deviation from the initial tempo is associated with a poor performance (Semjen

et al., 2000; Repp, 2005).

Although these standard statistical analyzes are important, such measures are not directly
related to the dynamics of the system and consider that trial-to-trial correlations are absent. In
fact, previous researches have demonstrated that serial correlations observed in several human
movement tasks contained a special kind of correlations known as 1/f noise or fractal process
(Box 1; Gilden et al., 1995; Wagenmakers et al., 2004). This process implies that the time
series are composed of so-called long-range correlations (LRC) between successive values. In
other words, if the previous values tend to increase, there is a high probability that the current
value will follow this trend (and reversely for a decrease). It has been proposed that the

ubiquitous presence of these long-range correlations in time series is the signature of systems
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in which the dynamics are dominated by a rich set of multi-scale interactions between their
elements (Kello et al., 2007). A system as complex as the human organism will therefore
produce long-range correlations in many situations. Nevertheless, although these properties
reflect a complex system that is healthy, we can ask ourselves the question of what a
pathology would entail in this organization, in a complementary way, if the presence of these
LRCs would be directly related to this specific organization and therefore present a health

marker potential.

In a relatively theoretical way, and in view of the properties of the complex systems described
above, a loss of complexity can initially be expressed through a loss of elements that compose
it. It seems relatively simple to imagine that, although the system is composed of a very large
number of elements, a significant loss of these elements will result in limited reorganization
capabilities. It is, for example, the often proposed hypothesis about the neuronal loss of
elderly people, which would then lead to lower motor and/or cognitive capacities (Morisson
& Hof, 1997). Nevertheless, complex systems, when only taking into account an approach
based on its components, are not composed of elements of equal weight. Some of these
components (as we will see for the brain especially) are defined as “hubs”, hyper-connected
and essential elements, which can be considered as the minimum basis of any system. An
“attack” on these hubs would be more damaging because occupying a larger space and more

important functions than others.

Indeed, given the above consideration, the functional properties of the system are not limited
to its components (i.e., aggregated complexity). The loss of complexity could be understood
in two ways. First, a reduction in the strength of the links between the elements and, second a

loss of elements resulting in a decrease in the number of links within the system (Figure 1B).

A) C)
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Figure 1B: Hypothesis approach of the loss of complexity. A) A complex system composed
of multiple links between elements. B) A loss of complexity due to a decrease of the strength
of links between elements. C) A loss of complexity due to the loss of elements, which results

in a smaller number of links.

Finally, since these links can be considered as exchanges of information with dynamic
properties, the loss of complexity of systems can also be due to a modification in information
exchanges that becomes too continuous (rigid) or too random (chaotic). We will see
especially at the level of the brain that the recent advances in neuroimaging make it possible
to tackle the temporal evolution of the organization of neural networks rather than taking a

single snap.

Considering humans as a complex system has led many researchers to better understand the
possible loss of complexity of the system with age or diseased. This research work, often
conducted in a clinical context, has focused on the distinction between groups of healthy
subjects versus pathological or aging population. The approach here is to consider a healthy
subject as being at an optimal level of complexity (Figure 1C). Conversely, pathology or
aging should lead to a loss of system complexity towards excessive order or disorder
depending on the level of impairment (Goldberger et al., 2002; Lipsitz, 2002; Vaillancourt &
Newell 2002).

Complexity

Disorder Order

Figure 1C: The possible continuum of the complexity evolution. X-axis represents the
evolution of the complexity from disorder (low predictability) to order (high predictability).
Y-axis represents the level of complexity. An optimal complexity is at the top of the curve.

Adapted from Stergiou & Decker (2011).



1.2 The loss of fractal properties

Due to the ubiquitous phenomenon of long-range correlations in various tasks it seems
relatively understandable that teams of researchers have been interested in the possible origin
of fractal processes within the central nervous system (Pritchard, 1992; Wink et al., 2008;
Allegrini et al., 2009). It’s not surprising then that these authors investigated the evolution of
LRC in pathological populations who develop neurological impairment. For example,
Parkinson’s disease could be a clinical model to study the importance of the basal ganglia,
which have been shown to be one of the most affected parts of the brain due to a lack of
dopamine. In addition, the basal ganglia are a potential production center for the sensorimotor
rhythm (Benoit et al., 2014). Others suggested that the cerebellum could be considered as the
“time keeper” of the brain (Ivry et al., 1988, 1997) and per se a cerebellar stroke should
decrease the presence of LRC in timing time series. Nevertheless, to the extent that these
approaches have the advantage to wanting to localize the timing processes, some limitations
could be highlighted due to the complex organization of the brain. The behavior of a system
like the brain results from multiple interactions between multiple subcomponents acting at
multiple time scales (Kello et al., 2007; van Orden et al., 2003). Studying an element in
isolation remains reductive especially since these approaches do not generally take into

account the possible temporal evolution in the series studies.

The tools and methods currently available make it possible to understand in an ever more
precise way the functioning of each element of the biological systems as well as their
interrelations. However, it seems necessary to try to find out simpler markers usable on a
daily basis to reflect the complexity of systems at a macroscopic behavioral level. A fractal
approach to complex systems has been promising for many years. This approach is based on
the assumption that time series are produced by complex systems are the result of an optimal

interaction between elements and sub-systems that constitute them (Kello et al., 2007).

The distinction between healthy and pathological subjects was highlighted in many contexts
and helped to increase hope to discovering a health marker. For example, loss of LRC in heart
rate dynamics has been shown in subjects with congestive heart failure (excessive regularity)
and cardiac arrhythmia (uncorrelated randomness) compared to healthy subjects (Peng et al.,
1995; Golderger et al., 2002). At the macro scale (closer to the current field of study), the

study of the loss of complexity was initiated by work done on the inter stride intervals when
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walking. Hausdorff et al. (1997) showed an alteration of LRC during walking in the elderly
compared to young healthy subjects and in people with Huntington’s disease compared with
disease-free controls. Following these seminal studies, many experimental proofs followed
this outcome in several diseases and many different tasks. It is the case in postural oscillations
in aging (Blaszczyk & Klonowski, 2001), gait dynamics in Parkinson’s disease (Hausdorff et
al., 2009), serial reaction time in attention deficit disorder (Gilden & Hancock, 2007), the
brain dynamics in Alzheimer's disease (Gomez et al., 2009), people suffering from depression
(Pezard et al., 2001), or epileptic subjects (Babloyantz et al., 1989). All these studies taken
together allowed to develop the “theory” of the loss of complexity with both age and disease
and thus the hope of finding a relatively simple marker of health (i.e., LRC) and likely
applicable to many pathologies.

Nevertheless, this multiple empirical evidence also points out some limitations to
acknowledge. Although these authors generally consider that fractal time series are commonly
produced by healthy subjects, this phenomenon does not allow a precise understanding of the
origins of these properties. This approach generally considers that the loss (or decrease) of
long-range correlation with pathology reflects a decrease in the adaptability potential caused
by a loss of complexity of the system. Pathology leads to a decrease in the ability to perform
tasks correctly or not. Can all the pathologies studied (e.g. Parkinson’s, Huntington’s, cardiac
arrhythmia) really have common properties? The causes of these pathologies are diverse and
do not affect the same functional subsystems. Let us take here two examples of pathologies
that mainly affect the brain. Parkinson's disease is generally presented as a dopamine
deficiency including the basal ganglia (Obeso et al., 2000). Patients with Alzheimer's disease
show a decrease in glutaminergic activity in the frontal lobe compared to healthy elderly
subjects (Smith et al., 1991). The modification of the temporal correlations in the time series
of gait produced by these two types of pathology compared to healthy subjects therefore
raises questions (e.g. Choi et al., 2011; Hausdorff et al., 2009). Although it make it possible to
discriminate against pathological populations, this approach has certain limitations
particularly in clinical settings. The hope of using this approach in clinical routine therefore
requires comparing this empirical evidence with more fundamental approaches, which could
lead to a better understanding of the underlying process of this ubiquitous character.
Furthermore, the loss of complexity with age and disease was more often studied through
subjects with so-called “central” suffering. Nevertheless, the studies presented previously

(e.g. Blaszczyk & Klonowski, 2001, Hausdorff et al., 2009 Gilden & Hancock, 2007, Gomez
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et al., 2009), have investigated either macroscopic behavioral variables or cerebral signals
without making a direct link between these two different levels of observation. The question
arises as whether the variables studied in motor/cognitive tasks reflect an overall suffering on

the entire system or a specific subsystem potentially located in the brain.

A possible confounding factor to understand the functional meaning of the loss of complexity
can be highlighted especially based on the study of Manor et al. (2010). Indeed, may consider
that for an organism presenting an age-induced deficit or pathology, the realization of a task
will require an increased control to compensate for this deficit. The subjects will
predominantly use the modalities that the pathologie has not reached. They would also pay a
careful attention to the reached modalities in order to continue the sensory information
integration, which are necessary for the task realization. The authors studied the postural sway
dynamics during quiet standing in four groups of elderly subjects: controls (no impairment),
visual impairment only, somatosensory impairment only, and combined impairments. Their
results have showed a higher complexity in the control group compared with other groups;
subjects in the combined impairments group had the lowest complexity value. Manor et al.
concluded that the degree of complexity is associated to the subject’s adaptive capacity. Low
physiological complexity may indicate a system that is less adaptive to external perturbations.
This type of approach can also be understood through locomotor tasks such as walking. Many
studies have investigated the effect of a dual task (usually cognitive) on walking parameters in
a large number of conditions, such as Parkinson’s disease (O’Shea et al., 2002), Alzheimer’s
disease (Muir et al., 2012), stroke (Yang et al., 2007; Plummer-d’Amato et al., 2008). This
was also extensively performed in healthy elderly fallers (Toulotte et al., 2006) and with
aging for example (Hollman et al.,, 2007; Beauchet et al., 2005). All these studies taken
together showed a more pronounced decrease in performance in pathological subjects than in
control suggesting a decrease in the adaptability potential for these populations. Nevertheless,
although these authors consider that they analyze the adaptability of the system as a whole,
we can ask ourselves a question about the possibility that these measures would rather reflect
the adaptation of the subject in the realization of a given task and in a given context, rather

than the system itself.

Because adaptation has a variety of meanings that are different in various fields and
disciplines, we should define what we consider as adaptation in this dissertation. Our

approach considers the adaptation of a system as: “Adaptation is the change by which
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organisms surmount the challenges to life” (Lasker, 1969). In this sense, adaptation is a
modification in either structure or function that enables an organism to survive. Adaptation
could then be seen at a particular physiological location of the human (e.g. brain area
plasticity) or at the whole individual. This definition brings us to draw a parallel with the
notion of evolvability proposed in the literature (Whitacre, 2010), which is considered as “the
capacity of the system to innovate”. Going hand in hand, we define adaptability as the ability
to maintain a state (in our dissertation a motor performance) by facing internal or external
constraints on the system. This definition refers to the robustness property of the system. The
two notions of adaptation and adaptability are closely linked and can in some sense be
conceived as antithetical. On the one hand, the system should face to external constraints
while continuing for example to perform the initial task. On the other hand, when the
constraints are too (present) important, the system must navigate between new possible
configurations to adapt and respond. A complex system is then a composition between

functional properties of robustness and evolvability (Figure 1D).

A) High Robustness B) Low Robustness C) High Robustness
Low Evolvability High Evolvability High Evolvability

. . TN

Figure 1D: Main possible configurations of a system. a) A system with high robustness but

low evolvability, b) a system with low robustness and high evolvability c¢) a complex system
composed of high robustness and high evolvability. Central node is the system. Colours
represent the strategy proposed. The same colour of system implies a strategy known to
perform the task. A different color implies that the system should innovate to respond to

constraints.

While authors generally consider a direct link between the proposed analyzes and the
complexity of the underlying system, there is still some shadow in the real meaning of the
loss of complexity, particularly with regard to the current proposed experimental paradigms.

The loss of complexity is generally evidenced concomitantly with a decrease in performance
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measures in the proposed experimental paradigms. Nevertheless, the link between the
robustness property of complex systems and/or their evolving capabilities is not directly
brought to light. Experimental evidences are therefore indirect and there is possibly a
confounding factor in the actual significance of the presence of long-range correlations (or
their loss) in healthy or pathological subjects. In particular, we can highlight the confounding
factor that we will name in our dissertation: effective adaptation. Do the variables resulting
from the experimental paradigms implemented in our laboratories reflect the totality of the
adaptive capacities of the underlying system or only certain states of effective adaptation to
perform the task at a given moment for a single experimental condition? In this sense, our
first study (Chapter 2 of this manuscript) will attempt to better understand the significance of
long-range correlations, especially in terms of robustness of the system (or its adaptability),

addressing healthy subjects.

Several teams from experimental psychology or human movement sciences have attempted to
better understand the ubiquitous presence of LRCs and their functional meanings in a large
number of experimental paradigms. The pioneering work of Gilden, Thornton and Mallon
(1995), has highlighted the presence of LRC in time series coming from the reproduction of
spatial and temporal intervals during a task. These authors thus showed that deviations from
the mean during successive repetitions of the same task has some degree of correlation and is
therefore not strictly white noise. Then, numerous experimental evidences have been reached
on the presence of LRC in simple reaction time tasks (Van Horden et al., 2003; Holden,
2005), force production (Wing et al., 2004), bimanual coordination (Torre et al., 2007),
synchronization with a metronome (Chen et al., 1997, Torre & Deligniéres, 2008), movement
times in a Fitts' task (Wijnants et al., 2009, Slifkin & Eder, 2014), pointing task (Miyazaki et
al., 2004), walking (Terrier et al., 2012, Dingwell and Cusumano, 2010), cycling (Warlop et
al., 2013) or rowing (Den Hartigh et al. 2015).

Although these studies were conducted with young and healthy participants, the authors were
able to highlight a loss of complexity (decrease in the presence of long-range correlations)
during their experiments through the time series analyzes they carried out. The modification
of the instructions or the experimental conditions for the realization of the task came to
modify the presentation of LRC. Redundantly, the increase in experimental constraints
imposed has resulted in long-range correlation changes in the time series produced. Indeed,

the completion of a task with a metronome (e.g. Torre & Delignicres, 2008), an imposed step
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rate or the addition of a visual feedback to control the performance (e.g Warlop et al., 2013)
led to worse correlated time series (occurrence of white noise). These surprising results
allowed the authors to formulate the idea that the addition of non-essential feedback to
achieve the task would force the system. In this sense, the optimal complexity (as reflected by
LRC) could therefore be considered as the natural signature of the system, whose intrinsic

fluctuations are freely expressed without major control (Kello et al., 2010).

The previous sections of this manuscript highlight some fundamental questions on the
functional significance of fractal properties. On the first hand, fractal properties used to
analyze the loss of complexity of any system revealed that the long-range correlations could
be distorted in elderly and diseased subjects compared to healthy subjects, but also in subjects
using increased feedback to perform the experimental task facing to external constraints. As a
consequence, it might be difficult to distinguish whether time series complexity reflects the
underlying system and its adaptability capacity or effective adaptations of the system to
perform a task according to the imposed external constraints. This issue will be investigated

in this dissertation.

Nevertheless, one question now results from the possible origins of the effective adaptation
and the functional significance of fractal properties at the global (macroscopic) scale of
observation (in our case the motor behavior). Two theoretical ways were developed in the
previous literature that was named the “nomothetic perspective” and the “mechanistic
perspective”. The first perspective generally considers that fractal processes are not specific
of one part of the complex system (or one scale of observation) but are rather a general
outcome from all components and all links between components (Van Orden et al., 2005).
This approach is based on the self-organizing principle of the system and the emergence
concept (Kello et al., 2010). Authors proposed that the self-organization of the system
composed of multiple degrees of freedom evolves to a minimally stable state and that the
multiplicative effect of the multiple scales leads to a power law (or 1/f noise, fractal process)
(Bak et al., 1987). For authors, factal time series is a ubiquitous phenomenon (Gilden, 2001;
Kello et al., 2008). On the other hand, the mechanistic approach driven by simulation studies
(see for example the discussion of the study of Deligniéres & Marmelat, 2012) revealed that
fractal processes could be generated by a relatively low number of components and
parameters. The second mechanistic perspective follows the idea that different mechanisms

can generate fractal time series, which depends on the behavior under study (i.e., the task or
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the scale of observation). Globally, for the first nomothetic approach, as the fractal time series
is ubiquitous, there is no reason to trying to investigate the possible functional origins of the
phenomenon and any potential links between components of the system. The second
mechanistic approach, opens a way to multiple and multimodal analyzis to highlight the
potential link between multiple scales of observation. Although these approaches were
initially proposed from a fundamental point of view and studied, thanks to computer
simulations, the development of neuroimaging tools makes it possible to investigate a new
track, in particular the link between the brain dynamics and the dynamics evaluated at the

behavioral level (See next Section 1.3).

