
HAL Id: tel-02057022
https://theses.hal.science/tel-02057022v2

Submitted on 29 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of safe control laws for the locomotion of biped
robots

Nestor Bohorquez Dorante

To cite this version:
Nestor Bohorquez Dorante. Design of safe control laws for the locomotion of biped robots. Automatic.
Université Grenoble Alpes, 2018. English. �NNT : 2018GREAT110�. �tel-02057022v2�

https://theses.hal.science/tel-02057022v2
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE
ALPES
Spécialité : Automatique-Productique

Arrêté ministériel : 25 mai 2016

Présentée par

Néstor BOHÓRQUEZ DORANTE

Thèse dirigée par Bernard BROGLIATO
et co-encadrée par Pierre-Brice WIEBER

préparée au sein de l’Inria Grenoble Rhône-Alpes
dans l’École Doctorale EEATS

Design of Safe Control Laws for the
Locomotion of Biped Robots

Thèse soutenue publiquement le 14 décembre 2018,
devant le jury composé de :

Olivier STASSE
Directeur de Recherche LAAS Toulouse, Rapporteur

Nacim RAMDANI
Professeur á l’Université d’Orléans, Président

Julien PETTRÉ
Chargé de Recherche Inria Rennes, Examinateur

Bernard BROGLIATO
Directeur de Recherche Inria Grenoble, Directeur de thèse

Pierre-Brice WIEBER
Chargé de Recherche Inria Grenoble, Co-encadrant de thèse

ii

Abstract

We want a biped robot to walk safely in a crowd. This involves two aspects: balance and col-
lision avoidance. The first implies avoiding kinematic and dynamical failures of the unstable
walking dynamics of the robot; the second refers to avoiding collisions with people. We want
to be able to solve both problems not only now but also in the future. We can ensure balance
indefinitely by entering in a cyclic walk or by making the robot stop after a couple of steps.
Nonetheless, we cannot give a comparable guarantee in collision avoidance for many reasons:
impossibility of having absolute knowledge of where people are moving, kinematic/dynamical
limitations of the robot, adversarial crowd motion, etc. We address this limitation with a
standard strategy for crowd navigation, known as passive safety, that allows us to formulate
a unified Model Predictive Control approach for balance and collision avoidance in which we
require the robot to stop safely in finite time. In addition, we define a novel safe navigation
strategy based on the premise of avoiding collisions for as long as possible that minimizes
their occurrence and severity. We propose a lexicographic formulation that produces motions
that comply with such premise.

We increase the degrees of freedom of the locomotion of a biped robot by allowing the
duration and orientation of its steps to vary online. This introduces nonlinearities in the con-
straints of the optimization problems we solve. We approximate these nonlinear constraints
with safe linear constraints so that satisfying the latter implies satisfying the former. We pro-
pose a novel method (Safe Sequential Quadratic Programming) that ensures feasible Newton
iterates in the solution of nonlinear problems based on this redefinition of constraints.

We make a series of simulations of a biped robot walking in a crowd to evaluate the
performance of our proposed controllers. We are able to attest the reduction in the number
and in the severity of collisions with our proposed navigation strategy in comparison with
passive safety, specially when there is uncertainty in the motion of people. We show typical
behaviors of the robot that arise when we allow the online variation of the duration and
orientation of the steps and how it further improves collision avoidance. We report the
computational cost of our proposed numerical method for nonlinear problems in comparison
with a standard method. We show that we only need one Newton iteration to arrive to a
feasible solution but that the CPU time is dependent on the amount of active set factorizations
needed to arrive to the optimal active set.

iii

Résumé

Un robot bipède doit pouvoir marcher en toute sécurité dans une foule. Pour cela, il faut pren-
dre en compte deux aspects : l’équilibre et l’évitement des collisions. Maintenir l’équilibre
implique d’éviter les défaillances dynamiques et cinématiques de la dynamique instable du
robot. Pour ce qui est de l’évitement des collisions, il s’agit d’éviter le contact entre le
robot et des individus. Nous voulons être capables de satisfaire ces deux contraintes simul-
tanément, à l’instant présent mais aussi dans le futur. Nous pouvons assurer l’équilibre du
robot indéfiniment en le faisant entrer dans un cycle limite de marche ou en le faisant s’arrêter
après quelques pas. Néanmoins, une telle garantie pour l’évitement d’obstacle n’est pas pos-
sible pour plusieurs raisons : impossibilité de connâıtre de manière absolue la direction vers
laquelle les individus se dirigent, limitations cinématiques et dynamiques du robot, mouve-
ment non-coopératif de la foule, etc. Nous traitons ces limitations avec une stratégie standard
de navigation dans une foule, appelée passive safety, qui nous permet de formuler une loi de
commande prédictive avec laquelle nous assurons l’équilibre et l’évitement des collisions, de
manière unifiée, en faisant s’arrêter le robot de manière sécurisée et en temps fini. De plus,
nous définissons une nouvelle stratégie de navigation sûre basée sur le principe d’évitement
des collisions aussi longtemps que possible, qui a la propriété de minimiser leur apparition
et sévérité. Nous proposons une formulation lexicographique qui synthétise des mouvements
conformes à ce principe.

Nous augmentons les degrés de liberté de la locomotion d’un robot bipède en permet-
tant la variation de l’orientation et de la durée des pas en ligne. Cependant, cela introduit
des non-linéarités dans les contraintes de nos problèmes d’optimisation. Nous faisons des
approximations de ces contraintes non-linéaires avec des contraintes linéaires sûres de sorte
que la satisfaction des secondes implique la satisfaction des premières. Nous proposons une
nouvelle méthode de résolution des problèmes non-linéaires (Optimisation Quadratique Suc-
cessive Sûre) qui assure la faisabilité des itérations de Newton en utilisant cette redéfinition
des contraintes.

Nous simulons la marche d’un robot bipède dans une foule pour évaluer la performance de
nos lois des commandes. D’une part, nous réussissons à réduire (statistiquement) la quantité
et la sévérité des collisions en comparaison avec la méthode de passive safety, spécialement
dans les conditions d’incertitude de la marche du robot dans une foule. D’autre part, nous
montrons des exemples de comportements typiques du robot, qui découlent de la liberté de
choisir l’orientation et la durée des pas. Nous rapportons le coût de calcul de notre méthode
de résolution des problèmes non-linéaires en comparaison avec une méthode standard. Nous
montrons qu’une seule itération de Newton est nécessaire pour arriver à une solution faisable,
mais que le coût de calcul dépend du nombre de factorisations de l’active set dont nous avons
besoin pour arriver à l’active set optimal.

iv

Acknowledgements

First and foremost, I thank Jesus, my Lord and Saviour. My life was changed when I met
Him and He is the one who has made all of this possible. Let all the glory be to Him.

I would like to give very special thanks to Pierre-Brice Wieber, my supervisor. He is
the person who opened me the doors to the world of research four years ago and with him I
realized how much I love doing this. He is a wise and brilliant man. May God bless him, his
family and his work.

I thank my dad, my mom, Karem (la Gorda) and Gustavo (el Feo). They are my family,
joy and home. I thank my sweet, princess’ hands Eva (la Beba) and my second mom Eleyda,
I cannot be grateful enough with you. I thank everyone at the church Le Refuge, specially
Mark and Dalene. They have become my second family and my new home here in France.
To my friend Valentin.

To my colleagues: Luciano (Gerva), Nahuel (Tucu) and Matteo (Ciocca). To Jose
Grimaldo (da Silva Filho). You are not getting away from me that easily! I will stay around
for some months here! To everyone at Inria and at Grenoble who has made it an excellent
adventure for the last four years.

v

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Summary of contributions . 2

1.2.1 List of publications . 2

1.3 Outline . 2

1.4 Notation . 3

1.4.1 Functions . 3

1.4.2 Sets . 3

1.4.3 Vectors and matrices . 3

1.4.4 Software . 3

I Design aspects 4

2 Modeling a biped robot 5

2.1 Introduction . 5

2.2 Mechanical model of a biped robot . 5

2.3 Walking motion control . 6

2.3.1 Center of Pressure . 7

2.4 Conclusion . 10

3 Control design 11

3.1 Introduction . 11

3.2 Specifications of the walking motion . 11

3.2.1 Objectives . 11

3.2.2 Constraints . 12

3.2.3 Classical approach . 13

3.3 Walking motion generation as a control problem 13

3.4 Reasoning on an infinite horizon . 14

3.5 Reasoning on a finite horizon . 14

3.5.1 Avoiding failures . 15

3.5.2 Avoiding collisions . 15

3.6 Model Predictive Control . 15

3.6.1 Dynamics . 17

3.6.2 Cost function . 17

3.6.3 Constraints . 18

3.7 Conclusion . 18

vi

CONTENTS vii

4 Safe navigation strategies 20

4.1 Introduction . 20

4.2 Setting . 20

4.2.1 Motion of the robot . 20

4.2.2 Motion of the crowd . 20

4.3 Collision mitigation . 23

4.4 Control design for collision mitigation . 23

4.4.1 Maximal Collision Delay . 23

4.4.2 Minimal Collision Velocity . 24

4.5 Hierarchy of time for failures and collision avoidance 25

4.5.1 Passive safety . 25

4.5.2 Variations of collision mitigation . 25

4.6 Ethical considerations . 26

4.7 Conclusion . 28

II Numerical aspects 29

5 Lexicographic Programming 30

5.1 Introduction . 30

5.2 Lexicographic least-squares programming . 31

5.2.1 Null-space projections . 31

5.2.2 Cascade of QPs . 32

5.2.3 Advanced decompositions . 32

5.3 Solutions near singularities . 32

5.4 Conclusion . 34

6 Safe Sequential Quadratic Programming 35

6.1 Introduction . 35

6.2 Sequential Quadratic Programming . 35

6.2.1 Active set methods . 36

6.2.2 Warm-start . 37

6.2.3 The Hessian of the Lagrangian . 37

6.2.4 Merit functions . 38

6.2.5 Maratos effect and second-order correction 39

6.2.6 A line search algorithm . 39

6.3 Feasible Sequential Quadratic Programming 40

6.4 Convexification of constraints . 41

6.4.1 Convexification by transformation . 41

6.4.2 Convexification by polytopic approximation 42

6.5 Safe Sequential Quadratic Programming . 43

6.5.1 A trust-region algorithm . 43

6.5.2 Termination and convergence . 44

6.6 Conclusion . 46

7 Nonlinear Model Predictive Control for biped walking 47

7.1 Introduction . 47

7.2 Motion of the CoM . 47

7.2.1 Preview horizon . 48

7.3 Position, orientation and duration of the steps 48

7.4 Constraints of walking . 49

viii CONTENTS

7.4.1 Kinematics and dynamics . 49
7.4.2 Collision avoidance with the crowd . 56
7.4.3 Terminal constraint for stopping . 56

7.5 Objectives of the walk . 57
7.6 Optimal Control Problem . 58

7.6.1 NLP formulation . 58
7.6.2 Safe SQP approach . 59

7.7 Conclusion . 59

8 Simulations 60

8.1 Introduction . 60
8.2 Safe navigation strategies . 60

8.2.1 No uncertainty in the motion of the crowd 61
8.2.2 Uncertainty in the motion of the crowd 63

8.3 Safe Sequential Quadratic Programming . 66
8.3.1 Adapting the duration of the steps . 66
8.3.2 Adapting the rotation of the steps . 67
8.3.3 Comparison with SQP . 69

8.4 Conclusion . 75

9 Conclusion 76

9.1 Summary . 76
9.2 Perspectives . 76

9.2.1 Safe navigation strategies . 77
9.2.2 Lexicographic programming . 77
9.2.3 Safe SQP . 77
9.2.4 Nonlinear MPC for biped walking . 77
9.2.5 Simulations . 78

Appendix A Bernstein polynomials 79

Appendix B Concepts of convex analysis 80

B.1 Sets and polyhedra . 80
B.2 Functions . 81

Appendix C Warm start of MPC 82

C.1 MPC as a sequence of neighboring SQPs . 82
C.1.1 Linearization of the collision avoidance constraint 82

List of Figures

2.1 Schematic bipedal gait cycle [Sherikov 2016, Chapter 2]. Reprinted with per-
mission. 7

3.1 Shift of the preview horizon in MPC [Sherikov 2016, Chapter 4]. Adapted with
permission. 16

4.1 Walking against a crowd. 21
4.2 Two different predictions of the motion of a person: without uncertainty (left)

and with uncertainty in velocity (right). 23

7.1 Correspondence between samples and steps in the preview horizon with Ns = 8. 49
7.2 Nonlinear kinematic and dynamic constraints of the robot. 51
7.3 Safe polytopic approximations of the dynamic and kinematic constraints that

depend on θ. 52
7.4 Boundaries of x(i|k)(τ) defined as conv{βi0,βi1,βi2}. 54
7.5 Future trajectories of the CoP for different τ 55

8.1 Failure rate and median anticipation time for different speeds of the crowd and
different durations of the horizon. 62

8.2 Adapting the step duration while walking in a crowd. 67
8.3 Adapting the rotation of the feet of the robot while walking in a crowd. . . . 68
8.4 The robot walking with no crowd under a Safe SQP scheme. 71
8.5 The robot walking with no crowd under a SQP scheme. 72
8.6 The robot walking in a crowd under a Safe SQP scheme. 73
8.7 The robot walking in a crowd under a SQP scheme. 74

ix

List of Tables

8.1 Parameters of biped robot and the persons in the crowd 60
8.2 Common parameters . 61
8.3 Parameters of simulations with no uncertainty 61
8.4 Parameters of simulations with uncertainty 63
8.5 Collisions of passive safety strategies . 64
8.6 Collisions of collision mitigation strategies . 65
8.7 Parameters of simulation with adaptation of the step duration 66
8.8 Parameters of simulation with adaptation of step rotation 69
8.9 Parameters of simulation for comparison with SQP 69

x

List of Algorithms

1 Cascade of QPs . 33
2 Line-search SQP . 39
3 Trust-region Safe SQP . 45

xi

List of Acronyms

CoM Center of Mass
CoP Center of Pressure
CP Capture Point
CPU Central Processing Unit
FoV Field of View
FSQP Feasible Sequential Quadratic Programming
HRM Human Robot Motion
ICS Inevitable Collision States
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Contraint Qualification
LTI Linear Time Invariant
MCD Maximal Collision Delay
MCV Minimal Collision Velocity
MPC Model Predictive Control
NLP Nonlinear Programming
OCP Optimal Control Problem
ODE Ordinary Differential Equation
QP Quadratic Program
RHC Receding Horizon Control
SQP Sequential Quadratic Program
Safe SQP Safe Sequential Quadratic Program
ZMP Zero Moment Point

xii

Chapter 1

Introduction

1.1 Motivations

Humanoids are the ultimate robots. We have dreamed for long time in science fiction works
of creating machines that look, move and behave like us. We give them arms and hands so
they can grab, lift, pinch, twist and manipulate tools. We give them a head with eyes and
ears so they can perceive in ways similar to ours. And a pair of legs and feet should allow
them to walk, run, jump and hop. It is a challenge to make all the different subsystems work
individually and as a whole, as we have seen in the demonstrations of the latest humanoids
(DRC 2015, Toro 2017, Atlas 2017). In this thesis we are interested in the bipedal locomotion
problem.