1.3  Linking brain and behavior in neuroscience

For nearly a century, neuroscience research works have been trying to better understand the
site of the complex motor behavior generation in the brain. This fascination can be understood
from a fundamental point of view but also in the possible clinical applications for a better
understanding of multiple pathologies. The increasing development of neuroimaging methods
has shed light on the brain-behavior links in a large number of experimental paradigms. One
of the most used approaches is based on the adaptation paradigms. The concept of adaptation
is the keystone to understand the organization of the human in everyday life (and the loss of
adaptation in a pathological case). Much of the literature has used a simple sensorimotor task
combined with neuroimaging methods to better understand the performance production of a
one- or two-handed task as well as the complexity of the tasks. The initial focus of analytic
strategies in human neuroimaging was on identifying reliable task-dependent signal changes.
Such studies have used healthy volunteers to fundamentally understand the human
organization or compared healthy versus pathological participants to explain the causal link
between the changes in brain activation and the loss (or alteration) of adaptation in these
motor tasks. The brain activation profile during sensorimotor task was shown in
electroencephalography (EEG; Shibasaki et al., 1980; Sur & Sinha, 2009), positron emission
tomography (PET; Grafton et al., 1992), functional magnetic resonance imaging (fMRI; Kim
et al.,, 1993) and near-infrared spectroscopy (fNIRS; Holper et al., 2009; Leff et al., 2011)
studies. Performing a motor task modulates/influences activation profile in specific brain
areas such as the primary motor cortex (M1), supplementary motor area (SMA) and premotor
area (PMA) in healthy subjects. The difficulty of the task or the force production capability

was shown to lower the inter-hemispheric balance (Rao et al., 1993; Derosiére et al., 2014).
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Such findings were then considered as common sensorimotor markers in healthy subjects and
then compared to multiple pathologies or aging. This ushered in a new prolific era named
“brain mapping” and leads to the well-known statistical parametric map (SPM; Friston et al.,
1995) in fMRI and fNIRS studies and topographical map in MEG and EEG studies.
Nevertheless, this kind of study generally considers a priori that the variability corresponds to
white noise both at the levels of the behavior and the brain. This kind of noise being
considered as a participant error or induced by the equipment used, some filters and averaged
measurements for mass univariate analyzis of brain data are commonly employed.
Nevertheless, as previously indicated, this first basic approach leads to a loss of essential
information for a better understanding of complex adaptive systems. Similar to the behavioral
time series, brain signals extracted from EEG, fMRI and fNIRS measures were investigated
using more fine-grained methods than mean or standard deviation. Mono- and multi-fractal
analyzes were used to extract the complex time course of multi-frequency bands of EEG data
or hemodynamic responses contained in fMRI and fNIRS signals (e.g., Eke et al., 2002, 2012;
Figliola et al., 2007). In spite of efforts to link the brain and behavioral functions, approaches
used in the aforementioned studies still represent an oversimplification of the real adaptations
of the human brain and generally these empirical investigations did not attempt to make a
direct link between observations and the underlying model making it possible to generate this

kind of complex time series.

Some authors have proposed fundamental models to the functional organization of complex
systems producing fractal properties at the macroscopic scale. A first approach called “self-
organized criticality” was initially proposed by Van Orden and colleagues (Van Orden,
Holden & Turvey, 2003; Kello et al., 2007). These authors propose that the complex system
balances between numerous solutions, what they called the concept of criticality. The system
is considered metastable (Kelso et al., 1995; Kelso, 2012) which means that a small
perturbation at a given point in the system can lead to a global change in the system (Figure
1E). This property allows the system to explore new functions (or states), which will allow it
to be flexible and therefore adaptable. This “self-organized criticality” is only possible when
the system has multiple connections between its elements and between levels and therefore

assumes that the importance of connections is greater than elements constituting it.
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Figure 1E: 3D Modelling of the Metastability of a system. The yellow sphere represents the
current state in which the system is located. A slight perturbation may allow the system to
switch from one basin to another basin that modifies the state of the system. Adapted in 3D

from Kelso, 2012.

An alternative approach, close to the one developed previously, is the “cascade dynamics”
model (Ihlen & Vereijken, 2010). The key element proposed is that connections between
scales are dependent and thus reflect some dependencies. These dependences are reflected in
the exchange of information (or energy transfer) between scales. A perturbation at a small
scale will influence the state of the higher scale with a multiplicative coefficient. This specific
statistical dependence makes it possible to produce more complex time series (multifractals)

than the series produced by the model of self-organized criticality.

Although these models are interesting, a possible third candidate would explain the presence
of long-range correlations produced by complex systems. This approach was suggested by G.
Tononi, O. Sporns and G. Edelman in 1999 (Tononi et al, 1999) and was called
“Degeneracy”. The concept of degeneracy was firstly applied to the “structure” of a system
(whatever the level of observation is). Therefore, it does not refer to external events that may
occur on the system. Nevertheless, degeneracy is shown as a biological property and is
defined as follows: “A many to one relationship. Distinct elements could perform the same
function”. The above property is found at the biological level in the genetic code (DNA),
genes, synaptic connections, the connectivity of the cortical areas and the human movements

(Edelman & Gally, 2001). In order to better understand the concept of degeneracy, which is
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partially independent of that of degeneration, we can tackle it with the concept of redundancy.
The redundancy of a system is often considered as a sign of robustness (Whitacre, 2012;
Whitacre & Bender, 2010). From an engineering point of view, multiplying the
communication channels in parallel allows, in case of failure of one element, a propagation of
the signal through the redundant channels. For example, the computer on board of Curiosity
to explore Mars (boarding of two computers with the RAD750 PowerPC microprocessor but
only one being active at a time) allows, if a processor or a computer fails, to level the
problem; the second computer will take over. It is from these properties that degeneracy is
also commonly called partial redundancy. The fact of commonly pointing to degeneracy as
partial redundancy is due to these properties. Furthermore, degeneracy of systems is
considered as a prerequisite to allow for robustness and evolvability that are two essential
properties of complex adaptive systems (see Section 1.2). Taking into account the degeneracy
of the biological system, we argue that the system could use multiple functional
configurations during a task to perform the same function (functional intermittence) which is
one of the essential properties implemented both at the level of the brain but also of the
behavior (Kelso & DeGusman, 1991; Oullier & Kelso, 2006; Tognoli & Kelso, 2014).
Therefore, the long-range correlation properties of the biological series studied could be a
reflection of the degeneracy capabilities involved in the performance of a task. A decrease or
loss of complexity could be linked (at least in part) to a decrease in the degeneracy of the
system. Thus, we can hypothesize that fewer alternative functional configurations would be

available implying less adaptability to internal or external constraints.

Since the pioneer works of Santiago R.Y Cajal in the early 1900’s, the brain is generally
considered as the complex system par excellence for neuroscientists. However, a purely
regional and univariate approach does not explicitly address the possibility that
communication between distributed populations of cortical neurons contributes to cognition
and behavior. Such contributions may occur even in the absence of obvious changes in
regional brain activation profile (Misic & Sporns, 2016). Nevertheless, since two decades,
connections and interactions among brain areas (at the macroscale) are increasingly
recognized as the basis for complex cognitive and behavioral functions (Achard & Bullmore,
2007). From a theoretical point of view, the brain reflects both segregation (some parts are
dedicated for a specialized function) and integration (exchange of information between

multiple areas) (Friston, 1994; Park & Friston, 2013). Recently there has been an exponential
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development of neuroimaging tools aiming to monitor multiple brain areas with greater
precision: including the increased in the temporal and spatial resolution of fMRI and the
ability to cover the entire scalp of the brain with multiple EEG electrodes. Combined with the
development of computer sciences, researchers can study the brain as a (complex) network.
Within this context, we have to emphasize here two different approaches in brain network

studies (both are in any case highly linked and complementary).

First, the so-called “structural” connectivity tries to map the complete structure of the brain
(named the Connectome; Sporns, 2005) using for example Diffusion-weighted magnetic
resonance imaging or simulations. It is clear that the total description of the brain is not yet
possible with an organ composed of 10'' neurons and an estimation of 10° kilometres of
axonal projections forming a matrix of 10" bins (Papo et al., 2014). A widely used model to
answer fundamental questions concerning the structural organization of the brain is the
nematode Caernorhabditis Elegans composed of “only” 302 neuronal cells (Koch & Laurent,

1999).

Second, some neuroimaging methods like EEG and MEG (in the electric and magnetic
domains, respectively) as well as fMRI and fNIRS (methods based on the cerebral blood flow
changes) allow researchers to non-invasively examine the “functional connectivity”. The
functional connectivity is defined as the statistical dependency between two (bivariate) or
more (multivariate) time series extracted from these methods like frequency bands (alpha,
beta, etc. in EEG/MEG) or blood oxygen level dependent signal (BOLD in fMRI) following
the neurovascular coupling during brain activation. The statistical dependence between time
series linking cortical areas was initially achieved with what we now call a “seed based”
approach. This method requires the researcher to select an a priori region of interest (ROI)
and then quantify the similarity (e.g. correlation, coherence) between this ROI and all other
regions investigated. Nevertheless, this a priori can sometimes lead to certain limits when the
literature does not allow making strong assumptions and restricts the network topology to an
oversimplification. Today, realizing a whole brain functional connectivity analyzis is
commonly performed thanks in particular to the development of computing power and
methodological tools. These whole brain approaches allow to realize all the possible
combinations of connections (resulting in a noticeable increase of the data to be treated
statistically) and thus to extract a more realistic map of the brain networks (Figure 1F).
Although the first studies using functional connectivity tried to analyze the brain network

organization at rest and during the execution of a motor or cognitive task (e.g. Biswal et al.,
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1995), the major craze was developed for these studies during the so-called resting state

conditions.

Figure 1F: Example of the increasing level of computational complication using functional
connectivity analyzis. The number of links (grey lines) increases exponentially with the
number of areas that the researchers include. Personal data extracted from Studies 2 and 3 of

this dissertation. Spheres represent both optodes (yellow and blue) and channels (red) location

from fNIRS devices used.

Although many studies have been interested in the functional connections between different
regions of the brain and have shed new light on cerebral functioning at rest or during
cognitive/motor tasks, it is recently that first empirical evidences of the dynamics of
connections were highlighted (Chang & Glover, 2010; Hutchinson et al., 2013). As we have
seen previously, complex systems have both many connections between elements and
dynamic properties (including temporal evolution) that allow them to modify their functional
organization to meet internal and/or external constraints. It therefore seems essential, in view
of the models proposed and in particular the concept of degeneracy, to try to experimentally
understand the link between adaptations from a motor control point of view and the

dynamical organization at the level of the brain in a joint way.
1.4  Objectives of this dissertation

The literature presented in this introductory chapter highlights that two different explanations
are put forward for the loss of complexity of the systems expressed through the correlations
decrease in long-range correlations. While the loss of complexity was demonstrated in
pathological subjects compared to healthy subjects, other studies have shown changes in
LRC’s depending on the constraints imposed on participants. Although these studies are
generally dissociated in the literature, we can hypothesize a possible confounding factor

linking these two approaches. Indeed, we can think that aging participants or subjects with
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pathologies may set up an increased involvement of feedback to best accomplish the task,
potentially with an equivalent level of performance of healthy subjects. Therefore, the overall
objective of this dissertation is to highlight the functional significance of fractal analyzes
regarding the actual adaptation (effective adaptation) implemented to perform a sensorimotor

task under various external constraints.

This work is divided in three parts, which all describe components of the primary aim. The
first part of the dissertation investigates the functional significance of mono- and multi-fractal
analyzis during a finger-tapping task under various conditions (Chapter 2). In chapter 3,
concurrent changes of brain functional connectivity and motor variability are being compared
when adapting to task constraints. Chapter 4 explores the dynamics of the human brain
network revealed by time-frequency effective connectivity in fNIRS. Figure 1G represents the

links between all key words investigated or discussed throughout this dissertation.
This work addressed two main questions. These were:

- Are the long-range correlations present in a sensorimotor task reflect effective

adaptations or the adaptability of the subject?

- Is the capacity of effective adaptation of the subjects investigated at the level of behavior

related to the cerebral dynamics during the realization of the task?
It was hypothesised that:

- Mono- and multi-fractal analyzes reflect two distinct properties of the system under
study. Mono-fractal analyzes reflect the adaptability of the system while the multi- fractal
properties reflect the effective adaptation of the subject to achieve the task despite the

imposed constraints.

- Multi-fractal analyzes would reflect the dynamics of the degeneracy of brain networks

implemented as a function of the imposed constraints.
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Figure 1G: Diagram showing the links between the different keywords constituting the
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theoretical framework of this dissertation. This diagram will be the guideline between the

studies presented as well as all through the discussion.
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Box 1

Fractals

“Fractals are everywhere”

https://www.youtube.com/watch?v=Tpsu2uz9rCE

Although this statement is a bit exaggerated, it appears that fractal
properties are ubiquitous phenomena in multiple natural and biological
elements. Mandelbrot in the 70's realized that very often, Euclidean
geometry does not allow accounting for the complexity of the observed
forms. This approach was first developed in the field of mathematical
geometry and implies an essential property that is the self-similarity.
Whatever the observation scale of the object in question, it retains the same
characteristics as if we observe it at a higher or lower level. A relatively
explicit example of this phenomenon is expressed through the Von Koch

curve (or Koch snowflake, Figure 1H) (Mandelbrot, 1983).

Iteration = 1 Iteration = 4 Iteration = 8

Figure 1H: Representation of Koch snowflake for iteration 1, 4 and 8.
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Nevertheless this phenomenon is not limited to a specific case of iterative
mathematic but is also found for example in mountain peaks, torrents or
from a biological point of view in vascular branching or DNA. More
surprisingly, these fractal analyzes have also been studied in the properties
of chocolate surface (Pedreschi, Aguilera & Brown, 2002), the United
States Coastlines (Jiang & Plotnick, 1998) and Hard Disk surface (Kennedy
et al., 1999). Surprisingly, this (statistical) self-similarity property is also
commonly found in biological time series. In other words, the fluctuations
seem statisticaly the same, whether viewed at the scale of the year, the
week, the hour or the minute. This is different from a simulated sinusoidal
time series that will be identical to a single single frequency. A second
property of time series highlighted in the literature is the presence of long-
range correlations. The successive data constituting the series are more or
less correlated with each other. Their autocorrelation decreases slowly over
time. On the contrary, a series of white noise (totally random series) will
present an autocorrelation that will decrease very quickly (close to zero).
Successive data will not be related to each other over time. More simply, in
time series with long-range correlations (called fractals, 1/f noise or pink
noise), if the previous values have a tendency to increase, the current value
will be more likely to continue to increase as well (see Figure 11). This
property, which links the data between them, will therefore limit the
aberrated values (which will be very rare). As a result, the fractal series will
be composed of values according to a power law. Small events (small
disturbances) will be more numerous than major events. In other words, the

amplitude is inversely proportional to the frequency.
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Figure 11: Distinction between White noise, 1/f noise and Brownian motion.
From the White noise (left) to the Brownian motion (right), correlations in
time series increased as reflect by the auto-correlation plots (middle) and the
Log Power spectrum density (below). 1/f noise (pink noise, fractal time
series) is represented in the middle column. This figure is extracted from

Delignieres & Marmelat (2012).

Many methods have therefore been developed to account for the presence of
these long-range correlations in the time series. One of the most common
and relatively robust was proposed at first by Peng (1995) and applied to
heartbeat time series. Nevertheless, this method considers that long-range
correlations are homogeneous over time in the time series. The dynamic
properties of biological systems allow them to make the assumption that
these correlations will fluctuate between moments when the correlations
between successive data are relatively limited and others relatively long. For
this purpose, multi-fractal analyzes were developed to account for these
fluctuations, notably by Kantehlard's work in 2002 (see also Thlen, 2012 for
a comprehensive matlab tutorial). Multi-fractal detrended fluctuation
analyzis (see Chapters 2 and 3) will therefore analyze the dependence
between successive data at different time scales and will result in output by
a multitude of exhibitors. The difference between the weakest exponents
and the highest exponents will reflect the multi-fractality level of the time
series. These two analyzes (mono- and multi-fractals) will be at the heart of
the first two articles proposed in this work and in particular their meanings

when representing the underlying system.
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Chapter 2

Adaptability or adaptation:
functional meaning of fractal

properties
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Results presented in this study are preliminary.
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Abstract:

The loss of complexity in bio-behavioral variables sees two discordant approaches which
coexist: the loss of complexity with age and disease, and the loss of complexity due to
increased sensorimotor control. Thus, the loss of complexity appears as an ambivalent
phenomenon. The purpose of this study is to specify these functional meaning. Eight groups
of subjects performed a self-paced finger-tapping task under incremental feedback deprivation
(auditory and/or visual and or proprioceptive). A deafferented subject (IW) was also included.
The literature indicates that unlike visual and auditory feedback, only deprivation of
proprioception may possibly be a constraint for tapping performance. We analyzed the joint
evolution of the performance as well as the mono-fractal and multi-fractal properties of the
series of inter-tap intervals produced. Preliminary results show an identical pattern of results
for performance and the mono-fractal exponent, both being degraded for IW only. On the
other hand, the level of multi-fractality increases progressively with the number of feedbacks
deleted. Given the independent evolution of mono- and multi-fractal properties, we discuss

their respective meanings in terms of effective adaptation and adaptability of the system.

Keywords: adaptation, fractals, DFA, MFDFA, tapping, feedback
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1. Introduction

Since the advent of neuroscience,
the heart of much research has been to find
health markers in order to discriminate
pathological from healthy populations. In
this sense, a relatively recent discipline is
interested in the analysis of time series
produced at a macroscale level (e.g. motor
control output). While the first studies
multiplied the repetitions of the same
experimental condition and then extracted
the average value or variability, this
approach  has  some  shortcomings
considering that repetitions between
successive  values or events are
independent in time. However, this
assumption is more the exception rather
than the rule (Slifkin & Newell, 1998) and
a temporal dependence between successive
events were shown as a valid approach to
discriminate much pathology through a
wide range of time series analyzed. One of
the first and most understandable examples
is from works of heartbeat time series
(Peng et al., 1995). At first, these studies
show that beat-to-beat fluctuations in heart
rate intervals follow a power law and
display long-range correlation in time (or
1/f noise, pink noise, fractal process). This
was followed by the investigation of these
statistical properties into time series of
pathological subjects such as those with an

arrhythmia or congestive heart failure

(Goldberger et al., 2002). Time series from
pathological populations revealed a
decrease in these long-range correlations,
the temporal dependence on events was
less dependent on each other, close to
white noise. This has led to the search of
many clinical teams for and identification
of long-range correlations (and its
decrease) in much pathology and
experimental paradigms. These researches
have highlighted the possibility to
discriminate healthy subject to
pathological or aging population in gait
(Huntington and Parkinson disease;
Hausdorff et al., 1997), postural sway
(aging; Blaszczyk & Klonowski, 2001),
reaction time (ADHD; Gilden & Hancock,
2007) and brain activity (Alzheimer;

Gomez et al., 2009) for example.

Nevertheless, these studies do not reveal
the possible origin of the presence of these
long-range correlations in the healthy
subjects and the mechanism explaining the
tendency to produce white noise in the
pathological populations. This notion
being easily grasped at a macroscopic level
of observation, the study of the human in
the achievement of motor tasks would
therefore make it possible to apprehend the
complexity of the system by observing the
time series produced. On the basis of this
postulate, a deficient / pathological system,

conceived as suffering a loss of complexity
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due to the loss of elements or links
between these elements, should be
reflected in the fractal properties in the
tasks produced. Nevertheless, the loss of
long-range  correlations ~ was  also
highlighted in studies apart of any
pathological context. These studies
highlight a loss of long-range correlation
when changing constraints on subjects in
many tasks. Such evidence was thus
investigated in Fitt’s task (Slifkin & Eder,
2014), gait on treadmill with auditory
metronome (Terrier et al., 2012; Dingwell
& Cusumano, 2010) and cycling pattern
with visual control (Warlop et al., 2013).
As subjects included in these studies are
young healthy volunteers, long-range
correlations could then reflect the natural
signature of the healthy system performing
a task without undue constraints (Kello et
al., 2007; 2010). A tendency to produce
white noise time series would reflect
increased biomechanical or cognitive
control of the subjects, thus preventing
them from performing additional tasks (for
example in very strong double task
paradigms). This proposal is not
contradictory with the theory of the loss of
complexity with aging or pathology.
Indeed, much pathology and aging are
generally related to a loss of sensory

feedback directly due to the pathology or

with cortical reorganization in visual

and/or auditory and/or proprioception (Li

& Lindenberger, 2002).

One interesting study proposed by Manor
et al., 2010, crossed both kind of approach
proposed above that are generally
segregate in a postural control task. Aging
participants were classified in groups of
sensory impairment as control (aging
participants without impairment) and with
visual and/or somatosensory impairment
and performed a postural task with a dual
task. Authors highlight that group with a
loss of sensorial feedback product less
long-range correlation in postural control
time series and therefore postulated that
complexity analysis could reflect the

capacity to the system to adapt in tasks.

Nevertheless, there is no clear distinction
in this study as to the possible confounding
factor between the adaptive capacities of a
system that can be divided into two
subparts. On the one hand, the adaptability
of a system can be seen as being very
strongly related to robustness properties.
Depending on the internal or external
constraints imposed on the system, the
system will be reorganized from a
functional point of view to continue to
maintain the level of performance required
in the performance of the task. However, in

this study the authors do not directly
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manipulate feedback such as vision or
having deficiencies of these systems
following pathologies, the study does not
therefore make it possible to discriminate
if the loss of complexity expressed through
the fractal analyzes would reflect a
deficient system or the implication of
different feedbacks in the accomplishment

of the task.

Given the above considerations, the
purpose of the study is to directly
manipulate the feedbacks in the realization
of a motor task in healthy subjects to allow
to clearly identifying if the implication of
these feedbacks (and their decrease) will
influence the fractal properties, which
result from it. In this sense, we will use
mono- and multi-fractal analysis as the two
approaches could highlight different
properties of the system (lhlen &
Vereijken, 2013). One the first hand,
mono-fractal properties (e.g. Detrended
fluctuation analysis) reflect a global and
unique exponent considering that long-
range correlations are homogeneous in
time and reflect a general property of

complex systems. On the other hand multi-

proprioception. The subjects

fractal  analysis  (e.g.  Multi-fractal
detrended fluctuation analysis) could
reflect the effective adaptation of the
system under constraints reflecting
changes in correlation at short or long time

scales.

Following from the above, we

hypothesized  that  healthy subjects
performing a simple finger-tapping task
will therefore reflected a same mono-
fractal exponent independent of the
external constraints imposed to performed
the task. On the other hand, multi-fractality
should evolve with the external constraints
(the number of feedback deprived, namely
auditory and/or visual feedback) imposed
to perform the task. Additionally, the
suppression of the proprioception (assessed
with the help of an anesthetic block and a
deafferrented subject) should reflect a
decrease in all variables (performance,
mono-fractal and multi-fractal) compared
to other groups, as the deprivation of
proprioception was highlight as a putative

constraint in a finger-tapping task

(Aschersleben et al., 2002).
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2. Materials and methods

2.1 Participants

2.1.1 Healthy participants

Ninety-four healthy young volunteers took
part in the study (fifty-three men, fourty
one women, 24.5 + 5.2 year of age). All
participants signed a written informed
consent before participating in the study.
All participants performed the study with
their self-reported dominant hand (heighty
nine right handed and five left handed) and
reported normal hearing, normal or
corrected vision and normal
proprioception. None showed any sign of
neurological  disease, nor  reported
extensive practice in music. All procedures

complied with the Declaration of Helsinki

for human experimentation.

2.1.2 Deafferented participant

One deafferented participant (IW)
was include in the study. IW is subject of
complete loss of cutaneous touch,
kinematics and movement/position sense.
Pain and temperature sensations are
clinically spared, and there was no motor
nerve impairment due to a large sensory-
fiber peripheral neuronopathy below C3
occurred at age 19. Nevertheless, after a
clinical rehabilitation IW was able to move

by visually monitoring his movements.

2.2 Experimental design and procedure

The experimental design was an
independent-group  design  with  the
experimental factor being the numbers of
sensorial feedbacks the participants were
deprived from and at a second level the
sensorial modality. Participants were
randomized to one of the height following
conditions: (i) no feedback deprivation
(Control), (ii) deprivation of one feedback,
visual, or auditory, or proprioceptive (-1
FBa, -1 FBv, -1FBp); (iii) simultaneous
deprivation of two feedbacks, visual and
auditory, or visual and proprioceptive, or
auditory and proprioceptive (-2 FBva, -2
FBvp, -2 FBap); (iv) simultaneous
deprivation of three feedbacks, visual,
auditory and proprioceptive (-3 FB). IW
was deprived of the visual and auditory
feedback in addition to cutaneous touch
and kinematics loss due to the pathology.
Participants were deprived of visual and
auditory feedbacks using a sleeping mask
and ear defenders, respectively. The
proprioceptive feedback was prevented by
anesthetic sensory block (injection of
ropivacaine, = 7.5 mg/ml) at the three
nerves of the wrist (ulnar, medial, radial)
with a volume of 2 ml per nerve. Each
participant performed three tapping trials
in the assigned conditions. As mentioned
above, none of the visual or auditory
deprivations  should  alter

tapping
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performance (Repp & Su, 2013;
Aschersleben & Prinz, 1997, 1995)
however the loss of proprioception (with
anesthetic bloc or for IW) should alter the
performance (Aschersleben et al., 2002,

2006).

2.3 The tapping task

The experiment was conducted in a
quiet room. Participants were sitting
comfortably on an adjustable chair, with
their dominant side forearm and palm of
the hand resting on a customized plinth
(570 x 160 x 50 mm) on a table in front of
them. Subjects realized a tapping task
according to a conventional
synchronization-continuation paradigm
(Wing and Kristofferson, 1973; Vergotte et
al., 2017): during the initial
synchronization phase, the tempo was
prescribed by a PC-driven auditory
metronome delivering 20 signals at a
frequency of 1.5 Hz (0.666 s inter-tap
intervals), known as a comfortable tapping
frequency (Fraisse, 1966; Torre &
Delignieres, 2008). Once the metronome
stopped, participants had to continue
tapping by maintaining the prescribed
tempo as accurately and regularly as
possible for the whole trial duration. The

duration of each trial was set to 6 minutes

40 seconds so as to ensure a sufficient

number of inter-tap intervals to be
submitted to subsequent fractal analysis
(Eke et al., 2012; Delignicres et al., 2006).
Between each of the three trials,

participants had a 2-min rest.
2.4 Data collection

Movements of the index finger
were captured using a single-axis
accelerometer (15 x 15 mm) fixed on the
nail so as to minimize possible device-
induced sensorial feedbacks. Acceleration
data were collected using a Labjack Ul2
device and stored via its software
(LJStream v1.07). The sampling rate was
300 Hz.

2.5 Data analysis

2.5.1 Tapping performance

Raw acceleration data were first
low-pass filtered using a Butterworth zero-
phase digital filter (Frequency = 15 Hz).
Then, a MATLAB in-house script
(MATLAB 2014b, The MathWorks) for
peak detection was used to extract the
onsets of the subsequent finger taps. Series
of inter-tap intervals (ITI) were then
computed as the differences between
subsequent tap times. For each trial, the

first twenty ITI (corresponding to the
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synchronization phase) were discarded,
and series of 512 ITI in the continuation
phase were retained for further analyses.
For each ITI series, we computed the
typical performance variables used in
tapping studies (Billon et al., 1996; Repp
& Su, 2013), namely the mean, the
coefficient of variation (CV) and the linear

drift over the trial duration.

2.5.2 Fractal analysis

Fractal time series are basically
characterized by fluctuations with scale
invariant structure (i.e., obeying a power
law distribution X(ct) = ¢"'X(t), where X is
the signal, ¢ is a constant, H is the fractal
exponent) and temporal long-range
correlations (meaning the autocorrelation
function of the time series decays as a
power-law without falling to zero). To
analyze the fractal properties of ITI series,
we used the mono-fractal Detrended
fluctuation analysis (DFA, Peng et al,
1995) and the Multifractal Detrended
Fluctuation Analysis (MFDFA, Thlen,
2012; Kantelhardt et al., 2002). In short,
DFA exploits the diffusion properties of
the time series, analyzing the relationship
between the average amplitude of
fluctuations and the size of the observation
window within which these fluctuations
are measured. For fractal series, a power-

relationship characterized by the mono-

fractal exponent a € [0, 2] is expected: in

particular, for o = 0.5 the series is white
noise, for o = 1, the series is so-called //f
noise, and for 0.5 < a < 1 the series is
considered stationary and containing
persistent long-range correlations. By
yielding a single fractal exponent (o)
characterizing  the  average  fractal
properties of a time series, the DFA
assumes that the fractal properties are
homogeneous over all scales of the entire
time series.
However, instead of being
characterized by a single homogeneous
fractal exponent, time series of bio-
behavioral variables are often
characterized by an inhomogeneous
distribution of variability (intermittent
fluctuations). The fractal exponent may
vary over time scales: the series is actually
characterized by multiple fractal exponents
(Ihlen & Vereijken, 2010) and with this
viewpoint the MFDFA was developed
(Ihlen, 2012; Kantelhardt et al., 2002).
MFDFA basically uses the same steps as
DFA, but the average amplitude of the
fluctuations is calculated using ¢” order
fluctuation function, with ¢ varying from -
10 to +10 in steps of 0.5, whereas DFA
computes the amplitude of fluctuations

only for ¢ = 2. In brief, the time series x(7)

is first integrated into X(k) following Eq.1:
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X(k) = T4 [x@) — %]
(Eq.1)

The series is then divided into N, adjacent
segments of length n. Within each segment
(s =1,
subtracted from X(k). So, the amplitude of

..., Ny) the local trend is then

fluctuations is computed for each
detrended segment according to:

2

Sn

F(ns)=2 3 [X(h)-x,, k)]

N =(s-1)n+1
(Eq.2)
The variance is then averaged over all
segments to obtain the qth order fluctuation

function:

Fq(n>={Ni2"[F2<n,s>]“} (Eq.3)

n s=1

If the series x(i) presents fractal properties,
the generalized Hurst exponent A(g) is
given by:

h(q)
F, (n)e<n™

According to Kantelhardt et al. (2002), the
result of MFDFA can then be converted

into the classical multi-fractal formulation
using simple transformations, to be finally
summarized by the multi-fractal spectrum
representing F(a) as a function of a(g),
where F(a) is the fractal dimension (or
dimension of the subset of the series that is
characterized by a), and « is the Holder (or
singularity) exponent. Our variable of
interest is the width of the multi-fractal
spectrum (MF-Width), meaning the range
between the minimum and maximum
exponents oa(g) characterizing the time
series, which represents the degree of

multi-fractality.

2.5.3 Statistical analysis

After normality testing (Lilliefors
test), between-group differences were
tested using ANOVA on the three tapping
performance variables (mean, CV and drift
of ITI series), and on mono-fractal
exponent DFA (o) and multi-fractal width
(MF-Width) with Bonferroni post-hoc
correction. The comparison between -
2FBav and IW was done by a ofléds4mple
t-test.
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3. Preliminary Results

3.1 Tapping performance

3.1.1 Mean IT]

All reported results relate to control
conditions, -1FBa, -1FBv and -2FBav
conditions. Mean tapping performance was
normally distributed for 7 of our 8 mean
variables (4 conditions, 2 repetitions;
p>0.1). The ANOVA applied to the mean
didn’t showed any statistical significant
difference between the frour groups

(F(3,29)=2.38, p> 0.05) (Figure 2A left).

3.1.2 Coefficient of variation of ITI

Coefficient of variation was normally
distributed for the 8 variables (p > 0.10).
Our experimental design was thought to
impose different levels of constraints to the
subjects without inducing differences in
tapping performance. The ANOVA didn’t
show any statistical difference between the
four conditions (F(3,60) = 0.704, p > 0.05)
(Figure 2A middle).

3.1.3 ITI Drift

The linear drift was normally distributed
for 7 of our 8 variables (p > 0.1). The
ANOVA didn’t show any statistical

difference between the four conditions

(F(3,29) = 1.047, p > 0.05) (Figure 2A
right).

3.2 Mono-fractal properties of tapping

series

The mono-fractal exponent a was normally
distributed for 7 of our 8 variables
(p>0.1). The grand average o between the
4 groups was 0.70 (= 0.13). The ANOVA
didn’t show any statistical difference
between groups (F(3,29) = 0.428, p > 0.05)
(Figure 2B left).

3.3 Multi-fractal properties of tapping

series

The width of the multi-fractal analysis was
normally distributed for 6 of our 8
variables (p > 0.10). The ANOVA show a
statistical difference (F(3,29) = 5.307,
p=10.005). Post-hoc comparisons was
significant (p = 0.03) between the control
and the -2FBav group (Figure 2B right).

3.4 Deafferented participant

The t-test between — 3 FB group and IW
showed significant differences for the
mean (#(7)= -14.98, p < 0.001), the CV
(#(7) =-5.64, p <0.001), the drift

(«(7) =3.71, p < 0.01; Figure 2A), a-DFA
(#(7) = 7.06, p < 0.001) and MF-Width
(#(7)=-10.22, p < 0.001; Figure 2B).
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Figure 2A: Preliminary results of the tapping performance variables. The mean (left), the

coefficient of variation (middle) and the drift (right) are statisticaly different between IW and

group -2FBav. No statistical difference was found between groups Control (Ctrl), -1FBa, -

1FBv and -2FBav. Vertical grey lines reflect the 95% confidance interval.

a DFA

NS

0.50

Ctrl

-1FBa

-1FBv

-2FBav

IW

MF Width

0.05

L

Ctrl

-1FBa

-1FBv

W

-2FBav

Figure 2B: Preliminary results of mono- and multi-fractal analysis. Both the mono-fractal

exponent o and the width of the multi-fractal analysis present a statistical difference between

IW and the -2Fav group. A statistical difference was highlited for the width of the MFDFA

between the control group and the -2FBav group. Vertical grey lines reflect the 95%

confidance interval.
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4. Discussion

The present study was realized to
clarify the functional significance of long-
range correlations (namely the mono- and
multi-fractal time series approach) in a
behavioral task. We hypothesized first that
mono-fractal exponent (a-DFA) should
reflect the constraint imposed to the system
and per se should co-vary with the level of
performance. Specifically, we
hypothesized a decrease of both variables
with the loss of the proprioception.
Secondly we hypothesized that the level of
multi-fractality in inter-tap time series
should evolve jointly with the number of
configurations involved to perform the
tapping task. In this sense, the MF-Width
should increase with the number of
feedback deprived from. After discussing
the suitability and the limitation of our
experimental protocol and design, we will
highlight some considerations for the
functional significance of both mono- and

multi-fractal analysis.

4.1 Suitability of the experimental design
Effective  adaptations, = which

composed in part the adaptability potential,

could be defined as the capacity as long as

possible to maintain a same level of

performance despite increased constraints.