A humanoid robot can remain in static balance indefinitely by standing still. But as soon
as it starts walking, balance is no longer trivially achieved. The first problem that we need
to solve is, therefore, to walk without falling. As anyone who has felt the sensation of “losing
balance” with every step before an inevitable fall, just being able to avoid falling in the next
step is not enough. We need to preview a balanced motion, ideally, on an infinite horizon of
time. We resort to techniques from viability theory in order to make this problem tractable
by previewing, after a couple of steps, to: 1) go back to static balance or 2) enter a cyclic
walk.

In contrast to industrial robots (which are confined to closed spaces and out of the reach
of people), we want humanoids to cohabit with us. We want them to collaborate with us at
work, help us take care of patients at hospitals, clean our houses and maybe cook dinner. In
these environments collisions can pose a real threat for both the people and the robot. The
second problem we need to solve is to walk without colliding with the crowd. One limitation
arises immediately: we cannot predict accurately where people are moving in the future and,
therefore, we cannot avoid reaching all Inevitable Collision States (ICS). We can only preview
a couple of seconds in the future and we need to make choices regarding what to do in case
collisions seem inevitable. A standard approach is passive safety : in case of collision the robot
is guaranteed to be at rest. A common criticism to this approach is, precisely, its passivity:
the burden of avoiding a collision that seems inevitable is left to the other party. We believe
that these situations can be, at least, partially mitigated by actively avoiding them for as
long as possible. We propose a novel safe navigation strategy based on this premise.

In bipedal robotics, balance and collision avoidance are usually addressed separately re-
sulting in systems that are less responsive to perturbations and sudden changes in the envi-
ronment. We solve them simultaneously in a fast Model Predictive Control (MPC) approach
using direct methods of optimal control.

In order to improve the mobility of the robot, we increase the number of degrees of
freedom of locomotion by considering: the ability to reorient itself to face its direction of

1

2 CHAPTER 1. INTRODUCTION

walk and to adapt the duration of its steps. But by doing so, the optimization problems we
need to solve become nonlinear. Traditional nonlinear methods, such as Sequential Quadratic
Programming (SQP), can only guarantee the feasibility of the solution at convergence. More
specialized methods, such as Feasible Sequential Quadratic Programming (FSQP), do ensure
feasible iterates at the expense of increased computation costs. The third problem we want
to solve is to improve the feasibility of the Newton iterates while keeping the computation
costs low. We propose to linearize the constraints in a safe way such that the solution of the
resulting problem is a solution of the original nonlinear problem.

1.2 Summary of contributions

These are three major contributions of this thesis:

• We defined collision mitigation as a safe navigation strategy in a crowd. Furthermore,
we designed a controller that synthesizes motion trajectories that satisfy this definition.

• We proposed a new algorithm, Safe SQP, to solve nonlinear optimization problems
featuring feasible iterates. It is based on the redefinition of the nonlinear constraints of
the problem by its safe polytopic approximations.

• We defined safe polytopic approximations to some of the nonlinear problems that arise
in biped walking: adaptive step rotation and duration.

1.2.1 List of publications

The work on this thesis resulted in the following publications in peer-reviewed conferences:

• N. Bohórquez, A. Sherikov, D. Dimitrov and P.-B. Wieber. Safe navigation strategies for
a biped robot walking in a crowd. In IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 379–386, Cancun, Mexico, November 2016. IEEE.

• N. Bohórquez and P.-B. Wieber. Adaptive step duration in biped walking: a robust
approach to nonlinear constraints. In IEEE RAS International Conference on Humanoid
Robots 2017, Birmingham, United Kingdom, November 2017.

• N. Bohórquez and P.-B. Wieber. Adaptive step rotation in biped walking. In IEEE/RSJ
International Conference on Intelligent Robots and Systems 2018, Madrid, Spain, Oc-
tober 2018.

1.3 Outline

This thesis is divided in two parts: Part I, composed of Chapters 2-4, where we discuss the
design aspects of making the robot walk in a crowd and their mathematical formulations;
Part II, composed of Chapters 6-8, where we describe the numerical schemes we use in order
to solve the problems we formulate in the first part.

We start the first part in Chapter 2 introducing the dynamical model of the robot. Then,
in Chapter 3, we state the problem of generating walking trajectories in a crowd for this
model as an Optimal Control Problem of finite horizon. We present a novel strategy for
crowd navigation, in Chapter 4, that makes emphasis on safety with respect to collisions.

At the beginning of the second part, in Chapter 5, we introduce lexicographic program-
ming as an important foundation of our work, both at the design and at the numerical levels.
In Chapter 6 we describe a novel method to solve Nonlinear Programming problems that is

1.4. NOTATION 3

based on continuously making safe linear approximations of the constraints. In Chapter 7
we characterize the control scheme we use for biped walking in a crowd. We present results
on the numerical evaluation of different aspects of this controller on Chapter 8. We conclude
with Chapter 9 with reflections on the work done and on what remains to be investigated.

1.4 Notation

1.4.1 Functions

• Scalar-valued and vector-valued functions are written f, g, h.

• Vector-valued functions are written f , g,h.

• Set-valued functions are written in calligraphic F ,G,H.

• Special functions are written in plain text: conv{·}, diag(·), centroid{·}.

diag
2

(A) =

[
A 0

0 A

]

.

• ‖·‖p refers to the Lp norm, for p ∈ {1, . . . ,∞}. When the subscript is not specified, i.e.
‖·‖, then it should be understood as the L2 norm.

1.4.2 Sets

• Sets are written in calligraphic S,P.

• Special sets are written in blackboard bold R,N,Z.

1.4.3 Vectors and matrices

• Matrices are written in uppercase and in bold: A,M .

• Vectors are written in lowercase and in bold: x,y.

• Scalars and constants are written in lowercase in regular font: x, y, k, ǫ, δ.

• Column vectors are written as:

x = (x1, . . . , xn) =






x1
...
xn




 .

• Row vectors are written as:

x = (x1, . . . , xn)
T =

[
x1 · · · xn

]
.

1.4.4 Software

We write the name of programs and libraries with monospace font, e.g. LexLS, Octave.

Part I

Design aspects

4

Chapter 2

Modeling a biped robot

2.1 Introduction

The goal of this chapter is to introduce the dynamical model that we employ to generate
walking trajectories for the robot.

We start by describing the generalized mechanical model of a biped robot, revealing its
hybrid, complex and underactuated nature in Section 2.2. We then characterize the type of
motion that we want to generate with it and do a small overview of the different methods in
the literature that have been developed for that purpose in Section 2.3. We explain that, by
making standard assumptions on the dynamics of the Center of Mass (CoM), we can linearly
relate the acceleration of the CoM with the forces applied on the ground. This resulting
dynamics are central in this thesis.

2.2 Mechanical model of a biped robot

Given generalized coordinates

q =

[
q1
q2

]

, (2.1)

where q1 = (α1, . . . , αp) ∈ Rp are joint angles and q2 = (c,γ) ∈ R3+3 is the position of the
CoM and orientation of the trunk in SO(3), we can write the generalized model of a biped
robot with K contacts [Hurmuzlu 2004, Sherikov 2016, Wieber 2015] as follows:







[
M1(q)
M2(q)

]

q̈ +

[
n1(q, q̇)
n2(q, q̇)

]

+

[
g1(q)
g2(q)

]

=

[
η

0

]

+
K∑

i=1

[
JT
i,1

JT
i,2

]

λi,

rni , λ
n
i ≥ 0 rni λ

n
i = 0,

φ (q, q̇, q̈,η) ≤ b,

(q+, q̇+) = ∆(q−, q̇−),

κiλ
n
i ≥ ‖λ

t
i‖.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

where η ∈ Rp is the vector of joint torques, λi ∈ R3 is the force at the ith contact and ri ∈ R3

is the position of the ith contact. Superscripts (·)t and (·)n denote tangential and normal
components of vectors with respect to the contact surfaces. Equations (2.2a) to (2.2e) read
as follows:

5

6 CHAPTER 2. MODELING A BIPED ROBOT

(2.2a) Lagrangian mechanics. In here, each term represents







M(q) =

[

M1(q)

M2(q)

]

∈ R(p+6)×(p+6), matrix of inertia

n(q, q̇) =

[

n1(q, q̇)

n2(q, q̇)

]

∈ Rp+6, vector of Coriolis and centrifugal effects

g(q) =

[

g1(q)

g2(q)

]

∈ Rp+6, vector of gravity

JT
i =

[

JT
i,1

JT
i,2

]

∈ R(p+6)×3, translational Jacobian of the ith contact point

(2.2b) Complementarity of contacts and forces. It ensures that forces can only be applied to
contacts already made.

(2.2c) Joint and torque limits. It enforces kinematic and task-related limits on the posture
of the robot such as: collisions with the environment, self-collisions and joint motor
limitations.

(2.2d) Impact map. It describes the relationship between the pre and post impact velocities
of the system.

(2.2e) Friction constraints. It limits the forces that can be applied at the contacts. In here,
κi is the friction coefficient of the ith contact.

A biped robot is a hybrid, complex, underactuated dynamical system:

• Hybrid because the continuous dynamics (2.2a) are suddenly interrupted every time
the robot makes a step (2.2d).

• Complex because of the many degrees of freedom of the kinematic chain. There can be
many ways to accomplish objectives of the form

JT
partq̈ + J̇T

partq̇ = πref, (2.3)

where Jpart is the Jacobian of the intended part of the robot to be controlled, since not
all degrees of freedom are constrained all the time.

• Underactuated because we cannot exert arbitrary accelerations to the CoM. They can
only be achieved through forces that appear from contacts with the environment (2.2b).
These forces are, moreover, constrained by friction (2.2e).

2.3 Walking motion control

Walking is a discrete sequence of alternating steps in which there is, at least, one foot on
the ground at all times. A bipedal walking gait is presented schematically in Figure 2.1. A
biped walker starts in double support, that is, with both feet in contact with the ground.
Then it lifts the left leg and swings it in the air to a new position on the ground. While one
of the legs is in the air the walker is in single support. The moment the swinging leg hits
the ground produces an impact and the walker returns to the double support position again.
Subsequently, the walker lifts the right leg from the ground and swings in the air to a new
position coming back again to double support where the cycle is repeated.

2.3. WALKING MOTION CONTROL 7

Lift-off

Swing
 phase

Impact

Double
 support

Single
 support
 (left leg)

Lift-off

Swing
 phase

Impact

Double
 support

Single
 support

 (right leg)

Figure 2.1: Schematic bipedal gait cycle [Sherikov 2016, Chapter 2]. Reprinted with permis-
sion.

In order to move the whole configuration q of the robot in a walking motion, we want
to affect the posture q1 (using joint torques η) and produce contact forces {λi} with the
contacts {ri} with ground. In the literature there are different ways in which this can be
done:

• Passive dynamic walking. McGeer started a line of research in which robots are designed
with dynamics that approximately realize simple models of motion [McGeer 1990b,
McGeer 1990a]. As a result, we can reason about q1 directly. The dynamic stability
of the walking motion comes from the mechanical design (with little to no actuation)
and not from feedback control, achieving remarkable “human-like” motion. However,
applications are limited since their velocity cannot be changed at will. Recent results
include the work of Collins et al. [Collins 2005].

• Hybrid-zero dynamics. Like in passive walking, we reason at the level of the posture
q1 of the robot [Grizzle 2014], that is, we describe (at least partially) the path followed
in the configuration space of the robot. However, in this case all joints are actuated
except the feet. We define virtual constraints of the form

y = q1 − h(θ), (2.4)

where h : R → Rp is the desired configuration of the robot as a function of the angle
θ between the stance foot and the leg. We make the robot follow this path by doing a
characterization of the zero dynamics y = 0 during the swing phase. Then we develop
an invariance condition at every impact of the swinging foot. 2D walkers following
this scheme offer impressive results [Sreenath 2010], however, 3D walking is still under
research [Chevallereau 2009].