The experimental design developed in this

study was used to induce an increased level
of constraints on the system without
deteriorating the global performance. We
used a simple synchronization-
continuation finger-tapping paradigm as
previous literature showed that the
feedback deprivation (auditory and visual)
should not alter classic motor performance
(mean, CV and drift; Aschersleben &
Prinz, 1997, 1995). Furthermore, the task
performed easily and risk free for
participants allowed us to combine a
growing number of feedback deprivation,
namely -1 FB, -2 FB and — 3FB. Has the
distinction of many other tasks, the finger
tapping enable a limited implication of
biomechanical, external or cognitive
constraints. In the present study,
preliminary statistical analysis does not
show an altered level of performance for
the mean, the CV and the drift between all
our groups of feedback deprivation
(namely -1FBa, -1FBv and -2FBav). As
previous literature generally considered
only one feedback at a time, a possibility
that presents itself quickly is that the
performance may be dependent on a
threshold of feedback number deprivation.
Nevertheless, we previously published a
study using quite similar experimental
protocol and we didn’t show any
difference for the 2 variables discussed

below (with the addition of the removal of
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tactile feedback, see the following study in
the Chapter 3 of this dissertation).

4.2 Deterioration of tapping performance

Proprioceptive feedback is essential
in most everyday life, even the simplest
motor task. In our study we additionally
included 48 participants and one
deafferented participant that allowed us to
test the suitability of our experiment as the
proprioception was showed to deteriorate
the performance in multiple motor task and
specifically in simple finger tapping task
(Aschersleben & Prinz, 1997; Repp, 2013;
Sarlegna et al., 2006; Rothwell et al.,
1982). Our preliminary results highlight a
clear distinction between IW and the —
2FBav group for our three variables of
performance. As the same metronome
frequency was proposed, IW show a clear
increase in the mean ITI, the coefficient of
variation and the drift. However we need
discuss some limitations regarding the
results obtained by this participant. To
confirm our results that the performance is
only altered with  proprioception
deprivation, the upcoming analysis of
participants ~ who  have  undergone
anesthetic block will allow us to better
understand the importance of this sensory
modality in performing a finger-tapping
task in synchronization continuation. This

approach seems interesting because it

would allow to include healthy young
participants without any kind of pathology
and matched age that is not the case for IW
compared to other groups (55 years old and

23.8 + 5.6 respectively).

4.3 Mono-fractal properties reflect system

adaptability

From the point of view of the current state
of the art and the the loss of complexity
with age or disease theory, the loss of
complexity observed for IW could at first
seem to reinforce the idea that mono-
fractal analyzes can discriminate between
variables generated by subjects with
pathology (here IW) and healthy subjects
(Goldberger et al., 2002; Lipsitz, 2002;
Vaillancourt & Newell 2002). On the other
hand, our results didn’t show any
significant differences between the 4
experimental groups. This result is not in
agreement with the hypothesis of the loss
of complexity due to the increased
involvement of feedbacks to perform a task
(e.g. Dingwell & Cusumano, 2010; Slifkin
& Eder, 2014; Terrier et al., 2012; Warlop
et al.,, 2013). According to these studies,
we should observe a significant increase in
complexity =~ with  the  progressive
deprivation of the number of feedbacks
(mono- exponant a tending towards 1, pink
noise). One possible explanation could be

seen as the experimental protocol proposed
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in our study. In this experiment, we
directly = manipulated the  sensorial
modalities (feedbacks) involved in the
tapping task (visual and/or auditory) what
was not the case in others studies which
manipulate feedback indirectly (e.g.
distance of the target task, free vs
synchronized walk). These experimental
conditions was supposed to induce an
increased feedback loop like with an
auditory metronome, therefore, contrary to
our study, these manipulations do not
make it possible to conclude in an
unambiguous way on the effect which
concerns the feedbacks involved in a task
or the constraint imposed by the
experimenter (e.g. difficulty of the task,
double task paradigm). Our results
therefore suggest that the complexity
appreciated through the monofractal
properties (DFA) of a time series accounts
for the adaptability of the system. To
confirm this result a step forward should
be the analysis of the proprioception
deprivation conditions by anesthetic block
suppressing the sensory afference without
affecting the motor control. The effect of
the constraint imposed by the loss of
proprioception should highlight that the
mono-fractal exponant reflects the high
constraint imposed to the participant and
not directly the internal pathology of a
system as [W.

4.4 Multi-fractal properties reflect the

effective adaptation of the system

We hypothesized in our study that the
multi-fractal properties (MF-Width) should
evolve with all the number of feedback
deprived from, regardless of whether they
constitute a constraint (proprioception) or
not (auditory, visual feedbacks). However,
the state of the art did not allow us to
specify the hypothesis concerning the
meaning of this evolution, namely an
increase or a decrease in the level of multi-
fractality with the number of feedbacks.
Our results showed a significant effect of
the number of feedbacks deprived (with
differences between control group and -
2FBav group and IW). Moreover Figure
2B shows, a tendency for an increase
between the suppressed numbers of
feedback conditions. This pattern of results
is therefore in line with the hypothesis that
the level of multi-fractality reflects the
possible configurations for carrying out the
task, regardless of whether or not they are
related to a constraint. Specifically our
results show that the level of multi-
fractality increases with the number of
deleted feedbacks. This increase suggests
that in response to increased deprivation of
number of feedback, the ITI series
produced have the properties of greater
intermittency. The system transiently

exploits different configurations, available
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to perform the requested task at the same
performance level (Ihlen & Vereijken,
2010). Referring to the concept of
degeneracy, this refers to the degree of
degeneracy, which can be defined as the
number of “necessary and sufficient”
configurations (Friston & Price, 2011) for
performing a given function.

Nevertheless, it may seem counterintuitive
that by depriving the system of an
increasing number of feedbacks, the
configurations / strategies used to the task
increase. This result leads us to suggest
that there is possible distinction between
the number of alternative configurations
available and the number of configurations
that are actually used to perform the task.
This distinction could be understood as the
distinction between adaptability and
effective adaptation. Adaptability refers to
the freedom or potential of a system to
adapt to changing circumstances, and
effective adaptation refers to the processes
implemented (or observed during the task),
a certain level of both being necessary for
the wviability of a complex system.
However, from the point of view of brain
connectivity approach in the literature, the
level of adaptability is directly related to
the level of connectivity of the system, the
number of possible functional interactions
between different components (or areas).
Thus, the quantitative measures of this

connectivity are supposed to reflect the

adaptability potential of the system
(Ulanowicz, 2002).

Finally, the increase in the level of multi-
fractality with the number of feedbacks
deprived leads to questioning the
conclusions of the literature more specific
to tapping tasks. Indeed, based on tapping
performance variables (accuracy,
variability), much of the literature has
converged on the idea that visual, auditory,
and tactile feedback is not involved in
synchronization continuation tapping tasks.
However, deprivation of these feedbacks
influences the level of multi-fractality of
ITI products. From this point of view, we
can consider that although a particular
feedback may not be essential for
maintaining the tapping performance, it
nevertheless appears to be involved: its
suppression seems to induce a more
intermittent dynamics of the system, with a
more transient exploitation of a larger
number of alternative configurations that
would compensate for the feedback
suppressed. Thus, the more feedbacks that
are suppressed, the more the system has to
exploit a large number of alternative
functional solutions to maintain the same

level of performance in the task.
4.5 Conclusion

The results of this study indicate that the

complexity extracted through the mono-
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fractal properties of the inter-tap intervals
in a synchronization continuation finger
tapping task reflects the adaptability of the
system,  whereas the  multi-fractal
properties reflect the structure-function
relationships of the system, such as the
more or less transitory exploitation of
different configurations or alternative
strategies available for carrying out the
task. These present results are significant
in two respects, and open the way for work
in this direction.

On the one hand, if the mono-fractal
properties reflect a level of constraint
imposed on the system, then this opens
new questions to determine the relevance
of mono-fractal properties as a marker of
the “potential” of a system in a given task
beyond their discriminating power between
groups of pathological subjects vs healthy,
young vs elderly subjects, etc. Indeed,
depending on the intrinsic resources of a
system in a particular task, the same
difficulty level of the task will represent a
different operating stress at the individual
level.

On the other hand, most of the literature,
which has simultaneously investigated

mono- and multifractal properties has so

far considered the level of multifractality

to be a more sensitive and discriminating
measure than the mono-fractal exponent
and fundamentally equivalent in terms of
functional significance, particularly in
terms of complexity and loss of
complexity, with age and disease (Dutta et
al., 2012; Ivanov et al.,, 1999; Muifoz-
Diosdado, 2005). Our study is, to our
knowledge, the first to provide a clear
demonstration that mono- and multi-fractal
properties evolve independently and refer
to distinct functional characteristics of the
system. This opens up new research
perspectives, particularly on the link
between the multi-fractal properties
observed at the level of behavioral
variables in a given task, and simultaneous
neuronal connectivity measurements with

neuroimaging methods.
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Our first study investigated the functional meaning of mono- and multi-fractal analysis in a
finger-tapping task under various conditions of feedback privation to test the effective
adaptation of the subjects (Figure 2C). As expected, our first (preliminary) results highlight a
possible distinction into the functional meaning of mono- and multi-fractal analyzes
performed during a prolonged finger-tapping task. The fact that the mono-fractal exponent
and the width of the multi-fractal spectra do not covariate according to the number of sensory
feedbacks deprived leads us to consider that the two analyzes would not reflect the same
information. On one hand, mono-fractal exponent could indicate the loss of adaptability
potential without allowing discriminating between a loss of adaptability due to the
proprioception deprivation or neurological impairment (IW, deafferented participant, 59 years
old). On the other hand, multi-fractal properties could reflect the effective adaptation to a
prolonged sensorimotor task. Such capacity could be seen as a robustness property of the
system and be part of an intermittent functioning (degenerate properties). The suppression of
feedbacks in carrying out the task would cause a temporary “disruption” of the system. To
continue to perform the task while maintaining an identical level of performance output, the
system would try to find compensatory strategies, especially in the different brain networks
available. The results obtained in this first study open up a way for future research aiming to
investigate the potential link between the degenerate properties (and intermittence property) at

the brain level with multi-fractal properties at the behavioral level.

In the following study, we decided to investigate this question using the same simple finger-
tapping task. For that purpose, dynamic functional connectivity analysis of some relevant
brain areas monitored by functional near-infrared spectroscopy (fNIRS) was undertaken (see
box 2 for an introduction of the fNIRS neuroimaging method). Then the possible links
between the multi-fractal spectrum width (MF-Width) and the degenerate properties of the
involvement of the prefrontal and motor cortices were investigated when multiple numbers of
feedbacks were deprived (-1FB, -2FB and -3FB). The study 2 tests the following hypothesis
when considering the functional significance of multi-fractal analyzes: if the width of the
spectrum actually reflects a greater intermittence of operation of the underlying system, the

number of brain networks involved in performing the sensorimotor task should covariate.
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Figure 2C: Diagram representing the different keywords investigated and discussed during the
first study (in black). A complex system approach allows for testing the effective adaptation
of healthy subjects and one deafferented subject under various sensory modalities during a
finger-tapping task. Mono-fractal and multi-fractal analysis present separated results in

healthy subjects.
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Box 2

Near-Infrared

Spectroscopy

“On December 28, 1976 our family menu featured a grilled chuck roast, the
poor academic’s substitute for steak. This very American cut of beef still
contains part of the shoulder blade of the steer; a flat piece of bone perhaps
3 or 4 mm thick, about the same as the human skull. I asked my 14 yr old
son Paul to clean all the muscle tissue from the bone. When he had done so
we held the pink object up against the light and noticed that the shadow of a
finger could easily be noted in the diffuse red light coming through the

bone.”
(Jobsis-vander Vliet, 1999)

Let us first for the non-familiar reader/user with fNIRS to introduce briefly
this neuroimaging method. Functional Near-Infrared spectroscopy (fNIRS)
allows for investigating the brain activity in multiple cognitive or motor
tasks and with a high range of populations: from baby to pathological
subjects. NIRS is often considered to be a relatively young neuroimaging
method (which is not so true, when compared to other methods such as
fMRI or EEG for example). In fact, it was in 1831 that Bright discovered
transparency of human tissues properties. This phenomenon, discovered
thanks to a simple candle allowed highlighting what is called the
“transillumination” phenomenon. Nevertheless, it took about 150 years for

the necessary technological developments to allow Jobsis (Jobsis, 1977) to
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publish its first work on the development of a tool/device for the extraction
of cerebral hemodynamics parameters (for a review of these discovery see
Piantadosi, 2007). The first applications and publications will reach the
scientific community only a few years later in the 80's by the team of Marco
Ferrari (see Ferrari & Quaresima, 2012 for a review). It follows as often
with promising new methods a rapid development of tools and
instrumentation that are still growing up today. Currently, the most common
fNIRS device on the market is based on the so-called continuous wave
(CW) instrumentation. The physical principle and physiological
explanations of this method could be found in two previous dissertations of
our lab (Mandrick, 2013; Besson, 2017) and in multiple dedicated scientific
papers (Quaresima et al., 2012; Quaresima & Ferrari, 2016; Perrey, 2008,
2014; Scholkmann et al., 2014). Briefly as its name suggests, CW {NIRS
will emit a light source continuously, at least two (more for some devices)
separate wavelengths in the near-infrared spectral window. A receiver
placed in most cases 3 cm from the source will collect the light passing
through the biological tissues. The detected light is assumed to have reached
a depth of approximately half the interoptode (emitter-receiver) distance.
The use of two distinct wavelengths will make it possible to relatively
quantify the changes in oxygenated hemoglobin (O,Hb) and deoxygenated
hemoglobin (HHDb) (Figure 2D).
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Figure 2D: Absorption spectra for chromophores present in the human
body. The absorption spectrum of hemoglobin depends on its oxygentation
state. The near infrared optical window (in grey) of interest to monitor
O,Hb and HHb is located between wavelengths of 690 nm to 950 nm
(Strangmann et al., 2003).

One of the main limitations of fNIRS is its spatial resolution. Indeed this
technique based on the luminous emition thanks to optical fibers or
electroluminescent diodes allows only reaching the surface of the cortex and
not to the subcortical structures. Although the literature generally considers
that the photons travel a banana-shaped path through the brain, the recent
tools make it possible to simulate the spatial sensitivity of the fNIRS as
illustrated in the example plot (Figure 2E). The exponential development of
computers capabilities and so-called “open access big data” also allows for
the research field based on the fNIRS to be in perpetual evolution. Currently
when writing the present dissertation, the development of tools such as the
Atlas Viewer toolbox (Aasted et al, 2015) based on Monte-Carlo
simulations currently makes it possible to estimate the propagation of

photons relatively accurately and thus to approach more realistic cortical
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areas investigated when using fNIRS.

Figure 2E: Example of the use of the Atlas Viewer toolbox to simulate
photon propagation. Unlike some manuscripts generally considering a
unique measurement point of brain activity between emitter and receiver in
fNIRS, monte carlo simulation highlights a larger area which should be
considered in the analysis of fNIRS time series. Both O,Hb and HHb
signals are generally composed of multiple cortical areas contributions.
Colorbar reflect the sensitivity logarithmically of the brain surface
depending of optodes position (red = highly sensitive and bleu = low

sensitivity). The brain is oriented with the prefrontal cortex upwards.

In addition, the positioning of optodes relative to anatomical regions well
defined by MRI is greatly facilitated by using toolboxes such as NIRS-SPM
(Ye et al., 2009; NFRI function by Singh et al., 2005), HomER (Huppert et
al., 2009) and fNIRS Optodes’ Location Decider (Morais et al., 2018). It

allows getting the reproducibility between studies.

fNIRS studies trying to investigate brain function have based their analyzes
on previous methods developed in fMRI as both neuroimaging methods
measure indirectly the brain activation based on the neurovascular coupling
phenomenon. Furthermore, fNIRS was shown as a reliable method
(compared to fMRI) to provide relevant metrics by using multiple
paradigms in humans: for instance, evoked-activation patterns during
cognitive tasks (Cui et al., 2011), resting state functional connectivity (Duan

et al., 2012) and effective connectivity during a motor tapping task (Anwar
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et al., 2016).

To date, and in concern with our main hypothesis, the most commonly used
strategy for examining dynamic functional connectivity has been a sliding
window Pearson’s correlation approach (Chang and Glover, 2010;
Hutchison et al., 2013a, 2013b; Sakoglu et al., 2010). Although this analysis
has certain limitations (Hutchinson et al., 2013; Leonardi & Van De Ville,
2015; Hidrinks et al., 2016; Shakil et al., 2016), it is generally used
(sometimes as a first investigative analyzes) because of being both easily
understandable and computationally inexpensive. Combined with
appropriate preprocessing and classification analysis of the time series,
fNIRS could reveal interesting properties of the brain combined with
multiple motor tasks and in our case, can reflect the number of cortical brain

networks involved in a continuous motor task.
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Abstract:

In behavioral neuroscience, the adaptability of humans facing different constraints has been
addressed on one side at the brain level, where a variety of functional networks dynamically
support the same performance, and on the other side at the behavioral level, where fractal
properties in sensorimotor variables have been considered as a hallmark of adaptability. To
bridge the gap between the two levels of observation, we have jointly investigated the
changes of network connectivity in the sensorimotor cortex assessed by modularity analysis
and the properties of motor variability assessed by multi-fractal analysis during a prolonged
tapping task. Four groups of participants had to produce the same tapping performance while
being deprived from 0, 1, 2, or 3 sensory feedbacks simultaneously (auditory and/or visual
and/or tactile). Whereas tapping performance was not statistically different across groups, the
number of brain networks involved and the degree of multi-fractality of the inter-tap interval
series were significantly correlated, increasing as a function of feedback deprivation. Our
findings provide first evidence that concomitant changes in brain modularity and multi-fractal
properties characterize adaptations underlying unchanged performance. We discuss
implications of our findings with respect to the degeneracy properties of complex systems,

and the entanglement of adaptability and effective adaptation.

Keywords: adaptability, fNIRS, modularity, fractal properties, tapping
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1. Introduction

The huge ability of the brain to exploit its
inherent plasticity to adapt to intrinsic or
extrinsic constraints over different time
scales is stunning and vital (Bassett et al.,
2011; Fallani et al., 2014). Depending on
circumstances, adaptability may take the
form of robustness against changing
conditions as well as the form of
innovation and evolvability (Whitacre,
2010; Whitacre and Bender, 2010). In a
complementary way the brain allows for
preserving a given  cognitive-motor
performance in the face of tumor growth
and resection (Duffau, 2014) as well as
diversifying the repertoire of our cognitive-
motor behaviors with learning, for example
(Bassett et al., 2011; Dayan and Cohen,
2011). While some studies has focused on
the precise neuro-physiological
mechanisms sustaining the brain’s capacity
to adapt, others have provided insight into
more generic organization principles
inherent in complex systems, notably
through the assessment of brain network
connectivity (e.g., Tononi et al., 1994
MclIntosh et al., 1999; Sporns, 2012;
Tognoli and Kelso, 2014). From this latter
perspective, the brain’s  functional
organization has been conceived as a
dynamic balance between functional
segregation and integration of subparts of

the entire network (Friston, 1994; Tononi

et al., 1994; Sporns, 2013). At a given
observation scale, the brain network can
thus be assessed as a modular organization,
modules being defined as clusters that are
densely connected within but weakly
connected between them (Bullmore et al.,
2009; Bassett and Gazzaniga, 2011; Sporns
and Betzel, 2016). Moreover, complexity
is increased by the dynamic properties of
the functional connections within and
between modules, which may compose and
recompose depending on circumstances. In
particular, such connectivity scheme is
closely related to degeneracy, a key
property characterizing the structure-
function relationship in the brain (Tononi
et al., 1999; Noppeney et al., 2004).
Degeneracy refers to a many- to-one
structure-function relationship, with a
partial functional overlapping between
modules of the network: different parts
may perform the same function or
specialized functions under circumstances
(Edelman and Gally, 2001; Price and
Friston, 2002; Whitacre and Bender,
2010). Together, the modular and
degenerate  properties of  network
connectivity constitute an essential basis
for adaptability, supporting robustness and
adaptive changes facing various conditions
(Jirsa et al., 2010; Whitacre, 2010; Bassett
and Gazzaniga, 2011; Grefkes and Ward,
2014). The variety of the dynamical states

or network configurations involved to
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maintain a given function or performance,
whether at rest (Deco et al, 2011) or
during a task may thus basically reflect

adaptation to changing conditions.

Developing in parallel in a bio-behavioral
literature, a significant amount of research
focusing on the temporal dynamics of
diverse = macroscale variables (e.g.,
heartbeat intervals, Ivanov et al., 2001;
force production, Athreya et al., 2012; gait
and coordination dynamics, Hausdorff et
al., 1996; inter-tapping intervals, Torre and
Deligniéres, 2008) has considered that
fractal fluctuations are the hallmark of
underlying dynamic complexity and
system’s adaptability (Ivanov et al., 1998;
Gilden, 2001; Ashkenazy et al., 2002;
Kello et al., 2010; Manor et al., 2010;
Torre and Balasubramaniam, 2011;
Delignieres and Marmelat, 2013). Notably,
a breakdown of the fractal properties in
pathological and/or elderly compared to
young and healthy subjects has been
evidenced repeatedly, supporting the idea
that loss of fractal properties can be
considered a marker of the general loss of
adaptability coming along with aging and
disease (Goldberger, 1996; Hausdorff et
al., 1996; Peng et al., 2000; Blaszczyk and
Klonowski, 2001; Lipsitz, 2002). In
particular, in the context of neurological
disorders such as Parkinson, Huntington or

Alzheimer diseases, research programs

have been assessing the diagnostic and/or
prognostic (Mikikallio et al.,, 2001,
Goldberger et al., 2002; Hu et al., 2009)
power of fractal properties in sensorimotor
variables. Thereby studies have made
implicit but strong assumptions on a close
relationship between network alterations at
the brain level and fractal properties at the
effector level. In a complementary vein,
the fractal properties of motor variables
have been shown sensitive to experimental
restriction/augmentation of the sensorial
feedbacks available to subject’s
performance on given tasks (Slifkin and
Newell, 1999; Manor et al., 2010; Athreya
et al., 2012; Warlop et al., 2013). Finally,
the literature has evidenced that fractal
properties may be variable within a same
time series (multi-fractal series). Different
fractal scaling regimes may apply in an
intermittent way to different windows of
observation within the series, thus
reflecting variations in the system’s
underlying dynamic organization and
exploration of new solutions (e.g., Ivanov
et al.,, 2001, 2004; Nunes Amaral et al.,
2001; Hu et al., 2004; Stephen and
Anastas, 2011; Dixon et al., 2012; Dutta et
al., 2013). In fact, where comparison of the
Gaussian properties of any variable of
interest may indicate unchanged output
across groups or experimental conditions,
alterations of its fractal properties often

reflect underlying reorganizations in the
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performing system. To our knowledge,
however, the question of whether/to what
extent the multiple connectivity patterns
forming and reforming in the brain directly
spill over into the behavioral outcome
remains largely unanswered so far: When
the brain adapts facing changing conditions
to sustain steady motor-behavioral
performance, are the ad  hoc
reorganizations in network connectivity

reflected in some distinctive fractal

properties of behavioral variability?

In view of the above literature, the
degeneracy or intermittency of functional
brain networks may be reflected in the
multi-fractal properties at the behavioral
level. Imposing constraints by
manipulating the feedbacks available to
perform a motor task is likely to alter the
expression of degeneracy in the motor
output. Therefore, the purpose of the study
was to bridge levels of observation to
establish a direct relationship between
degenerate connectivity patterns enabling
adaptation at the brain level, and fractal
properties as their dynamic signature in the
sensorimotor outcome. Herein we consider
adaptability as the capacity to maintain a
given function or performance despite
changing constraints. Thus, a heuristic
experimental paradigm should allow us to
manipulate the experimental constraints

imposed to subjects in a given task without

these  manipulations  affecting their
performance, by virtue of the system’s
capacity to adapt. In this way, we should
be able to assess jointly the variety of
patterns of brain connectivity that are
involved  intermittently  during task
performance, and the dynamic fractal
properties of the task variable. Therefore,
we used the well-known finger-tapping
paradigm (Wing and Kristofferson, 1973),
where previous literature has showed that
experimental  deprivations of  visual,
auditory, or tactile feedbacks are not such

as to alter performance

tapping
(Aschersleben and Prinz, 1995, 1997;
Stenneken et al.,, 2006; Repp and Su,
2013). Following from the above, we
hypothesized that the variety and
intermittency of  brain networks
(degeneracy) involved in the task and the
dynamical fractal properties of tapping
series would evolve jointly as a function of
different  conditions  of  feedback
deprivation, while tapping performance

should stay invariant.
2. Materials and methods
Participants

Thirty-two healthy volunteers took part in
the study (9 women, 23 men, 26.9 + 6.3
years of age). All participants signed a
written  informed  consent  before

participating in the study. All participants
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were right-handed according to the
Edinburgh
(Oldfield, 1971) and reported normal

Handedness Inventory
hearing and normal or corrected vision.
None showed any sign of neurological
disease, nor reported extensive practice in
music. All procedures were approved by
the local ethics committee (IRB- EM:
1610C, Montpellier). All participants gave
written informed consent in accordance
with the Declaration of Helsinki for human

experimentation.
Experimental Design and Procedure

The experimental design was an
independent-group  design, with the
experimental factor being the numbers of
sensorial feedbacks the participants were
deprived  from.  Participants  were
randomized to one of the four following
conditions: (i) no feedback deprivation
(Control), (ii) deprivation of one feedback,
either visual, or auditory, or tactile (-1 FB);
(ii1)) simultaneous deprivation of two
feedbacks, either visual and auditory, or
visual and tactile, or auditory and tactile (-
2 FB); (iv) simultaneous deprivation of
three feedbacks, visual, auditory and tactile
(-3 FB). Participants were deprived of
visual and auditory feedbacks using a
sleeping mask and ear defenders,
respectively. The tactile feedback was
prevented by the means of a removable

striking surface at the place where the

index finger tapped (“‘air tapping” e.g.,
Aschersleben and Prinz, 1997). Each
participant performed three tapping trials
in the assigned conditions. As mentioned
above, none of the visual, auditory or
tactile deprivations should alter tapping
performance (Aschersleben and Prinz,
1995, 1997; Repp and Su, 2013), and no
study to our knowledge conveys strong
assumptions about any differential effect
of these conditions on the temporal
structure of tapping. Nevertheless, rather
than arbitrarily removing one of the three
feedbacks for each participant or for a
whole group, participants of the —1 FB
group performed one trial in each of the
visual, auditory and tactile feedback
deprivation conditions in a random order.
Likewise, participants of the —2 FB group
performed one trial in each of the visual-
auditory, visual-tactile, and auditory-
tactile deprivation conditions in a random
order. Participants of the Control and —3

FB groups performed three times the same.
The Tapping Task

The experiment was conducted in a quiet
room. Participants were sitting
comfortably on an adjustable chair, with
their dominant side forearm and palm of
the hand resting on a customized plinth
(570 x 160 x 50mm) on a table in front of
them. Subjects realized a tapping task

according to a conventional
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synchronization-continuation paradigm
(Wing and Kristofferson, 1973; Vergotte et
al., 2017): during the initial
synchronization phase, the tempo was
prescribed by a PC- driven auditory
metronome delivering 20 signals at a
frequency of 1.5 Hz (0.666 s inter-tap
intervals), known as a comfortable tapping
frequency (Fraisse, 1966; Torre and
Delignieres, 2008). Once the metronome
stopped, participants had to continue
tapping by maintaining the prescribed
tempo as accurately and regularly as
possible for the whole trial duration. The
duration of each trial was set to 6min 40s
so as to ensure a sufficient number of inter-
tap intervals to be submitted to subsequent
fractal analysis (Delignieres et al., 2006;
Eke et al.,, 2012). Between each of the

three trials, participants had a 2-min rest.
Data Collection
Tapping Performance

Movements of the index finger were
captured using a single-axis accelerometer
(15 x 15 mm) fixed on the nail so as to
minimize possible device-induced
sensorial feedbacks. Acceleration data
were collected using a Labjack U12 device
and stored via its software (LJStream

v1.07). The sampling rate was 300 Hz.

Functional Near-Infrared Spectroscopy

Measurements

Hemodynamic changes in the cortex
during the tapping tasks were measured by
two synchronized continuous waves (CW)
multi-channel functional near infrared
spectroscopy (fNIRS) devices (Oxymon
MKIII and Octamon, Artinis Medical
Systems, The Netherlands) with a
sampling rate of 10Hz. fNIRS is an optical
method using near-infrared light to
measure relative changes of
oxyhemoglobin (02 Hb) and
deoxyhemoglobin (HHb) in the cortex
(Scholkmann et al., 2014). In the present
study, a customized cap was used to place
beside the vertex (Cz) a 16-channels array
on three regions of interest [premotor
cortex (PMC), primary motor cortex (M1)
and supplementary motor cortex (SMA)]
on both hemispheres. Another 8-channel
array was placed on the prefrontal cortex
[PFC, Nazion (Nz) was the reference
point]. Due to different sensibility of light
penetration among brain regions using
fNIRS (Brigadoi and Cooper, 2015), the
inter-probe distance was fixed at 30 mm
for M1, PMC and SMA, and 35 mm for
PFC. After positioning all we used a 3D-
digitizer (Fastrack, Polhemus, United
States) to collect the location of each probe
for each subject. NFRI function (Singh et
al., 2005) included in the NIRS-SPM
toolbox (Ye et al., 2009) was used to
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extract the Montreal Neurological Institute
coordinates (MNI). The positioning of the
24  channels (MNI coordinates and

Brodmann area correspondences) can be
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Figure 3A: Localization of fNIRS probes, channels, MNI coordinates and Brodmann

correspondences. (A) Yellow: transmitters, blue: detectors and red: channels. (B) MNI

coordinates for each channel (n = 24) with x, y, and z coordinates. On the right, Brodmann

area correspondence (number, name and %) extracted from the NIRS-SPM toolbox (NFRI

function).
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Data Analysis
Motor Variability Analysis
Preprocessing of tapping data

Raw acceleration data were first low-pass
filtered using a Butterworth zero-phase
digital filter (Frequency = 15 Hz). Then, a
MATLAB in-house script (MATLAB
2014b, The MathWorks) for peak detection
was used to extract the onsets of the
subsequent finger taps. Series of inter-tap
intervals (ITT) were then computed as the
differences between subsequent tap times.
For each trial, the first twenty ITI
(corresponding to the synchronization
phase) were discarded, and series of 512
ITI in the continuation phase were retained
for further analyses. For each ITI series,
we computed the typical performance
variables used in tapping studies (Billon et
al., 1996; Repp and Su, 2013), namely the
mean, the coefficient of variation (CV) and

the linear drift over the trial duration.

Characterizing fractal properties of inter-

tap interval series

Fractal time series are basically
characterized by fluctuations with scale

invariant structure [i.e., obeying a power

law distribution X(ct) = CHX(t), where X is
the signal, ¢ is a constant, H is the fractal
exponent] and temporal long-range

correlations (meaning the autocorrelation

function of the time series decays as a
power- law without falling to zero). To
analyze the fractal properties of ITI series,
we used the Multifractal Detrended
Fluctuation Analysis (Ivanov et al., 1999;
Kantelhardt et al., 2002; MFDFA, Ihlen,
2012). MFDFA is derived from the
original Detrended Fluctuation Analysis
(DFA), which estimates the mono-fractal
properties of a time series (Peng et al.,
1995). In short, DFA exploits the diffusion
properties of the time series, analyzing the
relationship between the average amplitude
of fluctuations and the size of the
observation window within which these
fluctuations are measured. For fractal

series, a power-relationship characterized

by the mono-fractal exponent « € [0, 2] is

expected: in particular, for « = 0.5 the
series is white noise, for « = 1, the series
is so-called //f noise, and for 0.5 < o <1
the series is considered stationary and
containing  persistent  long-  range
correlations. By yielding a single fractal
exponent (« ) characterizing the average
fractal properties of a time series, the DFA
assumes that the fractal properties are
homogeneous over all scales of the entire

time series.

However, instead of being characterized by
a single homogeneous fractal exponent,

time series of bio-behavioral variables are
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often characterized by an inhomogeneous
distribution of variability (intermittent
fluctuations). The fractal exponent may
vary over time scales: the series is actually
characterized by multiple fractal exponents
(Ihlen and Vereijken, 2010) and with this
viewpoint the MFDFA was developed
(Kantelhardt et al., 2002; Ihlen, 2012).
Since we hypothesized that the system’s
adaptations to imposed task constraints
would be expressed through the variety of
fractal properties in ITI series, we opted
for MFDFA analysis. MFDFA basically
uses the same steps as DFA, but the
average amplitude of the fluctuations is

th order fluctuation

calculated wusing ¢
function, with ¢ varying from—10 to +10 in
steps of 0.5, whereas DFA computes the
amplitude of fluctuations only for g = 2. In
brief, the time series x(7) is first integrated
into X(k), and divided into Ny adjacent
segments of length n. Within each segment
(s=1,..., Nn) the local trend is then
subtracted from X(k). So, the amplitude of

fluctuations is computed for each

detrended segment according to:

Flns)=L S[xw-x,.®)] Eq.0)

N =(s-1)n+1

The variance is then averaged over all

segments to obtain the qth order

fluctuation function:

N’I

Fq(n)={NLZ[F2<n,s)]“} (Eq.2)

n s=1

If the series x(i) presents fractal properties,
the generalized Hurst exponent h(g) is
given by:

h(q)
F, (n)e<n™" (Eq. 3)

According to Kantelhardt et al. (2002), the
result of MFDFA can then be converted
into the classical multi-fractal formulation
using simple transformations, to be finally
summarized by the multi-fractal spectrum
representing F(a) as a function of a(g),
where F(a) 1s the fractal dimension (or
dimension of the subset of the series that is
characterized by a), and a is the Holder (or
singularity) exponent (see Figure 3B). Our
variable of interest is the width of the
multi-fractal ~ spectrum  (MF-Width),
meaning the range between the minimum
and maximum exponents a(q)
characterizing the time series, which
represents the degree of multi-fractality.
Figure 3B illustrates the distinction
between mono- and multi-fractal properties

of two experimental time series as assessed

by DFA and MFDFA.
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Figure 3B: Distinction between DFA and MFDFA analysis for mono- and multi-fractal time
series. (A) Two experimental time series of 512 pts: in blue, the time series is closely mono-
fractal; in red, the time series is multi-fractal. The Y-axis displays an arbitrary unit centered to
zero. (B) Results yielded by DFA for the two time series. The plot shows the size of
fluctuations F(n) as a function of the size n of observation windows in bi-logarithmic
coordinates. The mono-fractal exponent « is given by the slope of log(F(n)) vs. log(n).
According to the plot, both time series present long-range correlations and are characterized
by the same mono-fractal exponent (o = 0.74). (C) Multi-fractal spectra for the two time
series. The right-hand side of the spectrum accounts for the influence of large-amplitude
fluctuations (g positive), and the left-hand side accounts for the influence of low amplitude
fluctuations (¢ negative). The width of the multi-fractal spectrum is then calculated by the

difference o (q@)max — o (q)yin. Comparison of plots (B, C) shows that while both time

series present globally the same mono-fractal exponent, the blue series is close to mono-

fractal whereas the red one is clearly multi-fractal.