2.3.1 Center of Pressure

Due to the structure of the Lagrangian dynamics (2.2), the global position c and orientation
γ are underactuated if no external forces λi are applied:

M2(q) q̈ + n2(q, q̇) + g2(q) =
∑

i

JT
i,2 λi, (2.5)

We can reason about this part of the dynamics (q2), which can be described as a function
of the Center of Pressure (CoP) of the ground reaction forces, and then make the rest of the

8 CHAPTER 2. MODELING A BIPED ROBOT

robot (q1) follow it. This decoupling is an effective method that has been used in a wide
variety of robots [Takenaka 2009, Tajima 2009, Morisawa 2007] and is the method we employ
in this thesis.

Forward kinematics

This subsection is largely based on the work of Wieber [Wieber 2015].
Equation (2.5) boils down to the Newton and Euler equations of motion of the robot

taken as a whole [Wieber 2006]:

m(c̈+ g) =
∑

i

λi, (2.6a)

L̇ =
∑

i

(ri − c)× λi, (2.6b)

where m is the total mass of the robot and

L =
∑

k

(xk − c)×mkẋk + Ikωk, (2.7)

is the angular momentum with respect to the whole robot. In this equation, xk, ẋk and ωk

are the position, linear and angular velocities of the kth part of the robot, while mk and Ik
represent its mass and inertia tensor matrix (in global coordinates), respectively.

We derive the CoP from (2.6) by summing the Euler equation with the cross product of
c and the Newton equation

mc× (c̈− g) + L̇ =
∑

i

ri × λi, (2.8)

and then dividing it by the z component of the Newton equation to obtain:

mc× (c̈− g) + L̇

m(c̈z − gz)
=

∑

i ri × λi
∑

i λ
z
i

. (2.9)

Superscripts (·)x, (·)y, (·)z represent the x, y and z components of a vector, respectively, in a
given frame of reference.

Assumption 1. All contact points {ri} lie on the same plane, the walking plane.

We set the world frame such that the normal vector of this plane is the z axis. For
simplicity, this plane is located at zero height, therefore, rzi = 0 for all i. This allows us to
simplify the cross products in (2.9) in the following way

cx,y −
cz

c̈z + gz
(c̈x,y + gx,y) +

1

m(c̈z + gz)
SL̇x,y =

∑

i λ
z
i r

x,y
i∑

i λ
z
i

, (2.10)

where S =
[
0 −1
1 0

]
is a 90◦ rotation matrix. On the RHS we have the CoP px,y of the contact

forces λi

px,y =

∑

i λ
z
i r

x,y
i∑

i λ
z
i

. (2.11)

Due to the unilaterality of the contact forces with the ground (i.e. λz
i ≥ 0), the CoP can

only reside inside the support polygon

px,y ∈ conv {ri}. (2.12)

2.3. WALKING MOTION CONTROL 9

It can be shown that the horizontal momenta of the contact forces λi with respect to the
CoP px,y are equal to zero:

[
∑

i

(ri − p)× λi

]x,y

=
∑

i

(rx,yi − px,y)× λz
i = 0. (2.13)

This is why, under some conditions, the CoP is also called the Zero Moment Point
(ZMP) [Vukobratović 2004].

Assumption 2. The walking plane is horizontal.

This assumption implies that gx,y = 0 and the dynamics of the CoM result in:

cx,y −
cz

c̈z + gz
c̈x,y +

1

m(c̈z + gz)
SL̇x,y = px,y. (2.14)

We can allow the vertical motion of the CoM in order to, for example, make the robot
climb up and down stairs [Brasseur 2015]. However, in this thesis we consider that:

Assumption 3. The CoM moves strictly horizontally above the ground.

Therefore, cz is constant and c̈z = 0 and we obtain:

cx,y −
cz

gz
c̈x,y +

1

mgz
SL̇x,y = px,y. (2.15)

Similarly, we could bound the variation of the angular momentum to, for example, account
for possible external forces [Serra 2016], but we choose to set:

Assumption 4. Variations of the angular momentum are equal to zero.

We end up with a linear differential equation for the dynamics of the CoM:

cx,y −
1

ω2
c̈x,y = px,y. (2.16)

where

ω =

√

gz

cz
. (2.17)

Inverse dynamics

This subsection is largely based on the work of Sherikov et al. [Sherikov 2014] and it is
presented here only for completeness of our walking motion control, i.e. it is not necessary
for the understanding of the rest of this thesis.

We use inverse dynamics to make the robot track the positions of the CoM cx,y and the
CoP px,y we computed with (2.16) [Fujimoto 1996].

Given any q̈ and λ, we can find joint torques η satisfying the first part of the Lagrangian
dynamics in (2.2). Therefore, we only need to find q̈ and λ that satisfy (2.5) while requiring
the joint angles to stay within their mechanical limits

q
1
≤ q1 + τ q̇1 +

τ2

2
q̈1 ≤ q1, (2.18)

where τ > 0 is the sampling time of the system.

10 CHAPTER 2. MODELING A BIPED ROBOT

In the following we consider that the robot is in single support. Let us consider the
contact forces λi on the foot as a single wrench

λ = T

[
λs

µs

]

, (2.19)

with force λs and moment µs applied at the center of the foot s ∈ R3 on the ground and
expressed in the local frame (with frame transformation matrix T). In order to satisfy the
Coulomb friction constraints, the force λs should be contained in the conic hull of the N unit
vectors that approximate the Coulomb friction cone

λs ∈ cone {v1, . . . ,vN}. (2.20)

The moment about the z axis is limited as follows

|µz
s| ≤ ζλz

s, (2.21)

where ζ is a torsional friction coefficient. The CoP is kept inside the support polygon with a
constraint of the form

Q

[
λs

µs

]

∈ conv {ri}. (2.22)

We also keep fixed contacts with the ground by requiring the translational and rotational
accelerations to be zero

Jsq̈ + J̇sq̇ = 0. (2.23)

Impacts that occur when the swinging foot of the robot lands on the ground are resolved by
integrating the Lagrangian dynamics

M(q̇+ − q̇−) = JT
s λimpulse, (2.24)

where λimpulse is an impulsive force. The post-impact behavior is assumed to be

Jsq̇
+ = 0. (2.25)

Finally, the coupling between the motion of the CoM and the motion of the whole body
is made through the x, y accelerations of the CoM c̈x,y and the swinging foot f̈ ∈ R3

Jcomq̈ + J̇comq̇ = c̈x,y, (2.26a)

Jfootq̈ + J̇footq̇ = f̈ . (2.26b)

2.4 Conclusion

We presented in this chapter the ordinary differential equation (2.16) that relates the ac-
celeration of the CoM with the forces applied to the ground. We obtained this equation
after presenting the generalized mechanical model of a biped robot (2.2) and making stan-
dard assumptions on the motion of the CoM. For the rest of this thesis, we refer to the x, y
components of the CoM cx,y and the CoP px,y simply as c and p, respectively.

Chapter 3

Control design

3.1 Introduction

In this chapter we state the problem of a biped robot walking in a crowd as an Optimal
Control Problem (OCP) of finite horizon. More specifically, we state it in the framework of
Model Predictive Control (MPC), as it was first proposed by Kajita et al. [Kajita 2003].

In Section 3.2 we define the objectives and constraints of the motion of the CoM. We also
do an overview of the approaches in the literature to biped robot navigation in environments
filled with static and dynamic elements. Then, in Sections 3.3, 3.4 and 3.5, we frame our
work in the context of Optimal Control making emphasis on avoiding failures and collisions
in the future. Finally, we define an MPC controller for biped walking and describe some of
its most important aspects to consider in Section 3.6.

3.2 Specifications of the walking motion

In order to make the biped robot walk we generate: a trajectory for the CoM c ∈ R2, a
trajectory for the CoP p ∈ R2 (following the CoP dynamics we introduced in Section 2.3)
and a sequence of steps with given position s ∈ R2, orientation θ ∈ R and duration. Then, as
mentioned in Section 2.3, we compute a motion for the whole body of the robot that tracks
the motion of the CoM and the sequence of steps and, at the same time, generates the desired
forces on the ground (CoP).

3.2.1 Objectives

Our desired behavior for the robot is to:

• move the CoM smoothly at a reference speed,

• walk at a comfortable distance from each person in the crowd,

• align the feet with the direction the CoM is moving,

• keep the duration of the steps at energy-efficient value,

• keep the CoP at the center of the foot for improved balance.

These objectives will be discussed in depth in Section 7.5.

11

12 CHAPTER 3. CONTROL DESIGN

3.2.2 Constraints

While the objectives express the desired characteristics of the walk, the constraints enforce
the conditions for the motion to be feasible. In this regard, two stability criteria for the CoP
dynamics are pertinent [Wieber 2002]:

• A biped robot is statically stable on a flat ground if the CoM c projects vertically inside
the support polygon P(s,θ), that is

c = p ∈ conv{ri} , P(s,θ), (3.1)

while ċ = 0. The support polygon is defined as the convex hull of all the contact points
of the foot with the ground and its shape depends on the position s and orientation θ

of the foot. In this regime, the positions of the CoM and the CoP remain bounded over
time but it is of no interest for walking since the CoM does not move.

• A biped robot is dynamically stable on a flat ground if the CoP lies inside the support
polygon

c−
1

ω2
c̈ = p ∈ P(s,θ), (3.2)

which is necessarily true since the contact forces with the ground are unilateral (the
robot can only push on the ground, not pull from it).

However, this last condition alone does not impede the CoM from diverging. A situa-
tion where the CoP is inside the support polygon but the CoM is accelerating away, i.e.
∫∞
t0
‖c(n)‖p dt → ∞ for any n > 0, is a solution to (3.2). But before the CoM goes too far,

the legs of the robot would be stretched beyond its limits. Therefore, the robot also needs
to be kinematically feasible: the CoM must remain within a permissible region that depends
on the position and orientation of the foot on the ground

c ∈ C(s,θ). (3.3)

The sequence of steps itself must not lead to self-collisions and must also comply with the
kinematic structure of the robot. These two conditions can be represented as the possible
places where the left foot can be placed with respect to the position and orientation of the
right foot

sleft ∈ S(sright,θright), (3.4)

and vice versa. We say that a biped robot fails if it is not dynamically stable and kinematically
feasible.

We represent a crowd as a collection of M individuals. By restricting the physical interac-
tions between the robot and the crowd to simply avoiding contact, we can allow abstractions
in their physical representation: the occupied space of the jth person is a ball of radius
Dperson. Let B

j be the space occupied by the jth person when it is at position mj

Bj , ball(mj , Dperson). (3.5)

Let B be the occupied space by all M persons in a crowd

B =
⋃

j∈{1,...,M}

Bj . (3.6)

Let A be the space occupied by a robot when the CoM is at position c

A , ball(c, Drobot). (3.7)

We say that a biped robot is in collision if

A ∩ B 6= ∅. (3.8)

3.3. WALKING MOTION GENERATION AS A CONTROL PROBLEM 13

3.2.3 Classical approach

In humanoid robotics, balance and collision avoidance are usually achieved in two separate
steps:

1. Plan kinematic sequence of steps. We generate a feasible collision-free trajectory
towards the goal. We usually start with a discretization of the state space cen-
tered around the position/orientation of the footsteps. Then a finite set of pre-
computed state transitions of the robot between steps is stored in a library along
with the heuristics to determine the costs of such transitions. The trajectories for
traversing the graph from A to B without colliding can then be found by per-
forming searches [Chestnutt 2003, Chestnutt 2005, Chestnutt 2007b], using sampling
methods [Perrin 2012a, Perrin 2012b, Liu 2012] or by being exhaustive when possi-
ble [Ayaz 2009]. Others have formulated the problem as a mixed-integer optimization
problem [Deits 2014, Kuindersma 2015]. Some of this approaches have been extended
to account for dynamic environments [Chestnutt 2007a].

In order to tackle the complexity of the problem, some authors have developed
tiered strategies and/or adaptive levels of planning detail [Hornung 2012, Liu 2012,
Chestnutt 2004]. This is customary in classical motion planning [Fraichard 2012,
Macek 2009] where we combine two levels of decision: global planning, which is
coarse and approximate and usually only includes static elements in the environ-
ment [Latombe 1991, LaValle 2006]; and local planning, for higher fidelity and more
expressive trajectories that also account for changing conditions in the environ-
ment [Khatib 1986, Fox 1997, Quinlan 1993].

2. Plan dynamic trajectory. We take the previously calculated sequence of steps and solve
the equations of motion (2.2) to obtain a trajectory of the body that follows those steps
while maintaining balance.

All of these methods provide impressive results under controlled conditions, but by separating
the planning stages of steps and motion of the body, the reactivity of the robot to perturba-
tions and to unforeseen persons is reduced. More recently, dynamical constraints have been
taken into account at the step-planning phase using kinodynamical planners. These make
sure that every two adjacent states of the system, and the transition between them, complies
with dynamic and collision-avoidance constraints [Pham 2014, Fernbach 2017, Harada 2009,
Ahn 2018]. However, these planners cannot yet be operated online and usually do not produce
very dynamic motions.

3.3 Walking motion generation as a control problem

In this thesis we assume that:

Assumption 5. The walking environment is convex or a global plan has been previously
computed and the robot has to follow it.

This presents us with a local problem where a control approach seems more appropriate.
Let us introduce the state vector x = (c, ċ) and the control vector u = p. We can rewrite
the dynamics (2.16) as

ẋ =

[
ċ

c̈

]

=

[
ċ

ω2(c− u)

]

. (3.9)

14 CHAPTER 3. CONTROL DESIGN

The motion the robot realizes has to satisfy dynamical (3.2), kinematical (3.3),(3.4) and
collision avoidance (3.8) constraints. We obtain the canonical nonlinear system:







ẋ = f(x,u, t),

x ∈ X (t) ⊂ Rn,

u ∈ U(t) ⊂ Rm.