2.5.2 Brain Connectivity Analysis uploaded in MATLAB. We first converted

intensity data to optical density (OD).

IRS preprocessing. A common approach
JNIRS prep & PP Then we applied the moving standard

as described in Huppert et al. (2009) was
used to obtain O2Hb and HHb

deviation and spline interpolation methods
(SDThresh = 20, AMPThresh = 0.5,
tMotion = 0.5 s, tMask = 2 s and p = 0.99;
Scholkmann et al., 2010), combined with

concentration changes. We extracted 6min
of raw (light intensity) data after the end of

the metronome using  the  ARTINIS wavelet artifact correction (igr = 0.1;

software (Oxysoft v3.0.95). Data were then Molavi and Dumont, 2012) as
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recommended in Cooper et al. (2012) to
remove possible head motion artifacts. To
retrieve the relative concentration changes

(expressed in z M) of O2Hb and HHb, we

applied the modified Beer-Lambert law
(Kocsis et al.,, 2006) on OD data, by
including an age-dependent constant

differential path length factor (4.99 + 0.067

X Age0'814). The presence of a strong
cardiac oscillation (frequency peak around
1 Hz) in the power spectrum of O2Hb
signal indicates a good contact between the
optical probe and the scalp (Themelis et
al., 2007). 6.25% of all channels analyzed
did not satisfy this condition and were
discarded. For subsequent analysis, a band
pass zero-phase digital filter (4th order
Butterworth, cut-off frequency [0.009
0.08]) was used to remove physiological
noise like cardiac, respiratory, Mayer
waves and very low

(Scholkmann et al., 2014). A linear

frequencies

detrending was then used to remove

possible slow drifts.

Functional connectivity analysis. In the
line of assessing functional network
connectivity free from the constraint of
neuroanatomical a-priori assumptions, the
most commonly used method is based on
the bivariate Pearson’s correlation analysis

(Biswal et al., 1995): it consists in

computing the statistical dependency
between two or more time series to explore
the influence that one region of interest
exerts on others (seed based correlation
analysis), or in computing all possible
connections at the level of the entire brain
(whole brain correlation analysis), at rest
or during a task (Medvedev, 2014).

Then an N x N adjacency matrix was
constructed, reflecting the strength of the
correlation between each time series.
However, different studies applying such
analyses have implicitly considered that
patterns of connectivity were stationary
and computed an average matrix over the
whole scanning period. Instead, to assess
the dynamic functional connectivity (dFC)
between the present 24 fNIRS channels,
we used a sliding window correlation
analysis as proposed in the literature
(Hutchinson et al., 2013). For each subject,
this method yielded a number » of matrices
depending on the window size and a shift
(in samples), summarizing the evolution of
all connections between channels over
time. As there is no consensus in the
literature we wused three widespread
window sizes (30 s, 75 s and 120 s;
Hutchinson et al., 2013) and a shift of 1
sample (100 ms). Figure 3C illustrates the

pipeline for these analyses.
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Figure 3C: Illustration of the functional connectivity analysis for one representative subject.

(A) Extraction of OpHb fNIRS time series for all channels after preprocessing and band pass

filtering (cut off frequency [0.08 0.009]). (B) Sliding window Pearson’s correlation analysis

for window sizes of 30, 75, and 120 s. (C) Grand average correlation analysis between each

matrix. The upper plot shows communities detected for 360 s (3 communities in this

example). (D) Grand average matrix after putting in the order of community. Red squares

delimit each community.

Modularity analysis. Once obtained
the time evolution for all connections, one
of the main challenges in dFC analysis is
to classify the multiple networks obtained
with reliable metrics (Fallani et al., 2014).

A network is a collection of nodes

(vertices) and links (edges). All networks
are represented mathematically through
their connectivity (adjacency) matrices.
Rows and columns correspond to nodes
and entries denote links that are weighted.

Based on the graph theory analysis, one of
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the relevant methods to extract the number
of different communities involved during
the task is the modularity analysis
(Rubinov & Sporns, 2010; Newman,
2006). Modularity quantifies the degree to
which the network may be subdivided into
delineated and no overlapping groups. In
other words, modularity reflects strong
links within each community and weaker
links  between  communities.  The
Modularity (Q) for a partition in
communities m = [ml, .., mn] of a
weighted undirected graph is defined
(Rubinov & Sporns, 2010; Newman, 2006;

Watts, 2004) as:

QFr/nl,...,mn) =

) kY Kk
w 2ijeN [Wij - T]] Omimj (Eq.4)

where wj; is the weight of the edge between
node i and node j. The set of weights fits
into a matrix w that represents the graph G.
Here wy; is the correlation between the row
i and row j of functional O,Hb matrix.
Rows and columns of the square matrix G
are indexed by the nodes of G (that is the
time index of O;Hb matrix). When
connections are non-oriented (as in the
present study) this matrix G is symmetric:
weight w; = wj; and k; 1s the weight of
vertex 7 that is the sum of wy; for all

vertices j. The number /" is the total sum of

weights. Modularity optimization was
done based on the assumption that a graph
partitioning is the difference between the
number of edges within the partitions
found and the number of expected edges at
random between vertices of an equivalent
degree distribution (Newman, 2006). In
this formalism, the ratio kj"k;"/ [ gives
the null model, that is the probability that a
random edge with a random weight wy;
joins the nodes i and j (Newman, 2006).
Nodes of G are partitioned between the
sets ml,....mn. So, m; is the set of the
actual partition that contains vertex i. The
O (mi, m) (delta of Dirac) function for given
vertices i and j takes the value 1 if i and j
are in the same subset of the partition (that
is m; = m;), and 0 otherwise. Importantly,
in our study we used the modularity
analysis across all time steps and not for
each graph. We then considered that
distinct community detected should reflect
different network organization without
extract the exact topological organization.
We determined the communities in each of
these graphs by the algorithm that
maximizes the modularity (see Eq.4) from
the Brain Connectivity Toolbox (Rubinov

& Sporns, 2010).
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2.5.3. Statistical analysis

After normality testing (Lilliefors
test),

between-group differences were
tested using one-way ANOVA on the three
tapping performance variables (mean, CV
and drift of ITI series), and on MF-Width
with respect to our main hypothesis.
Secondarily we also checked for any
between-group difference in the mono-
fractal exponent (a). We used Kruskal
Wallis analysis, as the data were not
normally distributed for the three sliding
window sizes of community detection
analysis. We used Spearman’s correlation
between the number of networks detected

for each sliding window size (30 s, 75 s

and 120 s) and MF-Width of the tapping

3. Results
3.1. Tapping performance

All  samples of the

tapping
performance variables (mean, CV and
drift) were normally distributed. Our
experimental design was thought to impose
different levels of constraints to the
subjects without inducing differences in
tapping performance. The ANOVA applied
to the performance showed no significant
difference between groups for all variables
(mean: F(3,28)= 1.519; p = 0.230;
n® = 0.136, CV: F(3, 28) = 2316;
p = 0523; = 0.045, drift:
F(3, 28) = 0.634; p = 0.594; n* = 0.022,

Figure 3D).
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Figure 3D: Dotplot of tapping performance for the four groups. Left, mean inter-tap intervals

(ITT) produced. Middle, Coefficient of variation (CV) of ITI series. Right, drift of ITI series

during the task. Error bars represent standard error.
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3.2. Multi-Fractal Properties of Tapping

Series

MF-Width  samples were normally
distributed after log-normal correction. The
one-way ANOVA revealed a significant
group effect (F(3,28) = 2.822; p = 0.044;
n® = 0.253). LSD Fisher post- hoc showed

differences between the control group and

the —1 FB and —2 FB groups (p = 0.012
and p = 0.021, respectively). Figure 3E
summarizes the results obtained for the
multi-fractal properties of tapping time
series. Mono-fractal exponents («) were
normally distributed, and the one-way
ANOVA did not show any significant
difference

between groups

(F(3,28) = 0.845; p = 0.473; 1* = 0.071).
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Figure 3E: Degree of multi-fractality of ITI series (MF-Width) for the four experimental

groups. (A) Average multi-fractal spectrum for each group. (B) Dotplot MF-Width for the

four experimental groups; gray horizontal line represent the mean. Star reflects the significant

difference at p < 0.05.
3.3. Modularity Analysis

For all considered sliding window sizes,
Kruskal Wallis test showed significant
differences between Control and —1 FB, —
2 FB and —3FB groups
(for 30 s: H(3) =18.7, p=0.003; n° = 0.561;

for 75 s: H(3) = 18.5, p = 0.001;
n’ = 0.554; for 120 s: H(3) = 18.9;
p = 0.003; n° = 0.568). All corrected
p-values for multiple comparisons are
reported in Table 1. Results for each

window size are shown in Figure 3F.
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TABLE 1 | Corrected p-values of Kruskal Wallis analysis for each sliding window size.
(Significant differences are in bold.)

Window size
30s 75s 120 s
Control / -1 FB <0.009 <0.04 <0.03
Control / -2 FB <0.003 <0.0002 <0.02
Control / -3 FB <0.006 <0.02 <0.01
-1FB/-2FB 1 1 1
-1FB/-3FB 1 1 1
-2FB/-3FB 1 1 1
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Figure 3F: Box plots with median, quartiles, and individual dots for the number of

communities detected during the task for the four groups (Control, —1FB, —2 FB, and —3 FB),

for (A) sliding window of 30 s, (B) sliding window of 75 s, and (C) sliding window of 120 s.

Stars highlight significant difference at p < 0.05.

3.4. Relationship Between Modularity in
the Brain and Fractal Properties in

Behavior

With regard to our main hypothesis, results
showed a significant correlation (Figure

3G) between MF-Width in tapping series

and the number of brain networks detected
for window sizes 30s (rho = 0.277;
p = 0.028) and 75 s (rho = 0.275;
0.038). However no

p = significant
correlation was found for window size

120 s (rho = 0.086; p = 0.526).
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Figure 3G: Scatterplots showing the correlation (Spearman’s correlation) between the multi-
fractal properties (MF-Width) and the number of communities detected with modularity
analysis, for (A) window size = 30 s, (B) window size = 75 s, and (C) window size = 120 s.
The correlation is significant for 30 and 75 s windows. Yellow = control group, light blue =

-1 FB, blue = -2 FB, and dark blue = -3 FB group.

4. Discussion deprivation than for the control group; and

(iii)) MF- Width and the number of

The present study aimed to establish a
P Y networks involved in the task were

relationship between connectivity patterns . .
correlated for sliding windows of 30 and

underlying adaptation at the brain level and
ving acap 75 s. After discussing the suitability of the

fractal properties as their dynamic ) ) )
experimental design, we consider some

signature in the behavior. We hypothesized S
8 vP notable implications of our results at the

that the number of brain networks involved . ) )
behavioral and brain levels, respectively,

in the task and the multifractal properties
PTOP before focusing more specifically on the

of the tapping series would evolve jointly, brain-behavi lationshi
rain-behavior relationship.

as a function of different conditions of
feedback deprivation. We found that (i) the 4.1. Suitability of the Experimental Design

degree of multifractality (MF- Width)

. . . We considered the general definition of
increased significantly in groups where

adaptability as the capacity to maintain a
feedbacks were suppressed as compared to

. given function or performance despite
the control group; (ii) the number of

) ) changing constraints (De Wolf and
networks involved during the task was

) ] Holvoet, 2005), also referred to as
higher for groups with feedback

robustness (Whitacre, 2010). In this line,
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the experimental paradigm was required in
order to impose different experimental
constraints while leaving the global level
of task performance substantially close: the
system was thus deemed to handle
adaptations—notably reorganization in
brain—allowing for sustained
performance. To meet these requirements,
we used a finger-tapping task. A major
advantage of such task was to allow for a
simple manipulation of the amount of
sensory feedbacks available (-1 FB, —2
FB, —3 FB), while overall tapping
performance has previously been shown
insensitive to feedback manipulations
(Aschersleben and Prinz, 1995, 1997;
Repp and Su, 2013). That is, in the present
study feedback manipulation has merely
constituted a means to constrain the system
and induce putative internal
adaptation/reorganization, without any
specific hypothesis as regards the sensory
modalities. In this respect, our results are
congruent with the literature (Aschersleben
and Prinz, 1997), as we observed no
significant differences between conditions
of feedback deprivation in any of the three
variables commonly characterizing tapping
performance (mean ITI, CV and drift;
Figure 3D). Moreover, such tapping task
has previously been shown to entail fractal
properties in the ITI series produced

(Lemoine et al., 2006; Torre &

Delignieres, 2008). Our present results on

the mono-fractal exponent « are also in
agreement with the literature in this respect
(a = 075 £ 0.13 all groups taken
together, without significant differences

between groups).

As regards the experimental design, we
opted for an independent group design
rather than repeated measures. Although
this methodological choice obviously
entailed limitations of sample sizes for
each group, we deemed it preferable given
the lengthy duration of tapping trials
required for reliable fractal analysis
(Delignieres et al., 2006; Vaz et al., 2017).
Indeed, we aimed to observe the effect of
adaptations due to feedback deprivation,
which implied avoiding as much as
possible any putative effects of weariness
and attentional fluctuations that may also
alter the fractal properties of tapping series
(Damouras et al., 2010). Finally, in
contrast to previous studies we here
investigated a motor task with adaptations
being experimentally induced by different
levels of task constraints. In return, this
approach  implied some a priori
uncertainty as regards the precise effect of
experimental constraints especially on
brain connectivity, rather than a priori
controlled variations as possible in
simulation studies for example. All in all,
the consistency of our results with previous

literature leads us to consider the
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experimental ~ design  suitable, and
following  results  with  reasonable
confidence.
4.2  Multi-fractal ~ Properties  Reflect
Adaptations ~ Underlying  Unchanged
Performance

Further gain of precision in appraising the
functional significance of fractal properties
in behavioral variables is a still-open
challenge. A significant body of literature
has converged to the general idea that
mono- and multi-fractal properties are a
hallmark of the adaptability of biological
systems (Goldberger et al., 2002; Lipsitz,
2002). However, such conclusions mostly
originate from indirect cross- sectional
observations revealing loss of fractal
properties with aging, pathology, or
different  conditions  of  functional
impairment that are generally associated
with loss of adaptability (Manor et al.,
2010; Manor and Lipsitz, 2013). Though
adaptability (or loss of adaptability) may
indeed constitute a common denominator,
several potentially confounding effects,
including effective adaptations to achieve
task performance despite functional
impairment, might actually be the cause of

altered fractal properties (Dingwell and

Cusumano, 2010).

Our present results show significant

variations of multi-fractal properties as a

function of feedback deprivation imposed
to the system (Figure 3E) without
significant functional decrement (Figure
3D), which does not appear directly
relevant to the issue of adaptability. At a
first glance, this result may appear
congruent with previous studies showing
an alteration of mono-fractal properties as
a function of the involvement of sensorial
feedbacks in task performance (Slifkin and
Eder, 2012, 2014): it has indeed been
proposed that weaker mono-fractal
properties may be due to tighter
sensorimotor control mechanism exerted
on task- relevant variables (Dingwell and
Cusumano, 2010; Warlop et al., 2013).
However, we observed that the degree of
multi-fractality in tapping series increased
in  feedback deprivation conditions
compared to the control group. Mono- and
multi-fractal properties do not capture the
same features of time series: whereas
mono-fractal properties summarize a
homogeneous scaling behavior over the
whole time series, multi-fractal analyses
assess the possibly inhomogeneous scaling
regimes present in the series, and capture
the amount of intermittent changes in the
systems/subjects functioning modes (Ihlen
and Vereijken, 2010). Thus, this result
suggests an increasing involvement of
different modes of regulation to achieve
unchanged performance despite the
constraints.

imposed experimental
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Accordingly, we support the idea that
rather than globally reflecting the
adaptability of complex biological
systems, changes in multi-fractal properties
reflect effective adaptations underlying

invariance of functional outcome.

In this line, characterizing multi-fractal
properties in macroscale variables may
constitute a fine-grained analysis to
uncover masked adaptations underlying
goal achievement. From a broader
perspective, disentangling adaptability and
effective adaptation actually constitutes a
major challenge, as both come necessarily
together to a certain extent (Ulanowicz,
2002). Combining analysis at the task-
relevant observation level (e.g., the level of
motor performance) and an assessment of
the correlates occurring at underlying
observation levels (e.g., the level of brain

dynamics) may contribute to this end.

4.3. Changes in Brain Modularity Reflect

Functional Adaptation to Constraints

In this study, we hypothesized that the
variety and intermittency of functional
connectivity patterns would be influenced
by different conditions of privation of
sensorial feedbacks. Our results show that
dynamical reorganizations of the brain
network yielded multiple networks that
were intermittently involved during task

performance (Figure 3F), and that the

number of different networks involved
depends on the experimental group, i.e., on
the feedbacks subjects were deprived or
not. The literature studying brain networks
involved in a task has generally considered
that for a given function or performance
the functional organization of the brain is
stable over time. Accordingly, the purpose
of investigations has often been to extract
the typical network engaged in a given
task, using a number of computational
methods (Biswal et al., 1995; Witt et al.,
2008). Nevertheless, another part of the
literature studying the dynamic properties
of functional networks in resting state has
showed that the modular organization of
the brain evolves within the scanning
period (Chang & Glover, 2010; Hutchison
et al., 2013; Fallani et al., 2014) and that
such natural fluctuations are likely to
support the ability of quick adaptive
responses (Deco et al., 2011). Previous
studies using resting paradigm do not
enable to reveal the actual implementation
of such adaptability during a sensorimotor
task. These results complement previous
literature insofar as they show that the
variety of brain networks that are involved
in a single task depends on the
experimental constraints imposed to the
subjects. More precisely, the counter-
intuitive character of these results (i.e.,
increased number of networks with

decreasing feedbacks, Figure 3F) could be
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explained by the fact that, under
constraints, the brain navigates between
numerous networks to find out the solution
enabling achievement of its level of
performance (Kelso et al., 2013; Tognoli &
Kelso, 2014). Such explanation seems
consistent with previous studies showing
novel recruitment of cortical areas under
conditions of chronic sensorial deprivation
(blindness, deafness, Merabet and Pascual-
Leone, 2010), although adaptation to
transient experimental manipulations is not
directly

comparable  with  lifelong

alterations.

From a broader perspective, considering
that the brain possesses degenerate
properties (i.e., multiple networks could
perform the same function with some of
them being possibly latent, Edelman and
Gally, 2001), the networks involved in a
given function or performance can hardly
be grasped in a comprehensive way
without imposing internal and/or external
constraints so as to induce variation in
connectivity patterns (Price and Friston,
2002). This idea was initially developed in
theoretical papers, and few experimental
tasks actually allow imposing constraints
without changing the motor performance.
Electroencephalography, functional
magnetic resonance imagery and fNIRS
studies (Nedelko et al., 2010; Leff et al.,
2011; Muthuraman et al., 2012) showed

that the sensorimotor network (e.g., M1,
PMC, and PFC) is engaged in a simple
short finger- tapping task and is supposed
to reflect sensory integration, motor
initiation and production. Conversely, our
results suggest the existence of multiple
networks that allow for the carrying out of
a tapping task over time. Moreover, there
is no single network dedicated specifically
to tapping independently of the different
conditions under which tapping is to be
performed. However, these findings need
to be examined with caution due to some
methodological consideration. In this
study, we used modularity analysis (or
community detection, Newman, 2006;
Sporns, 2012 ; Sporns and Betzel, 2016) at
the macro scale level (between networks)
and not on each network. One can
hypothesize that the latter analysis would
make it possible to highlight similar
clusters of sub-networks linked in different
ways. In particular, it has recently been
shown that dynamic connectivity between
different brain regions is not only
dependent on the regions involved, but
also on the interconnections between
multiple EEG frequency bands (Liu et al.,
2015). Future investigations using EEG
combined with fNIRS would allow to
better understand the dynamic functional
organization of the brain, and the role of
multi-frequency connections in network

coupling. It has been proposed that the

70



modular organization of the brain is
subtended by a relatively rigid network
composed of nodes distributed in each sub-
module (Sporns, 2013). Nevertheless,
although the origin of temporal
fluctuations in dFC estimates remains
largely unknown, sliding window analysis
was shown as a promising method to
highlight dynamic connectivity in multiple
neuroimaging methods. As the optimal
window size to compute correlation
coefficient is still under debate (Hutchison
et al., 2013), we used three-window sizes
(30, 75, and 120s, see Figure 3F) to be
confident in the results obtained. We found
a strong statistical difference between the
control group and other  groups
independently of the window size. This
confirms our hypothesis and this allows us
to confirm that our results are not
dependent on the window size chosen (e.g.,
Hutchison et al., 2013; Hindriks et al.,
2016). An additional step of our promising
results would be to extract the
characteristics of the different networks
implemented with more fine-grained tools
like those proposed in fMRI (Bassett and
Bullmore, 2006; Bassett and Gazzaniga,
2011; Papo et al., 2014).

4.4. Bridging the Gap Between Brain and

Behavior

The literature has mostly been studying the

dynamics of cerebral networks on one

hand, and the temporal structure of
behavioral variability on the other hand,
though both communities share key
concepts coming with the complex system
approach (Bullmore et al., 2009; Werner,
2010; Whitacre and Bender, 2010;
Sleimen- Malkoun et al.,, 2014). Thus,
attempts to link these two approaches seem
valuable (Price and Friston, 2002; Friston
and Price, 2011). In the present study, we
provide novel evidence that the number of
networks involved during a motor task in
four experimental conditions significantly
correlates with the degree of multi-
fractality found in the sensorimotor
outcome. This correlation was obtained for
two of the three window sizes used (30 and
75s). Previous literature has highlighted
that the dynamics of  functional
connectivity increase with diminution of
the window size, due to the non
stationarity of Blood Oxygenation Level
Dependent or fNIRS signals for short
windows with an increase of transient
nodes that were unobserved for large
window size (Hutchison et al., 2013).
Therefore it is not surprising that fewer
networks were detected for our largest
window (120 s). As a consequence the
correlation between the number of
networks and the multi-fractal properties of
tapping series was low and not significant
for the 120 s window as compared to the

smaller windows.
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Previous theoretical and simulation
approaches had shown that degeneracy
plays a central role in the link between
complexity, adaptability, and robustness
(Whitacre, 2010) and that degeneracy may
underlie fractal properties in the outcome
variables (Delignieres and Marmelat,
2013). Our result provides experimental
support highlighting the link between
theoretically related properties across two
different scales of observation, namely
between degeneracy at the level of brain
connectivity and measures of complexity at
the level of behavior, both being
considered tightly related with systems
adaptability. As such this result may be of
particular relevance for translational
research, since a significant part of
literature has proposed to assess the
diagnostic and/or prognostic power of
fractal properties in sensorimotor variables
in neurodegenerative pathologies (e.g.,
Parkinson or  Alzheimer  diseases)
conveying the strong but so far
experimentally unproven assumption that
alterations of the brain network would
come out in the fractal properties of
behavior. Consequently, we consider that
(1) fractal properties in macroscale
variables are (at least partly) dependent on
the degenerate organization properties of
the brain, and (ii) concomitant changes in
network connectivity and multi-fractal

properties in behavioral variability reflect

(at least partly) effective adaptations
underlying invariance of functional

outcome.

Finally, the system’s ability to adapt and
effective adaptation go hand in hand
(Ulanowicz, 2002), the first being a
necessary condition for the latter, the latter
in turn affecting the first. To be able to
disentangle the brain and behavioral
correlates of adaptability and adaptation is
of importance seeing that evolution toward
pathological states or advancing age often
come along with a decreased ability to
adapt, up to functional loss (Lipsitz, 2002;
Manor et al., 2010; Stergiou et al., 2016).
The joint analysis of motor variability and
brain dynamics, as well as the use of an
experimental paradigm that allows to
gradually constraining the system so as to
induce adaptations (maintenance of
performance) up to the loss of further
capacity to adapt (decrement of
performance), may contribute to this end.
Extending the present tapping paradigm
may be appropriate in this view since, in
contrast to visual, auditory or tactile
feedbacks,  further  deprivation  of
proprioception has been shown to decrease
tapping performance (Stenneken et al.,
2006). Our present experimental design
was not conceived such as to allow for

investigation of putative differential effects

among sensory modalities (e.g., auditory
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and visual cortex), and we limited
ourselves to the  assessment of
sensorimotor and prefrontal regions.
Future studies using a larger number of
channels (whole brain) may examine in
how far the networks dynamics underlying
finger tapping are affected depending on

the sensory modality suppressed.
4.5 Conclusion

To what extent the multiple networks in
the brain restructure with some distinctive
properties of motor variability has
remained unanswered so far. Both
conceptual considerations and simulation
approaches  have  provided  strong
indications for such relationship but
experimental evidence has been lacking.
Our present work evidences a significant
correlation between the number of brain
networks and the degree of multi-fractality
in tapping. We believe that this finding
constitutes a step further toward bridging
the gap between the degenerate
connectivity patterns at the brain level and
the properties of variability at the
behavioral level. We anticipate that future

work, possibly combining simulation and

experimental methods like multimodal

neuroimaging, will provide means for
larger and/or more fine-grained ranges of
variation in the number of brain networks
involved and the fractal properties of
motor performance, so as to further

consolidate our present findings.
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The second study of the dissertation indicated a possible link between multi-fractal properties
at the macroscopic scale of observation (behavioral response) and intermittency of dynamic
functional connectivity in the brain (the number of brain networks involved, Figure 3G).
Nevertheless, some methodological limitations should be noticed and could be taken into
account in the future. As the fNIRS used was not composed of short channels regressors or
external physiological triggers, our fNIRS signals were possibly influenced by confounding
factor such as the scalp blood flow increase without evoked cerebral activation. Although we
are aware of this possible limit, we currently have no opportunity with the tools in our
possession to address this factor but we can nevertheless think that this phenomenon would
remain constant in the accomplishment of our task in particular because it’s not expensive
physiologically. Nevertheless, our study constitutes the first stone for future investigations
linking both the dynamics of the networks used in carrying out a motor task and the variables
extracted at the behavioral level. It opens up the possibility to better distinguish effective

adaptation in the achievement of a task from the adaptability potential.

Our positioning in this work concerning the distinction between the potential of adaptability
and adaptation (effective or not) leads us to consider in a complementary way in future
studies the system's evolution capacities (Figure 3H) in conjunction with its robustness as
studied in the two studies presented above (see chapter 2 and chapter 3). This distinction will
therefore be essential especially in the quest for the discovery of sensorimotor markers of
health. Moreover, from a more systematic point of view, the use of the fNIRS alone does not
allow to investigate different levels (particularly cerebral) to test the biological hypothesis of
a dynamic cascade organism or self-organized criticality. Finally the key concept at the heart
of the hypothesis of our previous study (Degeneracy, Chapter 3) questions in view of our
results. In fact, in their two original studies, Deligniéres & Marmelat (2011, 2013) proposed
that a minimal number of networks “are necessary” to produce long-range correlated series.
Although our results concerning the functional dynamics investigated by fNIRS put forward
for each of our experimental groups several networks, we can ask the question of the possible
“minimum number”. If this value (or variable) seems relevant, the tool and the method to

quantify it faithfully remain suspended.

While we are among the first team to our knowledge to compute dynamic functional
connectivity with fNIRS during a continuous motor task, it seems critical to develop more

advanced approaches to minimize certain limits when using the Pearson correlation. As
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highlighted in some studies (Hutchinson et al., 2013; Hidrinks et al., 2016), there are possible
methodological improvements concerning the functional connectivity analysis used (Bivariate
Pearson correlation analysis). A first limitation is the choice of the window length we set a
priori to compute the correlation coefficient. While we used three window lengths (30 s; 75 s;
120 s), there is currently no consensus on the optimal window especially for an application on
biological signals that are reflected to be nonlinear. The second limitation is the possible
multiple interactions between the large number of time series obtained in a single recording at
multiple possible overlapping brain space. Like mass univariate analysis, bivariate Pearson’s
correlation could be subject to the transitivity effect (the link between signal x and signal y
could be mediated indirectly by a third signal z). Multivariate analysis seems therefore a
potential promising approach to limit the possible effect of transitivity in connectivity
analysis. Finally, maybe more important from a fundamental point of view, Pearson’s
correlation is not able to reflect the directionality of the link between time series. A high level
of correlation could be sustained by a bi-directional link between two regions of interest or a
high dependency of one region to another. Taking into account the information flow
propagation is a step forward simple description of a non-directed network and was the
purpose of multiple research teams since twenty years. Although methods commonly used in
fMRI such as dynamic causal modeling is an interesting approach, this one is based on
structural connections prerequisites to create and validate the implemented model. Another
approach, based on an autoregressive model quantifies the directionality of the link between
two (or more) time series without being dependent on knowledge of the underlying system
(model free). This approach initially proposed by Granger (1969) is the subject of a box (box
3) and will be the initial starting point of some methods proposed in the following study.
Given the above limitations of our previous approach, we decided to apply a recently
published method to highlight better the dynamic directional connectivity between brain

signals from fNIRS measurements during the finger-tapping task.
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Figure 3H: Diagram representing the key words studied in the study 2 of the dissertation. This

2" study investigated the concept of degeneracy and its intermittent properties.
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Box 3

Granger Causality

“In this paper, we analyze fundamental properties of Granger causality and
illustrate statistical and conceptual problems that make Granger causality

difficult to apply and interpret in neuroscience studies”
(Stokes & Purdon, 2017)

“However, these claims rest, respectively, on an incomplete evaluation of

the literature, and a misconception about what GGC can be said to measure”

(Barnett et al., A response to Stokes and Purdon, 2017)

When are two “structures” connected? It is by this essential question that we
introduce this box. We know today from numerous studies published since
the late 90's that cerebral functioning is organized within a network (Friston
et al., 1993, 1995, 1997; Biswal et al., 1995). Many studies (including those
presented in Chapter 3) have relied on correlation analyzes not only because
it is one of the oldest methods applied in fMRI (Biswal et al., 1995) but also
because it is relatively simple to understand and study in most
undergraduate courses. Nevertheless, this method has already been shown
for a long time to be limited and inadequate in most cases (Baccalda &
Sameshima, 2001). One of the first drawbacks encountered is the transitivity
problem indicated previously. Although two signals can be strongly

correlated, this bivariate analysis does not make it possible to reflect if this



correlation is driven by a third element unmeasured or not take into account
due to the mathematical analysis. Moreover, this approach does not make it
possible to highlight directionality in the link uniting two structures. Are
they interrelated or does one “structure” direct the other? A visual
comparison between networks extracted from correlation analysis and
multivariate granger causality analysis is presented in figure 31 for one

representative subject during two conditions (resting state and motor task).

It is one main reason that led Granger (1969) to develop a mathematical
analysis to assess directionality based on a conceptual idea proposed a little
earlier by Wiener (1956). The relatively simple idea underlying this
mathematical formalism is that (i) a cause occurs before it’s effect and (ii)
some form of causality between a time series x(n) to another series y(n) may
be at play if knowledge of x(n)’s past observation is helpful in predicting the
actual value of y(n). In fact, with this approach, we can only say that the
past observations of x(n)’s help to predict the value of y(n). This is the basis
of this mathematical approach. The term “causality” in the sense of Granger
could then be seen as a confounding with the common sense of causality.
Studies therefore proposed to use the term “G-causality” or “Granger-
Geweke Causality” (Sameshima & Baccald, 2014; Barnett & Seth, 2014;
Barnett & al., 2017).

G-Causality is a popular and powerful analysis method in neuroscience
(Seth et al., 2015) although there are debates in the literature (see for
instance an article by Stokes & Purdon in 2017) especially in the
interpretation of the results obtained with this method. These last authors
(Stokes & Purdon, 2017) first highlight the fact that Granger Causality and
how it is commonly used can be severely biased by some preprocessing
steps or of high variance (inter and intra subject variability). Second, G-
Causality does not reflect the structural and true causal mechanisms of a
system (Friston 2011). Nevertheless, following the publication of this
article, many voices rose and criticized this article in a relatively virulent
way (see for exemple Barnett et al., 2017; Faes et al., 2017). This last

reference in particular is very aggressive as evidenced by these two quotes:
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“We think that Stokes and Purdon use a formulation of G-Causality which is
outdated”

“It would be a pity if this paper, even if written in good faith, became a
wildcard against all possible applications of GC, regardless of the large
body of work recently published which aims to address faults in

methodology and interpretation.”

To conclude, analyzes such as those initially proposed by Granger suffer
from certain limitations in the same way as any analysis used whatever the
field of investigation. Nevertheless, many mathematical developments make
it possible to limit the problems posed by these approaches, in part for
example with the toolbox proposed by Barnett & Seth (2014) or dynamic
“Causality” (Anwar et al., 2013; Zanin & Papo, 2017).
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UNDIRECTED DIRECTED
FUNCTIONAL CONNECTIVITY FUNCTIONAL CONNECTIVITY
(CORRELATION) (GRANGER CAUSALITY)

REST

TASK

Figure 3I: Comparison between undirected functional connectivity (FC) and
directed FC performing resting state condition (upper panel) and ergocycle
task (lower panel) for one representative subject. Data represented for each
condition/method was threshold at the 5% of the strongest edges. Edges are
bi-directional (non directed) on the left part of the figure (Correlation) and
bi-directional or unidirectional (directed) on the right part (Multivariate
Granger Causality analysis). Data as part of a Master study (L. Borrot,
2018).
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Abstract:

Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging method for
investigating networks of cortical regions over time. We propose a directed effective
connectivity method (TPDC) allowing the capture of both time and frequency evolution of the
brain’s networks using fNIRS data acquired from healthy subjects performing a continuous
finger-tapping task. Using this method we show the directed connectivity patterns among
cortical motor regions involved in the task and their significant variations in the strength of
information flow exchanges. Intra and inter-hemispheric connections during the motor task
with their temporal evolution are also provided. Characterisation of the fluctuations in brain
connectivity opens up a new way to assess the organisation of the brain to adapt to changing

task constraints, or under pathological conditions.
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1. Introduction

Functional near-infrared spectroscopy
(fNIRS) is a non-invasive imaging
technique that has become increasingly
popular for brain function research in
recent years (Ferrari & Quaresima, 2012;
Scholkmann et al., 2014). Based on the
exploration of hemodynamic signals, in the
same way as functional magnetic
resonance imaging (fMRI), and its blood
oxygen level dependent signal, fNIRS
provides information on the functionally
evoked changes in cortical oxyhemoglobin
(HbO) and deoxyhemoglobin (HHbD)
concentrations with relatively low spatial
resolution. However, due to several
technical advantages (high temporal
sampling rate, portability and ability to
perform long data acquisitions), fNIRS has
been extensively used to measure the
magnitude of brain activation during motor
or cognitive tasks, in both healthy and
diseased populations (Gervain et al., 2008;

Derosi¢re et al., 2014; Sato et al., 2013).