(3.10)

A crucial requirement is that not only we want to solve the problem now but also be
able to solve the problem in the future. This is an observation that has been done in both
planning and control: the need to anticipate future events to avoid putting the robot in
situations where no action can be taken to avoid failures [Wieber 2002, Wieber 2008] and
collisions [Fiorini 1998, Seder 2007, Large 2005].

3.4 Reasoning on an infinite horizon

A given state x(t0) is said to be viable [Aubin 1991] if there exists at least one infinite
evolution of control actions u(t) ∈ U(t) that makes x(t) ∈ X (t) for all t > t0. The set X (t)
describes the viability constraints. The state x(t0) is non-viable if no trajectory of control
actions exists that makes x(t) ∈ X (t) for all t > t0.

Viability is concerned about the existence of control laws that make invariant a subset of
X (t), the viability kernel V ⊂ X (t)

V , {x(t0) : ∀t > t0, ∃u(t) ∈ U(t), x(t0) +

∫ t

t0

f(x,u, s)ds ∈ V}. (3.11)

This is closely related to the concept of Inevitable Collision States (ICS) [Asama 2004]. It
describes a set of states {x(t0)} starting from which no infinite trajectory of control actions
u(t) ∈ U(t) exists that avoids collisions for all t > t0.

The problem is that the system described by (2.2) is too complex to be able to define
the viability kernel [Wieber 2008]. In general, such task is computationally intractable in all
but the simplest systems. On the other hand, avoiding all ICS requires us to have absolute
knowledge of the motion of people until infinity.

3.5 Reasoning on a finite horizon

In order to make the problem tractable, we focus instead on the long-term implications of
what we can guarantee in the short term.

Let T ⊆ V be a viable target set that is made invariant under a known control law uT (·),
that is,

T , {x(tf) : ∀t > tf , x(tf) +

∫ t

tf

f(x,uT , s)ds ∈ T }. (3.12)

The problem is then reduced to reaching T in finite time. A state x(t0) is said to be capturable
if there exists a time tf > t0 and a finite trajectory of control actions u(t) ∈ U(t) such that
x(tf) ∈ T . The set of all capturable states is called the capture basin of T , CT ⊆ V

CT , {x(t0) : ∀t ∈ (t0, tf], ∃u(t) ∈ U(t), x(t0)+

∫ t

t0

f(x,u, s)ds ∈ X (t), x(tf) ∈ T }. (3.13)

We can compute a single capturable motion, instead of the whole capture basin, from the
initial state x(t0) solving the OCP

J(u) =

∫ tf

t0

L(x,u, s)ds+ V (x(tf)), (3.14)

3.6. MODEL PREDICTIVE CONTROL 15

bounded by system and capturability constraints

x(t0) = x0, (3.15a)

ẋ(t) = f(x,u, t), (3.15b)

x(t) ∈ X (t) ⊂ Rn, (3.15c)

u(t) ∈ U(t) ⊂ Rm, (3.15d)

x(tf) ∈ T . (3.15e)

3.5.1 Avoiding failures

Cyclic walking

We can define a target set TΠ for cyclic walking [Scianca 2016, Takenaka 2009]. This set is
made invariant under a cyclic control law, that is a control law uΠ(·) that satisfies

∃T > 0 such that uΠ(t+ T) = uΠ(t), xΠ(t+ T) = xΠ(t), ∀t ≥ 0. (3.16)

Let η = (xΠ(·),uΠ(·)) be a periodic solution to (3.10). The orbit η is stable if trajectories
starting near η stay near η. The orbit η is asymptotically stable if trajectories starting near
η converge to η. The orbit is exponentially stable if it is asymptotically stable and the
convergence is exponential [Hauser 1994].

Stopping

We can guarantee long-term feasibility by making the robot reach the target set TΩ defined
as all states where the robot has stopped, i.e where the robot can maintain balance without
making an extra step. This set is made invariant under a feedback law uΩ(·) of the form

k(x). (3.17)

3.5.2 Avoiding collisions

We want to avoid collisions all the time but it might not be possible for many reasons:
impossibility of having absolute knowledge of where people are moving, kinematic/dynamical
limitations of the robot, adversarial crowd motion, etc. Instead, we try to avoid collisions
and, when we cannot, we ensure that we can stop (i.e. reach TΩ) before it happens. This
is called passive safety [Macek 2009, Bouraine 2012]. It is safe in the sense that, if collisions
happen, they will not be the fault of the robot. This corresponds to the emergency stop
procedures required for industrial and personal care robots [ISO 2011, ISO 2014].

3.6 Model Predictive Control

We can observe that the capacity to stop is integral to both feasibility and collision avoidance,
thanks to this, passive safety can be combined effortlessly with capturability.

In order to have an uninterrupted motion (instead of a stopping motion), we continuously
postpone the time at which the robot should reach the stopped state TΩ by regularly recom-
puting (3.14) as we execute the previous optimal state and control trajectories (x(·),u(·)). In
this way, we have a continuous motion of the robot where it is able to stop, at any moment,
within no more than a time |tf − t0|. This is called Receding Horizon Control (RHC) or
Model Predictive Control (MPC) [Rawlings 2016].

Due to the time-changing nature and complexity of the sets X (t) and U(t) we use direct
methods to solve (3.14). We parametrize the control inputs u(t) as uk and the state x(t) as

16 CHAPTER 3. CONTROL DESIGN

x

t

x(0|k)

x(0|k+1)

x(N |k)

x(N |k+1)

k k+1 k+N k+1+N

Figure 3.1: Shift of the preview horizon in MPC [Sherikov 2016, Chapter 4]. Adapted with
permission.

xk, we approximate the infinite-dimensional cost functional J(u) with a finite-dimensional
cost function J(ũk) and the optimal control problem (3.14) is translated into the Nonlinear
Programming (NLP) problem

minimize
ũk

J(ũk) =
N−1∑

i=0

l(x(i|k),u(i|k)) + v(x(N |k)) (3.18a)

subject to x(0|k) = x0, (3.18b)

x(i+1|k) = f̂(x(i|k),u(i|k)), (3.18c)

x(i|k) ∈ X (k + i), (3.18d)

u(i|k) ∈ U(k + i), (3.18e)

x(N |k) ∈ TΩ, (3.18f)

written in a sequential approach. As shown in Figure 3.1, at the kth MPC problem we
compute a feedforward sequence of N control actions

ũk = (u(0|k), . . . ,u(N−1|k)) (3.19)

that steer the initial state x(0|k) in a trajectory of states

x̃k = (x(1|k), . . . ,x(N |k)). (3.20)

towards the target set TΩ following the dynamics of the system f̂ , respecting state X and
control U constraints and minimizing a cost function J . We then apply the first control action
u(0|k) to the system

x(1|k) = f̂(x(0|k),u(0|k)), (3.21)

and we feedback the next state to the controller

x(0|k+1) = x(1|k), (3.22)

in order to repeat the process at the (k + 1)th MPC problem.

3.6. MODEL PREDICTIVE CONTROL 17

3.6.1 Dynamics

We discretize the motion of the CoM, given by the ODE (3.9), into a Linear Time Invariant
(LTI) system of the form

x(i+1|k) = Ax(i|k) +Bu(i|k), (3.23)

using some of the methods described by Sherikov [Sherikov 2016, Chapter 4.2]. We discuss
this aspect in detail in Section 7.2.

Uncertainties

We can also consider a more complete formulation

x(i+1|k) = Ax(i|k) +Bu(i|k) + v(i|k), (3.24)

where we introduce the uncertainty vector v(i|k) in order to account for noisy sensors, im-
perfect actuators, unmodeled dynamics, inaccurate models of the environment, etc. Villa
et al. discuss an MPC scheme for biped walking where these uncertainties are assumed
to be bounded, v ∈ W, and a linear feedback law, u = uref + K(x − xref), is used to
compensate for tracking errors. In here, (·)ref refers to the nominal, undisturbed linear dy-
namics (3.23). The analysis of this system requires carefully constructed constraints and
feedback gains [Villa 2017].

3.6.2 Cost function

The cost function (3.18a) is divided into two parts: a finite and an infinite horizon costs.

Finite horizon cost

Represented by the term
∑N−1

i=0 l(x(i|k),u(i|k)). It measures how good we accomplish objec-
tives during the preview horizon such as: to follow a desired velocity, to maintain a desired
distance from people, etc.

The length of the preview horizon is a subject worth studying carefully. The longer it is the
more expensive it is to solve the optimization problem. The shorter it is the more discrepancy
there is between open and closed-loop operations. This discrepancy can even make the system
unstable [Cannon 2018]. In biped walking it is more convenient to talk about the length of
the horizon in terms of the physical steps the robot makes [Zaytsev 2015].

Infinite horizon cost

Represented by the term v(x(N |k)). It is used to make sure the close-loop operation matches
the open-loop prediction by accounting for the costs after the end of the preview horizon.

With this scheme of two costs the control vector is, correspondingly, composed of two
parts:

Dual mode prediction

{

u(i|k), i ∈ {0, . . . , N − 1} optimization variables,

Kx(i|k), i ∈ {N,N + 1, . . . } feedback control.
(3.25)

In order to have a finite number of variables in an infinite horizon, the mode 2 control vector
is designed to be a feedback control.

18 CHAPTER 3. CONTROL DESIGN

Example 1. If we define the cost to be quadratic

J(ũk) =
N−1∑

i=0

[

xT
(i|k)Qx(i|k) + uT

(i|k)Ru(i|k)

]

+ xT
(N |k)Qx(N |k), (3.26)

and the system to be LTI, then the terminal weighting matrix Q, so that the infinite horizon
cost is equal to the cost over the mode 2 prediction horizon, is the solution of the Lyapunov
equation:

Q− (A+BK)TQ(A+BK) = Q+KTRK. (3.27)

3.6.3 Constraints

The ability to handle constraints (3.18d) (3.18e) is an important reason for the industrial
interest of MPC. However, constraints can make the open and closed loop operations differ
even when we consider an infinite horizon cost in the formulation. This is because the control
sequence given by the feedback law in mode 2 might be infeasible and, therefore, the infinite
optimal trajectory might not be realizable/viable.

Terminal constraint

The target set TΩ ensures the viability of the computed control trajectory or, in MPC termi-
nology, recursive feasibility. If (3.18) can be solved then there is one feasible infinite trajectory
that the robot can follow to reach TΩ and stay there.

Strong recursive feasibility

When we choose TΩ as the target set, we have a plan that allows the robot to stop. However,
in MPC for biped walking we postpone, at every sample, the moment at which the robot
stops in order to continue moving. The added difficulty is not only the target set TΩ being
postponed but being changed from location every time a new step enters the preview horizon.
We want to know when does solving (3.18) one time imply solving it all the time.

Let the set of all solutions of (3.18) starting from x(0|k) be

Wk , {(x(0|k), ũk) : ũk solves (3.18)}, (3.28)

and its projections

(W0)k , {(x(0|k),κ) : ∃ũk, (x(0|k), ũk) ∈ Wk, u(0|k) = κ}, (3.29a)

Zk , {x(0|k) : ∃ũk, (x(0|k), ũk) ∈ Wk}. (3.29b)

The MPC is strong recursive feasible [Kerrigan 2001] if and only if

∀k, ∀(x(0|k),κ) ∈ (W0)k =⇒ x(0|k+1) = x(1|k) = f̂(x(0|k),κ) ∈ Zk+1. (3.30)

Ciocca et al. provides a numerical proof of the computation of W for a specific biped sys-
tem [Ciocca 2017], which is an approximation of the capture basin W ⊆ CT .

3.7 Conclusion

We described the problem of avoiding failures and collisions in biped walking not only now
but also in the future. We explored the relevant concepts of viability and ICS (in infinite
horizon) and capturability and passive safety (in finite horizon). We unified the requirements

3.7. CONCLUSION 19

of balance preservation and collision avoidance by forcing the robot to stop in finite time. We
presented MPC as a method to generate desired motions while respecting constraints. We
described some key aspects to take into account in such control schemes and how they relate
to biped walking.

Chapter 4

Safe navigation strategies

4.1 Introduction

This chapter contains preliminary work done in collaboration with Matteo Ciocca.

We introduce, in this chapter, collision mitigation strategies for crowd navigation. We
address a common criticism over passive safety, which is precisely its “passivity”: in case of
inevitable collision the responsibility of avoiding it is transferred to the other party. We show
that collisions can be further mitigated by actively avoiding them, specially when there is
uncertainty in the motion of people.

We begin by describing the dynamics of the crowd that we consider throughout this
thesis in Section 4.2. We then define the two concepts that constitute collision mitigation in
Section 4.3. In Section 4.4 and 4.5 we design a controller that generates motions that comply
with these definitions. Finally, we briefly explore some ethical considerations of the choices
we make in this chapter in Section 4.6. Part of the work presented here has been published
by Bohórquez et al. [Bohórquez 2016].

4.2 Setting

4.2.1 Motion of the robot

We consider the LTI system xi = Axi−1 + Bui−1 where the state xi is composed of the
position ci and velocity ċi of the CoM. At sampling time i, A(i) represents the space occupied
by the robot. Let X (i) and U(i− 1) be the state and control constraints. We define X (i) as
the intersection of two sets

X (i) , X1(i) ∩ X2(i), (4.1)

where X1(i) represents kinematically and dynamically feasible states and X2(i) represents an
approximation of collision-free states in a finite horizon of N samples.

Definition 1 (Reachable set of the robot). The reachable set of the system at sampling time
i ∈ {1, . . . , N} from initial state x0 is

Rrobot(i) , {xi : ∀j < i, ∃uj ∈ U(j), xj+1 = Axj +Buj ∈ X (j + 1)}. (4.2)

4.2.2 Motion of the crowd

In order to compute the set X2(i), we make a prediction of the motion of the people inside
the Field of View (FoV) of the robot during the preview horizon.