Nevertheless, as highlighted by some
authors, the brain is a complex system par
excellence characterised by the co-
existence of functional segregated parts of
the brain, and functional integration among
these parts (Sporns, 2012; Tononi et al.,
1994).  Functional specialisation, or

segregation, implies that elements of the

brain network tend to organise into
separate, statistically independent areas. It
refers to the idea that parts of the brain
may, for example, specifically cope with
the cognitive (Stoodley & Stein, 2013),
perceptual (Price, 2012) or motor (Sun et
al., 2007; Rao et al., 1996) components of
a certain task. Functional integration, on
the other hand, refers to the way these
different components are connected to
become statistically interdependent to
some degree (Sporns, 2013). For example,
an fNIRS study (Bajaj et al., 2014) in
healthy subjects showed different changes
in the link between motor cortex (Ml),
premotor cortex (PMC) and supplementary
motor area (SMA) between various finger
movement task conditions. By using fMRI,
Grefkes and Fink (2011) showed relevant
changes in intra- and inter-hemispheric
brain links within the motor network after
stroke. Therefore, a key challenge in
neuroscience, in particular for portable and
promising neuroimaging techniques such
as fNIRS, is to move beyond identification
of regional cortical activations toward the
characterisation of interactions between
brain areas (Seth et al., 2015).

Connectivity analyses of the brain have
been the object of a growing interest in
neuroimaging studies in recent years, and
applied to both electrophysiology-based
(electroencephalography (Lehmann et al.,

2012); magnetoencephalography (Stam et
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al., 2007; Muthuraman et al., 2014)) and
hemodynamics-based (fMRI (Van Den
Heuvel & Pol, 2010; Anwar et al., 2016);
fNIRS (Mesquita et al., 2010; Anwar et al.,
2013)) modalities. In this line, authors
have often used bivariate Pearson
correlation analysis in the time domain, or
its counterpart, namely coherence in the
frequency domain. While these analyses
have shown their ability to distinguish
between healthy and diseased populations
(Van Meer et al., 2010; Park et al., 2011),
they present limitations in two notable
respects: first, they do not take into
account the directionality of the link
between two regions of interest.
Furthermore, the time-series analysis of
brain activity is typically limited to only
two signals (bivariate analysis). That is,
these types of analyses are known to not
provide a comprehensive assessment of
inter-channel interactions, as they ignore
influences from other sources (Baccala, &
Sameshima, 2001).

In contrast to wundirected functional
connectivity, directed effective
connectivity (EC) describes the influence
that one region of the brain exerts on
another. The two most commonly
employed methods to analyse the directed
influences within the whole brain network
are Dynamic Causal Modelling (DCM)
(Stephan & Friston, 2010) and Granger-

Causality Modelling (GCM) (Seth et al.,

2015; Granger, 1969). DCM is based on a
statistical technique to highlight how well
a model fits the data. In similar approach,
structural equation modeling (SEM) (Zhu
& Godavarty, 2013) comports a model
where parameters are connection strengths
or path coefficients between different
variables. DCM and SEM were shown to
product the same results (Penny et al.,
2004). Because these two fixed models
containing regions of interest need to be
predefined, unknown brain areas or
connections between areas cannot be
investigated. While DCM and SEM are
methods based on

model driven

assumptions  between intrinsic  and
extrinsic linked areas, the advantage of
GCM is that it does not require any a
priori information, as it completely relies
on the multivariate
(MVAR) modelling of the recorded brain

signals (Friston, 2009). Due to their

auto-regressive

assumption-free nature, GCM  based
methods are complementary to DCM
(Friston et al., 2013). The first studies
addressing directed connectivity have
adapted Granger’s formalism (Geweke,
1982; Seth, 2010), considering that some
form of causality from a time series x(n)
onto another time series y(n) may be at
play, if knowledge of x(n)’s past behavior
proves helpful in predicting y(n). The two
derived  from

time-domain  methods

Granger causality, the conditional Granger
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causality (CGC) and partial Granger
causality (PGC) (Guo et al., 2008), are
particularly suitable for signals with very
low signal to noise ratio. However, in
biological time series, and notably in brain
analysis, need is to deal with unmeasured
latent  variables and environmental
(exogenous) inputs. For some signals, like
local field potential signals, PGC has been
proven more successful than CGC, notably
in controlling for a third time series that
could falsely cause connection between
two series of interest (Roelstracte &
Rosseel, 2012). However, CGC and PGC
provide causality information only in the
time domain (Hesse et al., 2003).

Aside from time domain causality
methods, frequency-domain  causality
methods are able to look at causality at a
particular frequency. Frequency-domain
causality measures are also tolerant of
wide ranges of noise. The directed transfer
function (DTF) can quantify causality
between different time series, but is unable
to differentiate between direct and indirect
connections (Kaminski et al., 2001) (where
the connection x to y could be mediated by
z). Therefore, two new developments of
DTF methods were proposed, namely the
directed DTF (Korzeniewska et al., 2003)
and, recently, the non-normalized DTF,
which overcomes the drawbacks of DTF

and allows discrimination between the

direct and indirect connections (Blinowska

et al., 2016). Similar to DTF, partial
directed coherence (PDC) is based on the
Fourier transformation of the MVAR
coefficient. Unlike DTF, PDC can
differentiate between direct and indirect
connections and is currently the most
widely used method in biomedical signals.
Its major shortcoming, however, is that any
additional source affects the strength of
already present sources, due to the fact that
normalisation in the equation of PDC is
done with respect to the sources
(Sameshima & Baccala, 1999). Yet, the
generalised partial directed coherence can
accommodate differences in the individual
variances of the subjected time signals
(Baccalda & Sameshima, 2007). The re-
normalised partial directed coherence
allows overcoming the limitation related to
the addition of the source without requiring
any frequency dependent significance level
(Schelter et al., 2009).

Directional information provided by the
aforementioned methods offers the
potential for mapping directed influences
between regions of the brain. However,
different studies applying such analyses to
fNIRS data (Holper et al., 2012; Zhang et
al., 2014; Medvedev, 2014) have implicitly
considered that patterns of connectivity
were stationary within the scanning period:
indeed, analysing the global (average)
connectivity pattern over a relatively long

time session conceals its temporal
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evolution during the task. Though
intermittence between functional
integration and segregation in the brain
leads to the idea that information flows
between two brain areas are highly
dynamic. Recent studies have shown that
brain connectivity also evolves over time
in a resting state, as it may do in
continuous tasks (Chang & Glover, 2010;
Hutchinson et al., 2013). Such dynamic
brain organisation is actually a key
property of any complex system that shows
high adaptive capacities (Sporns, 2012),
and time-frequency analyses can provide
insight into it.

Here, we proposed to perform EC analyses
based on a novel method applied in fNIRS,
namely time-resolved partial directed
coherence (TPDC) (Anwar et al., 2016;
Anwar et al.,, 2013). TPDC has been
developed and applied to EEG, MEG or
fMRI signals (Anwar et al., 2016). This
method is based on directed effective
connectivity to compute a time-frequency
analysis established on an MVAR model.
Allowing the application over time of
multiple PDC (Baccald & Sameshima,
2001), TPDC makes it possible to account
for the evolutions over time and frequency
bands of the information transfer directed
between multiple time series, i.e. between
regions of interest, for probing diseased
(Muthuraman et al., 2015; Choisa et al.,
2017) or healthy brain (Muthuraman et al.,

2014; Anwar et al., 2016).

To fully understand the functioning of the
brain and its adaptive capacities, we have
to take into account its dynamic
organisation through the time-frequency
evolution of connectivity patterns. The
purpose of this study was therefore (i) to
expose the TPDC method on fNIRS
signals and (ii) to reveal the ability of the
proposed method in assessing the time-
dynamics of brain connectivity during a
simple motor task performed by healthy
subjects. To this end, we first present
experimental fNIRS data collection.
Second, we develop the TPDC
computation steps. Third, we show results
of this example application of the TPDC
effective

connectivity  approach  to

experimental fNIRS data.

2. Materials and Methods

2.1 Participants

Six healthy volunteers took part in this
study (aged 28.6 + 3.8 years). All
participants gave written informed consent
before participating in the study. All
participants were right handed according to
the Edinburgh Handedness Inventory
(Oldfield, 1971) and reported normal
hearing and normal or corrected vision.
None had any sign of neurological disease,
nor reported extensive practice in music.

All procedures were approved by the local
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ethics committee and complied with the
Declaration of Helsinki for human

experimentation.

2.2 Experimental design

The experiment was conducted in a quiet
and dimly-lit room. Participants were
seated comfortably on an adjustable chair.
They were instructed to remain relaxed and
to refrain from extensive head motion.
After positioning fNIRS probes over the
head, fNIRS data recording was initiated,
with a one-minute resting state (quiet
baseline) while the subjects’ eyes were
open. It allows having the best possible
baseline condition before the experimental
task. Then, participants were asked to
perform a continuous (6 minutes and 40
seconds) tapping task, according to a
conventional synchronisation-continuation
paradigm (Wing & Kiristofferson, 1973).
During the initial synchronisation phase
(around 15 seconds), the tapping tempo
was prescribed by a PC-driven auditory
metronome delivering 20 signals at a
frequency of 1.5 Hz. Once the metronome
stopped, participants were requested to
continue tapping by maintaining the
prescribed tempo as accurately and
regularly as possible for the whole trial
duration. Data from the last 6 minutes of

each trial was submitted for analysis.

2.3 Data collection

Changes in HbO and HHb were assessed
using two continuous wave multi-channel
near infrared spectroscopy  systems
(Oxymon MKIII and Octamon, Artinis
Medical Systems, The Netherlands) at two
wavelengths (Oxymon = 763 and 855nm,
Octamon = 742 and 848nm). The sampling
rate was set at 10 Hz. In the present study,
we used 10 transmitters (pulsed laser) and
4 receivers (avalanche photodiode), which
were coupled through fiber optic cables
mounted onto a customised head cap. The
16-channel array with a transmitter-
receiver spacing of 30 mm extended on
three regions of interest: PMC, M1 and
SMA in both hemispheres. In addition, the
2" 8-channels system (Octamon, inter-
probe distance of 35 mm) covered the
dorsolateral (DLPFC) and orbitofrontal
(OFC) cortices in both hemispheres. After
positioning the head cap on the vertex
location (Cz), a 3D-digitiser (Fastrack,
Polhemus, United States) allowed the
collection of the 24 probe positions (X,y,z
space). In the present study, based on the
selected 5 regions of interest (M1, PMC,
SMA, OFC and DLPFC), 18 channels
were retained for analysis. NFRI function
(Singh et al., 2005) was used to extract the
Montreal Neurological Institute
coordinates (MNI). Localisation, MNI
coordinates and Brodmann area (Chris

rorden’s MRIcro) correspondences are

reported in Figure 4A.
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Ch MNI Coordinates BA (%)
x y z

1 -54 -17 58 4(15) -6 (85)

2 -38 -19 71 4(01) -6 (99

3 -42 -40 67 3(31)-4(64)-6(5)

4 =22 -20 77 6 (100)

5 =25 -43 75 4(41)-6(59

6 8 =22 78 6 (100)

7 13 -24 79 6 (100)

8 30 -24 75 6 (100)

9 28 -45 74 4(48)-6(52)

10 47 -24 67 409 -691)

11 44 -45 65 3(8)-4(72)-6(20)
12 60 -26 54 3(1)-4(46)-6(53)
13 45 57 14 10 (21) —45 (1) —46 (78)
14 24 65 26 9(6)-10(73) -46 (21)
15 26 69 16 10 (1)

16 =25 62 27 9(4)—10(47) - 46 (49)
17 -26 67 16 10 (90) - 46 (10)

18 -46 51 15 45 (30) - 46 (70)

Figure 4A: On the left, fNIRS probes location using BrainNet Viewer (Xia et al., 2013) with

transmitters (in red), receivers (in blue) and channels (Ch, in yellow). On the right, mean MNI

coordinates and Brodmann area (BA) correspondence for each channel.

2.4 fNIRS preprocessing

First, extracted
intensity) from the ARTINIS software
(Oxysoft v3.0.95). Data was then uploaded

using a MATLAB (The MathWorks) in-

we raw data (light

house script, and converted to optical
density (OD) (Huppert et al., 2009) defined
by:

Aes
AOD‘U(t)=Ln[cD ”(0)} (1)

where @ is the intensity, i is a source

position, j is a detector position, and 4 the

wavelength of light. Next, we applied the
moving standard deviation and spline
interpolation methods (Scholkmann et al.,
2010) (SDThresh = 20, AMPThresh = 0.5,
tMotion = 0.5s, tMask = 2s and p = 0.99),

and then wavelet artefact -correction
(Molavi &  Dumont, 2012) (with
probability threshold o = 0.1) as

recommended (Cooper et al., 2012), to
remove possible motion artefacts. To
access HbO and HHb  relative
concentration changes (Conc) (expressed

in uM) we applied the modified Beer-
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Lambert Law (Kocsis et al., 2006) to the
OD data that included an age-dependent
constant differential path length factor
(4.99+0.067%Age’*'")  (Duncan et al,
1996).

White noise signal is one of the most
harmful effects in connectivity analysis
and can create spurious links, whether false
positives or false negatives. As a
consequence, we used a simple pre-
processing step computing the power
spectra to ensure the discrimination of
noisy signals. For that purpose, we
obtained the power spectra of each HbO
time series (more sensitive to physiological
noise than HHb) for each channel:
detection of a peak value around 1Hz in
the time series reflecting the presence of
the heartbeat in the {NIRS signal
(Themelis et al., 2007), was considered to
indicate a good contact between the optode
and the scalp. By running this pre-
processing, 2 channels were removed in
our 6 subjects, leaving 106 channels (18
channels per subject, minus 2 bad
channels) to be used for the subsequent
TPDC’s analysis.

Subsequently, a linear detrending was used

to remove slow drifts of Conc data, and
time series were centered to zero mean to
satisfy the criteria of second order
stationary. Importantly, we did not use any
filtering on our Conc data before further
analysis, as it has been shown that filtering
could lead to spurious connections (Barnett

& Seth, 2011).

2.5 Time-resolved partial directed

coherence

Using time-frequency causality allows for
analysis of the temporal dynamics of the
causality at any particular frequency in
focus. The TPDC (Figure 4B) is based on
dual-extended Kalman filtering (Wan &
Nelson, 2001), and allows time-dependent
auto regressive (AR) coefficients to be
estimated. In general, the signals are
analysed with static AR coefficients,
meaning that the fitted model and the AR
coefficients remain the same for the
complete length of the signal. For non-
linear signals like fNIRS, the model should
be time varying and the coefficients need
to be estimated regularly over the course of
the time-period. Regularly estimating the
coefficients is termed as adaptive auto-

regressive process.
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Preprocessing of NIRS data
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Figure 4B: Flow chart of the various steps used for the TPDC analysis. The black arrows and
rectangles (left side) present the overall process using real fNIRS data. The dotted gray

arrows and rectangles (right side) display the bootstrapping process undertaken.
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The expression for an adaptive auto-

regressive process can be given as follows:

r=p

x(©) = ) aOx(t 1) + 10

r=1

where a,(t) are the time-varying MVAR
coefficients, p is the model order of time
series x(¢#) and #(¢) is the zero-mean
Gaussian noise process. To sum up, the
extended Kalman filter used in the TPDC
analysis is a predictor-corrector algorithm
that estimates states of a process. We can
model an fNIRS time series using a

general non-linear state-space model:
x(k) = Flx(k —1),w] + Bu(k)
y(k) = Cx(k) + n(k)

where y(k) is the target time series and the
aim is to estimate x(k). Since the present
purpose is to estimate the model
parameters related to the non-linear
function F, only the process equation (2) is
considered. Both noise processes v(k) and
n(k) are white, zero mean and Gaussian. At
each time point, previous state estimates
and weight estimates are fed to both of the
Kalman filters. Both predictors are then
corrected on the basis of observed data
vy(k), such that they yield current state and
weight estimates. By using two Kalman
filters working in parallel with one another,

we can estimate both state and model

parameters of the system at each point in
the time series. After estimating the time-
dependent MVAR coefficients, the next
step is to use those coefficients for the
calculation of causality within the time
series. By calculating the time-dependent
MVAR coefficients at each time point,
PDC, based on the principle of Granger
causality can be computed. Then, the
Fourier transform of these coefficients and

PDC can be calculated using the formula:

|4, )

/2 k|4 )|

where A4;;(2) 1s the i,j — th element of A(7) .

|7Ti<—j(l)| =

Then the PDC values follow normalisation

properties such as:

0<|m;)| <1

By calculating PDC at each time point,
multiple matrices corresponding to the
time-frequency causality from two time
series are obtained. All possible
connections between channels (n = 18)
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