20

4.2. SETTING 21

Figure 4.1: Walking against a crowd.

Definition 2 (Field of View). The Field of View of the robot at sampling time i is the circle
of radius Dfov centered at ci where persons can be perceived. The jth person in the crowd is
inside the FoV if

Bj(i) ∩ ball(ci, Dfov) 6= ∅, (4.3)

where Bj(i) represents the space occupied by the person.

As implied by (4.3), we do not consider occlusions in perception, making the robot aware
of everybody within the FoV (see Figure 4.1). Let the set F(i) contain the indices of all the
persons inside the FoV at the ith sampling time.

The prediction of the future position of the crowd depends on its expected behavior
towards the robot. We can consider different behaviors such as:

1. People are aware of their surroundings and actively try to collide with the robot.

2. People are aware of their surroundings and actively try to avoid collisions with the
robot.

3. People are not aware of their surroundings and do not actively avoid collisions with the
robot.

The first behavior represents a hostile or adversarial environment to the robot, as would
be the case of a team game such as football. Techniques for navigation relying on game
theory would be more appropriate in this case. The second behavior is what would be more
reasonable to assume in most robotic applications. We are concerned on how the robot should
move around and interact with people where collaboration is expected. This is the field of
study of Human Robot Motion (HRM), where the main interest is the social acceptability
and legibility of the motions. The crowd is assumed to be a dynamical system that can
be, at least partially, controlled or affected by the motion of the robot. For example, we
can study how effort is shared between an individual and a robot when their walking paths
cross each other [Da Silva Filho 2017]. The third behavior describes a crowd that is neither
collaborative nor adversarial. It is assumed that no action can be taken by the robot to make
it change its motion.

The first behavior is not interesting since it is far from the description of our use case.
The second behavior is closer to our use case but it seems to add unnecessary complexity

22 CHAPTER 4. SAFE NAVIGATION STRATEGIES

when determining a safe path to follow. This is because such crowd can avoid collisions even
without the collaboration of the robot [Fraichard 2007]. The third behavior is more neutral
and it appears to be better suited to test the safety of a walking controller. With a crowd
that behaves in this way, the responsibility of avoiding collisions lies entirely on the robot.
This “inattentive” crowd does not change its velocity in response to the motion of the robot.

Assumption 6. People are not aware of their surroundings and do not actively avoid colli-
sions with the robot or with each other.

Let us consider the state vector ηj ∈ R4 of the jth person in the crowd as its position and
velocity in the xy plane

ηj = (mj,x, ṁj,x,mj,y, ṁj,y). (4.4)

We model its motion with a double integrator

η̇j(t) = Γ̂1η
j(t) + Γ̂2m̈

j(t). (4.5)

where

Γ̂1 = diag
2

([
0 1
0 0

])

, Γ̂2 = diag
2

([
0
1

])

. (4.6)

We keep m̈j(t) piecewise constant over intervals of time τ giving a solution of the form:

η
j
i = Γ1η

j
i−1 + Γ2m̈

j
i−1. (4.7)

where

Γ1 = eΓ̂1τ = diag
2

([
1 τ
0 1

])

, Γ2 =

(∫ τ

0
eΓ̂1tdt

)

Γ̂2 = diag
2

([
τ2

2
τ

])

. (4.8)

The reachable sets of the crowd are commonly obtained by assuming that it moves with
bounded velocities and/or bounded accelerations [LaValle 2006, Chapter 14.2] [Liu 2017]. We
propose a slightly different approach: we assume that people maintain their velocity constant
(i.e. accelerations equal to zero following Assumption 6) at least during the preview horizon

∀i ∈ {1, . . . , N}, m̈j
i = 0, (4.9)

that is, for about one or two seconds. However, we acknowledge that the measurement of the
initial state of the crowd has a quantifiable error that is reflected in the predictions. This
means that the real initial state η

j
0 (position and velocity) is in the vicinity of the measured

initial state η̂
j
0. Given uncertainties in position Dp and in velocity Dv, we could have that

η
j
0 belongs to the ellipsoid:

E(η̂j
0) , {η : (η − η̂

j
0)

TP−1(η − η̂
j
0) ≤ 1}, (4.10)

whose four semi-axes have lengths: Dp (for position in x, y) and Dv (for speed in x, y). The
matrix P is symmetric, positive definite and has eigenvalues D2

p and D2
v .

Definition 3 (Reachable set of the crowd). The reachable set of the jth person in the crowd
at the sampling time i from the measured initial state η̂

j
0 is

Rj
person(i) , {η

j
i : ∃ηj

0 ∈ E(η̂
j
0), ∀s ≤ i, ηj

s+1 = Γ1η
j
s}. (4.11)

The reachable set Rfov(i) of all individuals in the FoV at the sampling time i is

Rfov(i) =
⋃

j∈F(i)

Rj
person(i). (4.12)

The resulting reachable sets are shown in Figure 4.2. The gray areas are the predicted
future positions of the person. When there is uncertainty in velocity, the set of possible
positions where the person could be in the future increases in size with time. The set X2(i)
can be then defined as:

X2(i) , {xi : A(i) ∩Rfov(i) = ∅}. (4.13)

4.3. COLLISION MITIGATION 23

Figure 4.2: Two different predictions of the motion of a person: without uncertainty (left)
and with uncertainty in velocity (right).

4.3 Collision mitigation

Definition 4 (Maximal Collision Delay). If there exists n ∈ {1, . . . , N} such that Rrobot(n−
1) 6= ∅ and Rrobot(n) = ∅ then it is the Maximal Collision Delay (MCD).

Remark 1. In this formulation, colliding is a condition that we want to postpone
as late in the future as possible. This is opposite to the minimal-time control prob-
lem [Van den Broeck 2011] in which we want to reach a target set T as soon as possible,
that is, we check if there exists an n ∈ {1, . . . , N} such that ∀i < n, Rrobot(i) ∩ T = ∅ and
Rrobot(n) ∩ T 6= ∅.

The MCD does not exist if no collision can happen (e.g. there is no crowd) or if the robot
can always avoid collisions. Let us suppose that the MCD exists and the collision happens.
However, Definition 4 does not tell us how the collision is going to happen, that is, it does
not tell us how to choose a specific trajectory until collision. We will choose a trajectory that
minimizes the velocities at collision.

Definition 5 (Minimal Collision Velocity). Let there be a collision at sampling time n ∈
{1, . . . , N} with the jth person in the crowd m

j
n. Let b̂ be the normalized vector (cn −

m
j
n)/‖cn −m

j
n‖. The trajectory (x1, . . . ,xn) that solves

minimize b̂T (ċn − ṁj
n), (4.14)

produces the Minimal Collision Velocity (MCV).

4.4 Control design for collision mitigation

Problem 1. Design a controller that computes a finite trajectory of states (x1, . . . ,xN) that
solves for the maximal collision delay and the minimal collision velocity problems.

4.4.1 Maximal Collision Delay

If the maximal collision delay is n ∈ {1, . . . , N} then, by definition, there exists a trajectory
of states (x1, . . . ,xn−1) that can avoid collisions all the time until then

∀i ∈ {1, . . . , n− 1}, xi ∈ X1(i) ∩ X2(i), (4.15)

because the intersection of the sets is not empty. If we define the metric

δi = {‖xi − q‖ : xi ∈ X1(i), q ∈ X2(i)}, (4.16)

24 CHAPTER 4. SAFE NAVIGATION STRATEGIES

then we can rewrite (4.15) as

∀i ∈ {1, . . . , n− 1}, δi = 0. (4.17)

Being able to avoid collisions at all times until n − 1 is a necessary condition for the
maximal collision delay to be n or greater. A MCD of n also implies that at sampling time
k + n the intersection of the sets is empty, that is

δn > 0. (4.18)

We would like to maximize the value of the first i for which we cannot make δi = 0.
We do this by solving equations (4.17) (4.18) in a hierarchical way: for every sampling time
i ∈ {1, . . . , N} in the preview horizon we try to satisfy firstly δi = 0 and secondly δi+1 = 0
without interfering with the first. That is, we want to

lex minimize (δ1, . . . , δN), (4.19)

which means that the vector δ = (δ1, . . . , δN) is to be minimized in a lexicographic or-
der [Isermann 1982]. For two vectors a, b ∈ Rn the strict lexicographic inequality a ≻ b

holds, if and only if, ai ≻ bi for i = min{k ∈ {1, . . . , n} : ak 6= bk}. The weak lexicographic
inequality a � b holds, if and only if, a ≻ b or a = b.

Example 2. The vectors a = (0, 0, 3, 0) and b = (0, 0, 1, 3) satisfy a ≻ b.

In the hierarchy of time of (4.19), we avoid collisions for as much time as possible by
giving higher priority to the present with respect to the future.

Remark 2. A hierarchy of time similar to (4.19) but with inverted priorities

lex minimize (κN , . . . , κ1), (4.20)

has been proposed by Al Homsi et al. for the problem of minimal-time control of manip-
ulators [Homsi 2016], in agreement with the observation made in Remark 1. In here, the
objective κi = 0 means reaching a target at sampling time i. We want to be able to reach it at
sampling time N ; furthermore, if possible, we would like to reach it at sampling time N − 1;
furthermore, if possible, we would like to reach it at sampling time N − 2, etc.

4.4.2 Minimal Collision Velocity

Let us suppose that a collision occurs between the robot and the jth person in the crowd at
sampling time n. Let us define the relative speed between the colliding bodies vn at that
time as

vn = b̂T (ċn − ṁj
n). (4.21)

With a sufficiently small sampling period τ we can approximate ċn and ṁn

ċn ≈
cn+1 − cn

τ
, ṁn ≈

mn+1 −mn

τ
, (4.22)

and (4.21) becomes:

vn ≈ b̂T
(
cn+1 − cn

τ
−

mn+1 −mn

τ

)

. (4.23)

Developing this expression we obtain

vn ≈ τ−1b̂T [(cn+1 − cn)− (mn+1 −mn)], (4.24a)

vn ≈ τ−1b̂T [(cn+1 −mn+1)− (cn −mn)]. (4.24b)

4.5. HIERARCHY OF TIME FOR FAILURES AND COLLISION AVOIDANCE 25

The value b̂T (ci −mi) could be considered the interpenetration of colliding bodies δi if we
restrict it to be either positive (in interpenetration) or zero (no contact)

vn ≈ τ−1(δn+1 − δn). (4.25)

Since we assume that the contact happens at sampling time n then δn = 0. Furthermore,
given that τ > 0 we have that

minimize vn ∝ minimize δn+1. (4.26)

This is clearly a subproblem of (4.19), therefore, by solving the MCD problem we solve the
MCV problem as well.

Remark 3. Problem (4.26) complies with standard contact models (e.g. the Hertz
model [Johnson 1985]) that describe the impact forces as being proportional to the inter-
penetration δ of the masses in contact.

4.5 Hierarchy of time for failures and collision avoidance

4.5.1 Passive safety

The solution of Hierarchy 1 provides the robot with a trajectory to walk safely and stop after
N sampling periods.

Hierarchy 1: Passive safety

1: Passive safety conditions:

– Feasibility and collision avoidance: ∀i ∈ {1, . . . , N}, xi ∈ X1(i) ∩ X2(i)

– Stop at the end: xN ∈ TΩ

2: Objectives: f(x̃, ũ)

With an MPC scheme we can continuously postpone the moment the robot eventually
stops. If it is not possible to safely postpone the moment the robot stops, it can simply follow
the last safe plan and stop before any collision occurs. We can raise an alarm to indicate
that the robot is initiating an emergency stop and warn the surrounding crowd of the risk of
collision N sampling periods in the future.

During the emergency stop, the robot will steadily approach the moment planned for the
stop and the horizon will shrink accordingly. It might be beneficial, however, to continue
re-evaluating the situation to check if, based on new measurements of the surrounding crowd,
it is possible to postpone the stop of the robot, as long as possible. We can go, at each new
sampling period, through a simple loop in order to

maximize {N : Nmin ≤ N ≤ Nmax, Hierarchy 1 is feasible}. (4.27)

4.5.2 Variations of collision mitigation

We could consider variations of the metric δi in (4.19) of the form

δi = {‖p− q‖ : p ∈ X1(i), q ∈ X2(i)}, (4.28)

where the state xi lies on the line that connects p and q

xi = θp+ (1− θ)q, (4.29)

26 CHAPTER 4. SAFE NAVIGATION STRATEGIES

and is closer to one or the other depending on the value of θ. With θ = 1 we make sure
the robot is always feasible while postponing collisions as much as possible, a behavior that
can be obtained by solving Hierarchy 3. With θ = 0.5 the robot avoids collisions even at the
expense of its own integrity, which can be done by solving Hierarchy 4. With θ = 0 the robot
is always collision-free while avoiding infeasibilities as much as possible, like the behavior
obtained by solving Hierarchy 5.

4.6 Ethical considerations

Until now we have seen how we can formally define different behaviors of the robot towards
the crowd. But why do we choose anyone of them? Under which criteria? Who is responsible
for the actions the robot makes? What are our responsibilities towards the robot? These
subtle questions seem to escape the domain of robotics and require a more formal grounding
on ethics. This section, largely based on preliminary work by Wieber, motivates the discussion
of some of these aspects and proposes practical methods to approach them.

Hierarchy 2: Asimov’s laws

1: A robot may not injure a human being or, through inaction, allow a human being
to come to harm.

2: A robot must obey the orders given it by human beings except where such orders
would conflict with the First Law.

3: A robot must protect its own existence as long as such protection does not conflict
with the First or Second Laws.

A robot must be prepared for the conflicts that can happen between the different objectives
assigned to it.

The American science-fiction author Isaac Asimov, who unknowingly invented the word
robotics in 1941, suggested three implicit laws in the creation of all our tools: they must
not be dangerous, they must fulfill their function and they must be durable. He proposed
formally applying these three laws to the behavior of robots, in a form reminiscent of the
biblical Decalogue: a robot will not be dangerous, a robot will obey and a robot will protect
itself. But what is probably the most important is that he provided a formal procedure in
case of conflict between these three laws, which is to consider that they do not have the same
degree of importance: a robot will obey as much as that does not make it dangerous and a
robot will protect itself as long as that does not make it dangerous or disobedient. This can be
stated as the hierarchy shown in Hierarchy 2. This formal procedure for conflict management
can be formulated in a mathematical way, Lexicographic Goal Programming [Escande 2014],
which can be used effectively for the control of all kinds of robots, humanoids [Sherikov 2015],
industrial [Al Homsi 2016], autonomous vehicles [Blumentals2017RR], with some precautions
as some fundamental mathematical difficulties are not solved yet [Wieber 2017]. This ability
to take into account multiple potentially incompatible objectives in complete safety is essential
to deal with some potentially complex situations. We naturally continue to work actively on
the different theoretical and practical aspects of this very promising approach.

A robot must not avoid collisions at all costs.

Following this approach, we can propose that our humanoid robot does everything possible
to avoid collisions, even if it means losing its balance. The result is obviously not satisfactory,
the robot sacrificing its balance on any occasion, even when facing a simply negligent behavior,
not to mention a malicious behavior. We believe an opposite approach is preferable: the robot

4.6. ETHICAL CONSIDERATIONS 27

Hierarchy 3: Collision Mitigation 1

1: Feasibility: ∀i ∈ {1, . . . , N}, xi ∈ X1(i)

2: Collision avoidance: x1 ∈ X2(1)
...

N: Collision avoidance: xN−1 ∈ X2(N − 1)

N+1: Collision avoidance: xN ∈ X2(N),
Stop: xN ∈ TΩ

N+2: Objectives: f(x̃, ũ)

Hierarchy 4: Collision Mitigation 2

1: Feasibility and collision avoidance: x1 ∈ X1(1) ∩ X2(1)
...

N-1: Feasibility and collision avoidance: xN−1 ∈ X1(N − 1) ∩ X2(N − 1)

N: Feasibility and collision avoidance: xN ∈ X1(N) ∩ X2(N)
Stop: xN ∈ TΩ

N+1: Objectives: f(x̃, ũ)

Hierarchy 5: Collision Mitigation 3

1: Collision avoidance: ∀i ∈ {1, . . . , N}, xi ∈ X2(i)

2: Feasibility: x1 ∈ X1(1)
...

N: Feasibility: xN−1 ∈ X1(N − 1)

N+1: Feasibility: xN ∈ X1(N),
Stop: xN ∈ TΩ

N+2: Objectives: f(x̃, ũ)

28 CHAPTER 4. SAFE NAVIGATION STRATEGIES

must postpone as much as possible the risk of collisions, but not to the point of losing its
balance, as shown in Hierarchy 3. The programmer of the robot is thus in the unusual position
of having to decide and justify that the robot does not avoid a collision even if it would have
been formally capable to do so. What elements can support such a position?

We need a normative ethics for machines.
To understand the basis of the relationship that men have with robots, an instructive

comparison can be made with animal rights, which can be seen in the absence of reciprocity
as simply a duty for men, that of not being cruel, following the analysis proposed by Saint
Thomas Aquinas and taken over by John Locke and Immanuel Kant. The notion of cruelty
to a machine becomes a reality as soon as it is given a place in our social interactions, what is
observed in all kinds of occasions for robots. One example among many others, the public of
the quai Branly museum in Paris was careful to say goodbye to the robot Berenson, which did
not conceal in any way its mechanical nature and insensitivity to such attention. As a machine
to which man can not refrain from giving a social place, the robot must not accept immoral
behavior against itself. It is based on this argument that we can argue that our humanoid
robot navigating in a crowd must not agree to sacrifice its balance indiscriminately. We can
note that the ethics of machines can only be deontological, that is defined by rules that must
be followed, their consequences being often difficult to predict (robots having no will of their
own, the ethics of virtue is totally off-topic). This imposes a pragmatic approach to ethics,
in which this deontology must be evaluated and worked out in the light of the consequences
observed in practice. This whole ethical reflection on the place we give to robots in human
society and the behavior expected from them is obviously far from complete and we continue
to work on it.

If we give to robots a place in our social interactions, we need to equip them for that.
In order for robots to interact in a coherent way, adapted to their human environment,

we must provide them with models of human cognition. This can be done with traditional
statistical models such as Hidden Markov Models, which can be adjusted to mimic previously
recorded human behaviors [Vasquez 2009]. But as discussed previously, the result of such an
approach is difficult to validate and, therefore, to use in a general way with full confidence.
As a result, it seems necessary once again to work on theoretical models formally established
and clearly defined, relying for example on the social comparison theory originally developed
in 1954 by the American psycho-sociologist Leon Festinger (who proposed also the theory of
cognitive dissonance), which can be used to reproduce faithfully the behavior of individuals
in a crowd. It is with the same objective that we are also currently working on a theory of
attention [Fraichard 2014].

Understanding under which conditions we can trust the behavior of a robot is a moral
prerequisite, but also a practical one.

4.7 Conclusion

Starting from standard assumptions on the motion of the robot and conservative assumptions
on the motion of the crowd, we defined collision mitigation strategies that make the robot
actively avoid collisions as much as possible and reduce the velocities of collision when they
are inevitable. We developed a lexicographic approach to generate such motions and we
showed that it could also be used to generate passively safe ones. We finished by discussing
the ethical implications of having strict priorities among the objectives of the robot.

Part II

Numerical aspects

29

Chapter 5

Lexicographic Programming

5.1 Introduction

In multi-objective optimization [Boyd 2004, Chapter 4] we want to minimize a vector-valued
objective function f = (f1, . . . , fm), composed of m scalar functions fi : Rn → R, in a feasible
set X ⊆ Rn

minimize
x∈X

f(x). (5.1)

If the objectives are noncompeting then a solution x∗ ∈ X can be found where every fi is
minimized. If the objectives are, at least, partially competing then such solution does not
exist and, instead, we are interested in the set of Pareto minimal points. A point xpo ∈ X is
a Pareto minimum if there does not exist another point x ∈ X that satisfies

fi(x) ≤ fi(x
po), ∀i ∈ {1, . . . ,m}, (5.2)

and fj(x) < fj(x
po) for at least one index j. The set of Pareto minimum points gives

information about trade-offs among all the objectives that a decision maker can use later.
How do we find Pareto minimal points? One standard technique is scalarization or weighting
where we want to

minimize
x∈X

λTf(x). (5.3)

The vector λ ∈ Rm is a weight vector that we can vary in order to obtain different Pareto
optimal points of (5.1).

Theorem 1 ([Miettinen 1998, Theorem 3.1.2]). The solution of problem (5.3) is Pareto
optimal if the components of λ are positive, that is, if λi > 0 for all i = {1, . . . ,m}.

Another technique is lexicographic programming where we want to

lex minimize
x∈X

f(x). (5.4)

It is more suitable when a natural ordering (that can be written pre-emptively) exists among
the objectives. That is, when they can be solved “sequentially”: we first solve the most
important one f1, then, among the set of solutions of f1, we solve the second objective in
importance f2, etc.

Theorem 2 ([Miettinen 1998, Theorem 4.2.1]). The solution of problem (5.4) is Pareto
optimal.

30

5.2. LEXICOGRAPHIC LEAST-SQUARES PROGRAMMING 31

Both techniques have their own domains of applications [Tamiz 1995]. In our case, lex-
icographic optimization is pertinent in humanoid robotics because of the amount of ob-
jectives we want robots to accomplish and the clear natural ordering that appears among
them [Dimitrov 2014]. The high number of degrees of freedom available to a humanoid robot
provides kinematic redundancy that we can exploit for this purpose. For instance, we can ask
the robot to: 1) maintain balance, 2) if possible, additionally, avoid collisions, 3) if possible,
additionally, reach an object, 4) if possible, additionally, keep this object within sight. In this
thesis we make extensive use of techniques from lexicographic programming, in particular,
from lexicographic least-squares programming.

5.2 Lexicographic least-squares programming

The objectives we want our biped robot to complete can be expressed as linear equalities and
inequalities. Given a matrix Ai ∈ Rm×n and vectors bi, bi ∈ Rm, we want x to satisfy the
ith objective

bi ≤ Aix ≤ bi. (5.5)

In this formulation, equalities can be written as bi,j = bi,j , for j ∈ {1, . . . ,m}. Different
objectives might conflict and, in such cases, at least one of them has to be relaxed. We can
introduce the violation vi ∈ Rm

bi ≤ Aix− vi ≤ bi, (5.6)

and minimize its norm
fi(x) = ‖vi‖

2. (5.7)

Note that the objective is satisfied if fi(x) = 0. The L2 norm prevents unwanted irregularities
in the control of the robot [Kanoun 2011].

Deciding which objectives can be relaxed is problem-dependent. In any case, we can
assign a priority to each objective and minimize their violations accordingly, that is, as a
lexicographic least squares problem.

Problem 2. Let there be P levels of priorities, each one described by a triplet (Ai, bi, bi).
Solve

lex minimize
x,ṽ

(‖v1‖
2, . . . , ‖vP ‖

2) (5.8a)

subject to






b1
...
bP




 ≤






A1
...

AP




x−






v1
...
vP




 ≤






b1
...

bP




 . (5.8b)

where ṽ = (v1, . . . ,vP).

In the following we discuss three different methods that can be used to solve Problem 2:
null-space projections, cascade of QPs and advanced decompositions.

5.2.1 Null-space projections

In the case of only equality-constrained systems

lex minimize
x,r̃

(‖r1‖
2, . . . , ‖rP ‖

2) (5.9a)

subject to






A1
...

AP




x−






r1
...
rP




 =






b1
...
bP




 . (5.9b)

32 CHAPTER 5. LEXICOGRAPHIC PROGRAMMING

where r̃ = (r1, . . . , rP), the solution can be obtained with null space projec-
tions [Siciliano 1991]. For instance, one solution to the first level can be obtained with
the pseudoinverse (·)+:

x1 = A+
1 b1, (5.10)

which is the minimum of the solution set

S1 = argmin
x

‖r1‖
2. (5.11)

This set permits the projection of arbitrary vectors z1 onto the null-space of A1 (with the
operator P1 = I −A+

1 A1) as follows

S1 = {x1 + P1z1 : z1 ∈ Rn}. (5.12)

This vector is what gives freedom to accomplish the next objective in priority. The solution
of the second level is constrained by the solution of the first level:

S2 = argmin
x∈S1

‖r2‖
2, (5.13)

and its minimum is, then again, obtained with the pseudo-inverse of A2 but projected onto
the null-space of A1

x2 = x1 + (A2P1)
+(b2 −A2x1). (5.14)

We can extend this formulation to account for all objectives in the priority list.

5.2.2 Cascade of QPs

The limitation of the method of null-space projections is that it does not consider inequal-
ity objectives. These can be taken into account in Algorithm 1 proposed by Kanoun et
al. [Kanoun 2011]. In here, we solve the ith level of the hierarchy as a QP and we impose the
solution as a constraint to the optimization problem at the (i+1)th level in a form of cascade
of QPs.

5.2.3 Advanced decompositions

Solving Algorithm 1 can be expensive as we have to solve a separate QP for each level in the
hierarchy. Escande et al. solve the inequality-constrained problem (5.8) by repeatedly solving
the equality-constrained problem (5.9) with a subset of the constraints that are assumed to
be active [Escande 2014]. Each of these subproblems is solved by simultaneously minimizing
all violations (‖r1‖

2, . . . , ‖rP ‖
2) while preserving the hierarchy with a hierarchical complete

orthogonal decomposition. Being an active-set method, it has the advantage that problems
can be warm-started.

Dimitrov et al. propose a faster matrix decomposition, called lexicographic QR or ℓ-QR,
that efficiently exploits the structure of a hierarchical problem [Dimitrov 2015]. This has lead
to the development of a specialized solver, called LexLS, which is used throughout this thesis.

5.3 Solutions near singularities

Solvers for prioritized objectives may experience numerical issues near singulari-
ties [Siciliano 1991, Kanoun 2011]. In these cases, the Jacobian matrices of the objectives

5.3. SOLUTIONS NEAR SINGULARITIES 33

Algorithm 1 Cascade of QPs

Require: (Ai, bi, bi), ∀i ∈ {1, . . . , P}
Ensure: lex minimize (‖v1‖

2, . . . , ‖vP ‖
2)

1: for all i ∈ {1, . . . , P} do
2: if i = 1 then

minimize
x,v

‖v‖2 (5.15a)

subject to b1 ≤ A1x− v ≤ b1 (5.15b)

3: else

minimize
x,v

‖v‖2 (5.16a)

subject to b1 ≤ A1x− v∗
1 ≤ b1, (5.16b)

... (5.16c)

bi−1 ≤ Ai−1x− v∗
i−1 ≤ bi−1, (5.16d)

bi ≤ Aix− v ≤ bi (5.16e)

4: end if

5: v∗
i ← v

6: end for

become ill-conditioned and solutions can grow unbounded. Better behaved solutions can be
obtained by adding standard regularization of the form

minimize
x,v

‖v‖2 + λ2‖x‖2 (5.17a)

subject to bi ≤ Aix− v ≤ bi, (5.17b)

where λ > 0 is a damping factor. Care must be taken on the value of λ we choose: small
values help maintain the numerical stability of the problem but large values can interfere
with the expected behavior of the robot. Normally, we would want to adapt λ to be zero
everywhere except near singularities.

A different approach is proposed by Wieber et al. in which the damping is, instead,
chosen to be nonzero far from singularities in order to efficiently steer the Gauss-Newton
steps towards a desired solution [Wieber 2017]. In such work, we analyze singularities that
appear at the optimum (which are difficult to predict/detect before encountering them) and
that delay the convergence to the desired solution. We introduce artificial constraints, such
as regularization, that interfere “early” with the objectives. Alternatively, we can add a trust
region of the form

minimize
x,v

‖v‖2 (5.18a)

subject to bi ≤ Aix− v ≤ bi, (5.18b)

‖x‖∞ ≤ ∆, (5.18c)

for some ∆ > 0, that forces the steps to go in the “right direction” before arriving to
the singularities. Then again, adaptation of the trust region is needed. These artificial
constraints methods have been demonstrated numerically to work well on a simple example
system, however, they remain to be validated in more complex situations. The handling of
singularities in redundancy resolution schemes is still an open area of research.

34 CHAPTER 5. LEXICOGRAPHIC PROGRAMMING

5.4 Conclusion

We presented lexicographic programming in the general context of multiobjective optimiza-
tion. We showed that it is interesting and relevant in robotics when resolving redundancy on:
kinematics, forces, time, etc. We did a small overview of the numerical methods that can be
used to solve lexicographic problems and briefly discussed how to mitigate the singularities
that can arise.

Chapter 6

Safe Sequential Quadratic

Programming

6.1 Introduction

The Nonlinear Programming problem described in (3.18) can be rewritten in its canonical
form as:

minimize
x

f(x) (6.1a)

subject to ci(x) = 0, i ∈ E , (6.1b)

ci(x) ≥ 0, i ∈ I, (6.1c)

where f : Rn → R and ci : Rn → R are twice-continuously differentiable functions on Rn and
the sets E , I contain the indices of c = (c1, . . . , cm), for m = |E|+ |I|, that are equality and
inequality constrained, respectively. We denote the feasible set for (6.1) by

X , {x ∈ Rn : ∀i ∈ E , ∀j ∈ I, ci(x) = 0, cj(x) ≥ 0}, (6.2)

which we assume to be nonempty. We want to find a point x∗ that locally minimizes f and
satisfies all constraints ci.

6.2 Sequential Quadratic Programming

This section is largely based on the work of Nocedal et al. chapters 12, 15, 16 and
18 [Nocedal 2006].

First-order necessary conditions of optimality for problem (6.1), the Karush-Kuhn-Tucker
conditions (KKT conditions), are described in Theorem 3.

Theorem 3 ([Nocedal 2006, Theorem 12.1]). Suppose that x∗ is a local solution of (6.1),
that the functions f and ci are continuously differentiable, and that the Linear Independence
Constraint Qualification (LICQ) holds at x∗. Then there is a Lagrange multiplier vector λ∗

such that the following conditions are satisfied at (x∗,λ∗):

∇xL(x
∗,λ∗) = 0, (6.3a)

ci(x
∗) = 0, ∀i ∈ E , (6.3b)

ci(x
∗) ≥ 0, ∀i ∈ I, (6.3c)

λ∗
i ≥ 0, ∀i ∈ I, (6.3d)

λ∗
i ci(x

∗) = 0, ∀i ∈ E ∪ I. (6.3e)

35

36 CHAPTER 6. SAFE SEQUENTIAL QUADRATIC PROGRAMMING

In here, L(x,λ) = f(x) − λT c(x) is the Lagrangian function of (6.1). Sequential
Quadratic Programming (SQP) results from applying a Newton method to the KKT con-
ditions of the problem. This is equivalent to iteratively solving the following inequality-
constrained QP (IQP) subproblem

minimize
p

f(xk) +∇f(xk)
Tp+

1

2
pT ∇2

xxL(xk,λk)p (6.4a)

subject to ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ E (6.4b)

∇ci(xk)
Tp+ ci(xk) ≥ 0, i ∈ I, (6.4c)

evaluated at (xk,λk), the kth iteration. The optimal step p∗ and Lagrange multipliers q∗

give us the point
[
xk+1

λk+1

]

=

[
xk + p∗

q∗

]

, (6.5)

where we can create another quadratic subproblem at the (k + 1)th iteration and find a new
minimizer. We repeat the process until a convergence test is satisfied.

6.2.1 Active set methods

We denote by active set Ak(p), at a given p, the indices of the constraints for which equality
holds in the kth subproblem

Ak(p) = E ∪ {i ∈ I : ∇ci(xk)
Tp+ ci(xk) = 0}. (6.6)

A constraint ci is said to be active if it is in the active set.
If we know in advance which constraints are active at the solution of (6.4), we can solve

instead the following equality-constrained QP (EQP):

minimize
p

f(xk) +∇f(xk)
Tp+

1

2
pT ∇2

xxL(xk,λk)p (6.7a)

subject to ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ Ak(p

∗). (6.7b)

If we do not know Ak(p
∗) we need to determine it: we iteratively solve the EQP

minimize
p

f(xk) +∇f(xk)
Tp+

1

2
pT ∇2

xxL(xk,λk)p (6.8a)

subject to ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ W, (6.8b)

while adding and removing constraints from a selection of constraintsW, containing all E and
some i ∈ I, until the optimality conditions of (6.4) are satisfied [Nocedal 2006, Chapter 16.5].
We can use knowledge of f, ci and its derivatives to make a series of educated guesses of
the working set W avoiding the need to explore exhaustively all the possibilities. This is
significant considering that the number of choices for W may be large, up to 2|I|, which
accounts for the combinatorial difficulty of NLP.

Let the function cW : Rn → R|W| be all the constraints ci in the working set. Let the
column vectors of the matrix AT (xk) be the gradients of the constraints in the working set

AT (xk) =
[
∇ci(xk)

]
, ∀i ∈ W. (6.9)

A solution (p∗, q∗) for (6.8) can be found by considering the necessary conditions

[
∇2

xxL(xk,λk) −A
T (xk)

A(xk) 0

] [
p∗

q∗

]

=

[
−∇f(xk)
−cW(xk)

]

. (6.10)

6.2. SEQUENTIAL QUADRATIC PROGRAMMING 37

If this solution also satisfies

∇ci(xk)
Tp∗ + ci(xk) ≥ 0, ∀i ∈ I \W, (6.11a)

q∗i ≥ 0, ∀i ∈ I ∩W, (6.11b)

then it is also a solution of (6.4) and W is equal to A(p∗).

6.2.2 Warm-start

An important difficulty in solving an SQP with active set methods is determining which
constraints are active at the solution of the original problem (6.1), the optimal active set A∗.
We can take the active set at the solution of the kth subproblem, Ak(p

∗), as a guess of A∗

since they are both equal under the conditions described in Theorem 4.

Theorem 4 ([Nocedal 2006, Theorem 18.1]). Suppose that x∗ is a local solution to (6.1) at
which the KKT conditions are satisfied for some λ∗. Suppose, too, that the LICQ qualifica-
tion, the strict complementarity condition and the second-order sufficient conditions hold at
(x∗,λ∗). Then if (xk,λk) is sufficiently close to (x∗,λ∗), there is a local solution of (6.4)
whose active set Ak(p

∗) is the same as the optimal active set A∗.

The generally expensive IQP subproblems become more economical if we use information
from the previous iteration as a guess of the solution of the current iteration. This is true as
the SQP algorithm converges to the solution.

6.2.3 The Hessian of the Lagrangian

In the exact Newton method, the use of the matrix ∇2
xxL provides a quadratic convergence

rate in a neighborhood of the solution z∗ = (x∗,λ∗), i.e. ‖zk+1−z∗‖ ≤ ω
2 ‖zk−z∗‖2 when zk

is sufficiently close to z∗. However, computing the matrix of second derivatives ∇2
xxL could

be expensive. We can substitute it with a general Hessian matrix Bk at the kth subproblem

minimize
p

f(xk) +∇f(xk)
Tp+

1

2
pTBk p (6.12a)

subject to ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ W, (6.12b)

which we can choose to be any of the following [Diehl 2017]:

• Quasi-Newton BFGS. In the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method we
approximate Bk+1 to ∇2

xxL(xk+1,λk+1) in the direction sk = xk+1 − xk by finding a
matrix that satisfies the secant condition

Bk+1sk = ∇xL(xk+1,λk+1)−∇xL(xk,λk+1), (6.13)

and that minimizes the distance to Bk in the Frobenious norm sense. This method
allows us to obtain a superlinear convergence rate in a neighborhood of the solution
z∗, i.e. ‖zk+1 − z∗‖ ≤ κ‖zk − z∗‖ with κ → 0 and it is less expensive than the exact
Hessian since only the first derivatives of the objective function and the constraints are
needed.

• Gauss-Newton. In the special case of a nonlinear least-squares problem, i.e. where
f(x) = 1

2‖F (x)‖22, each EQP subproblem has the form

minimize
p

1

2
‖F (xk) +∇F (xk)

Tp‖22 (6.14a)

subject to ∇ci(xk)
Tp+ ci(xk) = 0, i ∈ W. (6.14b)

38 CHAPTER 6. SAFE SEQUENTIAL QUADRATIC PROGRAMMING

Rewriting the objective function as follows:

1

2
F (xk)

TF (xk)
︸ ︷︷ ︸

f(xk)

+F (xk)
T∇F (xk)

T

︸ ︷︷ ︸

∇f(xk)T

p+
1

2
pT ∇F (xk)∇F (xk)

T

︸ ︷︷ ︸

Bk

p, (6.15)

reveals that the Gauss-Newton Hessian matrix does not depend on the multipliers λk

but only on first derivatives of F (xk). Furthermore, it is symmetric and has only
non-zero eigenvalues, therefore, it is convex. It is related to the exact Hessian in the
following way:

∇2
xxL(xk,λk) = ∇F (xk)∇F (xk)

T +
∑

i

Fi(xk)∇
2Fi(xk) +

∑

i

λi∇
2ci(xk). (6.16)

The difference between the exact Hessian and the Gauss-Newton Hessian is of order
O(‖F (x∗)‖). This Hessian allows us to obtain a linear convergence rate in a neighbor-
hood of the solution z∗, i.e. ‖zk+1 − z∗‖ ≤ κ‖zk − z∗‖ with κ = O(‖F (x∗)‖); hence,
it converges fast if the residuals F (x∗) are small.

6.2.4 Merit functions

The solution p∗ that we obtain should be a good compromise between minimizing the ob-
jective function and satisfying constraints. We evaluate these (often competing) goals with
merit functions. We use an L1 merit function of the form

φ1(x, µ) = f(x) + µ
∑

i∈E

|ci(x)|+ µ
∑

i∈I

[ci(x)]
− , (6.17)

despite being non-differentiable, because it is exact : there is a positive scalar µ∗ such that
for any µ > µ∗ any local solution of (6.1) is a local minimizer of φ1(x, µ). In here we use the
notation [z]− = max {0,−z}.

We accept a step if the actual decrease of φ1 is not too small relative to the predicted
decrease. In particular, we accept the step αp∗ if the following sufficient decrease condition
holds:

φ1(xk + αp∗, µ) ≤ φ1(xk, µ) + ηαD(φ1(xk, µ),p
∗), η ∈ (0, 1), (6.18)

where D(φ1(xk, µ),p) is the directional derivative of φ1 in the direction p. This directional
derivative exists even if φ1 is non-differentiable.

Theorem 5 ([Nocedal 2006, Theorem 18.2]). Let (p∗, q∗) be a solution of (6.4). Then the
directional derivative of φ1 in the direction p∗ satisfies

D(φ1(xk, µ),p
∗) = ∇f(xk)

Tp∗ − µ

(
∑

i∈E

|ci(xk)|+
∑

i∈I

[ci(xk)]
−

)

. (6.19)

We want this directional derivative to be sufficiently negative in the sense that

D(φ1(xk, µ),p
∗) ≤ −ρµ

(
∑

i∈E

|ci(xk)|+
∑

i∈I

[ci(xk)]
−

)

, (6.20)

for some ρ ∈ (0, 1), which holds if

µ ≥
∇f(xk)

Tp∗

(1− ρ)
(∑

i∈E |ci(xk)|+
∑

i∈I [ci(xk)]
−) . (6.21)

6.2. SEQUENTIAL QUADRATIC PROGRAMMING 39

6.2.5 Maratos effect and second-order correction

It is possible that, using merit functions, we reject a good step for the nonlinear problem
and we fail to achieve superlinear convergence. This is the case, for example, when the
linearization of the constraints is not accurate enough in the vicinity of xk. This is known as
the Maratos effect [Nocedal 2006, Chapter 15.5] and we can avoid it by:

• Adding a second-order correction step p̂ defined to be

p̂ = −AT (xk)(A(xk)A
T (xk))

−1cW(xk + p). (6.22)

This step satisfies the linearization of the constraint cW at the point xk + p, that is,

A(xk)p̂+ cW(xk + p) = 0. (6.23)

• Allowing the merit function φ1 to sometimes increase from iteration to iteration (adopt
a non-monotone technique).

6.2.6 A line search algorithm

We use Algorithm 2, adapted from [Nocedal 2006, Algorithms 18.3, 15.2], to solve the non-
linear optimization problem (6.1). Note that we do not apply the second-order correction at
every iteration of the line search to avoid expensive computations.

Algorithm 2 Line-search SQP

Require: f, c, E , I, ǫ
Ensure: KKT conditions with ǫ-accuracy
1: Choose η ∈ (0, 0.5)
2: Choose initial point x0

3: k ← 0
4: repeat

5: Evaluate f(xk),∇f(xk), c(xk),∇c(xk)
6: Compute (pk, qk) from (6.4)
7: Compute µk from (6.21)
8: αk ← 1
9: if φ1(xk + pk, µk) ≤ φ1(xk, µk) + ηD(φ1(xk, µk),pk) then

10: xk+1 ← xk + pk, λk+1 ← qk
11: else

12: Compute p̂k from (6.22)
13: if φ1(xk + pk + p̂k, µk) ≤ φ1(xk, µk) + ηD(φ1(xk, µk),pk) then
14: xk+1 ← xk + pk + p̂k, λk+1 ← qk
15: else

16: while φ1(xk + αkpk, µk) > φ1(xk, µk) + ηαkD(φ1(xk, µk),pk) do
17: αk ← αk/2
18: end while

19: xk+1 ← xk + αkpk, λk+1 ← (1− αk)λk + αkqk
20: end if

21: end if

22: k ← k + 1
23: until KKT conditions are satisfied with ǫ-accuracy

40 CHAPTER 6. SAFE SEQUENTIAL QUADRATIC PROGRAMMING

6.3 Feasible Sequential Quadratic Programming

In the line-search SQP presented in Algorithm 2 there is no guarantee of the satisfaction of
the constraints until it has converged: an appropriate merit function (and even a second-order
correction) is needed in order to minimize the violation of the constraints at every iteration.
Feasible SQP (FSQP) refers to methods in which we ensure the feasibility of every iterate xk

of the SQP. We restrict ourselves to inequality-constrained problems of the form

minimize
x

f(x) (6.24a)

subject to gi(x) ≥ 0, i ∈ {1, . . . ,m}, (6.24b)

where f : Rn → R and gi : Rn → R are twice-continuously differentiable functions. Let the
vector function g = (g1, . . . , gm) collect all scalar functions gi. We denote the feasible set
for (6.24) as:

D , {x ∈ Rn : g(x) ≥ 0}. (6.25)

In the line-search method presented in [Panier 1993, Lawrence 1996] and [Zhu 2010], fea-
sibility is achieved by “tilting” the search direction towards the feasible set. The new direction
d is written as

d = (1− θ)p0 + θp1, θ ∈ [0, 1]. (6.26)

In here, p0 refers to the solution of (6.4) and p1 is an arbitrary feasible direction. In order
to ensure the quasi-Newton character of p0 in d, θ is selected to be a function of p0 that
goes to zero fast enough as a solution is approached, that is, θ satisfies θ(p0) = O(‖p0‖2).
Furthermore, we add another term dC that “bends” the search direction in order to avoid
the Maratos effect. A line search is then performed on the arc

xk + td+ t2dC ∈ D, t ∈ [0, 1]. (6.27)

Note that we need to compute three QPs: one per search direction p0,p1 and dC . Although
a more efficient algorithm is presented in [Lawrence 2001], this remains a computationally
expensive method.

In the trust-region method presented in [Wright 2004] we solve, at each iteration, the
quadratic subproblem (6.4) with the extra constraint

‖Wp0‖ ≤ ∆, (6.28)

where W is a diagonal matrix of weights and ∆ is a positive constant. Feasibility is achieved
by appropriately perturbing the regular step p0 to obtain a p̃ such that

xk + p̃ ∈ D. (6.29)

If this new step satisfies ‖p0 − p̃‖ ≤ φ(‖p0‖)‖p0‖, where φ : R≥0 → R≥0 and φ(0) = 0,
then we can ensure superlinear convergence. The vector xk + p̃ can be obtained from the
projection of xk + p0 onto the feasible set, however, this is not a trivial problem to solve in
general [Boyd 2004, Chapter 8.1]. In problems with more structured constraints, this task
could be rather inexpensive. Moreover, in the case where the constraint g is linear we can
simply set p̃ = p.

In our approach to feasible iterates of the SQP we develop on this last observation: instead
of adapting p0, we modify the constraint g such that the solution of this modified problem is
a feasible point of the original problem. Iterations are, therefore, less expensive because we
solve a single QP and no extra step corrections have to be made.

Sun et al. used FSQP techniques to find stable periodic gaits for the walk of a compass-
like robot walker [Sun 2015]. Lebbah et al. developed tight and safe linear relaxations of

6.4. CONVEXIFICATION OF CONSTRAINTS 41

polynomial constraints in the exploration of feasible sets in order to bound the global op-
tima [Lebbah 2005, Lebbah 2007]. They use interval analysis, local consistencies and branch
and prune algorithms to approximate the solutions with arbitrary precision. However, in our
case we are interested in local optima.

6.4 Convexification of constraints

6.4.1 Convexification by transformation

Let f : C → R be a function defined in a convex subset C ⊆ Rn. Let f(C) be the image of C
under f , i.e.

f(C) , {f(x) : x ∈ C}. (6.30)

Definition 6 (Convex range transformable [Horst 1984]). The function f is said to be convex
range transformable if there exists a continuous strictly monotone increasing function F :
f(C)→ R such that F (f(x)) is convex over C.

In the case of the constraint g in (6.24), the difficulty resides in finding a function F
such that F (gi(x)) is convex over C for all i ∈ {1, . . . ,m}. This might prove to be difficult
to do by hand except only for highly structured problems1. A different approach consists in
convexifying functions through a change of variables.

Definition 7 (Convex domain transformable [Horst 1984]). The function f is said to be
convex domain transformable if there exists a continuous one-to-one mapping h : C → Rn

such that f(h−1(y)) is convex on h(C).

Then, again, this could be possible to do when x and the constraints gi can be ma-
nipulated with ease. Examples of applications include the real-time generation of feasible
trajectories in nonlinear systems such as aircrafts [Faiz 1999, Nadim Faiz 2001] and space-
crafts [Louembet 2007].

Example 3. Khadiv et al. consider the 1-dimensional modal system of the motion of the
CoM [Khadiv 2016]

[
u̇
ṡ

]

=

[
ω 0
0 −ω

] [
u
s

]

+

[
−ω
ω

]

p,

where u, s ∈ R represent the unstable and stable components of the dynamics, respectively,
p ∈ R is the CoP and ω is a positive real constant. The solution to the unstable component
of this system can be written, at the ith sampling time, as

ui+1(x) = (ui − pi)e
ωiτi + pi,

where x = (ui, pi, ωi, τi) ∈ R4 and pi is maintained constant over an interval τi > 0. We
want to adapt the duration of the steps by changing τi. The relationship between τi and ui+1

is convex but nonlinear and we want to linearize it. We perform a domain transformation
with a function h1 : R4 → R2

h1(x) =

[
δi
πi

]

=

[
ui − pi
eωiτi

]

,

while constraining δi = δi+1 = b. This results in the reformulated system

ui+1(h1(x))− pi+1 = δi+1 = b,

δiπi + pi − pi+1 = b,

bπi + pi − b = pi+1,

1For problems without an evident structure, neural networks are useful for range convexification.

42 CHAPTER 6. SAFE SEQUENTIAL QUADRATIC PROGRAMMING

which is linear with respect to πi and pi+1. However, by doing so we have relatively “rigid”
dynamics fixed to b at every step. We could gain more flexibility by considering instead

b0πi + pi − b = pi+1,

where b0 is a constant and πi, pi+1, b are variables, as proposed by the authors. In this case,
although the system and the constraints are linear, we can only linearly preview a single step
in the future.

We propose, instead, to perform a domain transformation with a function h2 : R5 → R3

h2(x, ki+1) =





πi
δi

δi+1/ki+1



 =





ωiτi
ui − pi
ui+1 − pi



 ,

which gives

ui+1(h2(x, ki+1)) = δie
πi + pi,

δi+1/ki+1 = δie
πi ,

δi+1 = ki+1δie
πi .

This formulation allows us to (indirectly) control the value of ui−pi as a factor ki of ui−pi−1.
We can obtain an expression which is linear on the integration time τi by restricting δi, ki+1 >
0 and performing a range transformation with logarithms

ln(δi+1) = ln(ki) + ln(δi) + πi.

We can preview any number of steps of the robot, each one with potentially different duration.
However, the formulation of constraints on the CoM, the steps and the CoP in this new space
becomes nonlinear.

6.4.2 Convexification by polytopic approximation

Definition 8 (ǫ-approximation [Jones 2010]). A polytope P is an ǫ-approximation of a set
Q if the Hausdorff distance between P and Q, denoted dH(P,Q), is less than or equal to ǫ,
for some ǫ > 0. P is called an outer (resp. inner) ǫ-approximation if Q ⊆ P (resp. Q ⊇ P).

In general, we could define P to be arbitrarily close to Q (in the Hausdorff-distance sense)
by increasing the number of hyperplanes and halfspaces we use to define it.

Theorem 6 ([Bronshtein 1975]). If Q is compact and convex then, for every ǫ > 0, there
exists a finite number of equalities and inequalities (used to define P) such that dH(P,Q) ≤ ǫ.

If Q is nonconvex then there is a limit to how close we can approximate Q with a single
polytope [Deits 2015]. In this thesis, however, we prefer the capacity to computing online a
safe linear approximation of Q than to minimize dH(P,Q).

Let us consider the constraint of problem (6.24)

g(x) ≥ 0, (6.31)

and its feasible set D. We recall that g : Rn → Rm. Let there be a set of points {Aix− bi}
that satisfy for some S ⊆ Rn

∀x ∈ S, g(x) ∈ conv {Aix− bi}, (6.32)

6.5. SAFE SEQUENTIAL QUADRATIC PROGRAMMING 43

where Ai ∈ Rm×n and bi ∈ Rm. That is, the set {conv {Aix − bi} : x ∈ S} is an outer
approximation of the set g(S) and therefore

∃x ∈ S, ∀i, Aix− bi ≥ 0 =⇒ g(x) ≥ 0. (6.33)

We can then safely approximate the nonlinear constraint g(x) ≥ 0 with the linear constraints
∀i, Aix− bi ≥ 0 since the feasible set

D̂ , {x ∈ S : ∀i, Aix− bi ≥ 0}, (6.34)

is an inner approximation of D
D̂ ⊆ D. (6.35)

6.5 Safe Sequential Quadratic Programming

Let us reconsider the NLP problem (6.24)

minimize
x

f(x) (6.36a)

subject to g(x) ≥ 0. (6.36b)

We assume that its feasible set D is nonempty. In a similar fashion to the SQP frameworks
presented in Sections 6.2 and 6.3, in this Safe Sequential Quadratic Programming (Safe SQP)
framework we design a QP subproblem at the kth iteration of the form:

minimize
p

f(xk) +∇f(xk)
Tp+

1

2
pTBk p (6.37a)

subject to Ak,ip− bk,i ≥ 0, ∀i, (6.37b)

xk + p ∈ Sk, (6.37c)

where constraints (6.37b) are safe linear approximation of g(xk + p) ≥ 0 in the set Sk. This
implies that, if the feasible set

D̂k , {xk + p ∈ Sk : ∀i, Ak,ip− bk,i ≥ 0}, (6.38)

is not empty then it satisfies
D̂k ⊆ D. (6.39)

Therefore, as indicated in (6.33), a solution p∗ satisfies

xk + p∗ ∈ D̂k ⊆ D. (6.40)

We choose Sk to be a bounded set of the form:

Sk , {xk + p ∈ Rn : ‖Wp‖∞ ≤ ∆}, (6.41)

where W is a diagonal matrix of positive weights.

6.5.1 A trust-region algorithm

The set Sk also acts as a trust region. It ensures that the iterates are well-defined by restricting
the step p∗ to a neighborhood of xk where the second-order model of f is considered reliable.
Reliability is determined with the ratio ρ between the actual and the predicted reduction of
f related to the step p∗

ρ = −
f(xk)− f(xk + p∗)

∇f(xk)p∗ + 1
2p

∗TBk p∗
. (6.42)

44 CHAPTER 6. SAFE SEQUENTIAL QUADRATIC PROGRAMMING

The closer this ratio is to one, the more reliable the step is.

We handle potential infeasibilities, produced by our choice of Sk and inconsistencies among
the linear constraints, by relaxing the problem in the following way:

lex minimize
p,v1,v2

v = (‖v1‖
2, v22) (6.43a)

subject to Ak,ip− bk,i − v1 ≥ 0, (6.43b)

f(xk) +∇f(xk)
Tp+

1

2
pT Bk p− v2 = 0, (6.43c)

xk + p ∈ Sk, (6.43d)

The vector v is to be minimized in a lexicographic order: we relax, firstly, the constraints
as little as needed (by minimizing ‖v1‖

2) and then, secondly, the objective function as
little as needed (by minimizing v22 without interfering with the optimal value of ‖v1‖

2).
This corresponds to the standard relaxation of equality constraints for trust-region meth-
ods [Nocedal 2006, Chapter 18.5].

Let (p∗,v∗
1, v

∗
2) be a solution to the relaxed problem (6.43). If ‖v∗

1‖
2 = 0 then the linear

constraints are satisfied exactly and xk + p∗ is a feasible point of (6.36). Moreover, even if
‖v∗

1‖
2 > 0 and the linear constraints are violated, the point xk + p∗ could still be a feasible

point of the nonlinear problem (as shown statistically in Section 8.3) because the linear
constraints are conservative and their violation is minimized in a least-squares sense. We can
determine this by simply checking whether

g(xk + p∗) ≥ 0. (6.44)

Algorithm 3 presents a trust-region Safe SQP. It is based on the algorithm for con-
vex constraints presented by Conn et al. that computes feasible iterates [Conn 2000, Algo-
rithm 12.2.1]. As in classic trust-region algorithms, we compute ρk and use it to both update
the size of the trust region (lines 17 to 25) and to accept or reject a step pk (lines 26 to 31).
Additionally, we check whether a point pk from the relaxed problem (6.43) is a feasible point
in the original nonlinear problem (6.36) (lines 7 to 15). In any case, whenever the linear
constraints are inconsistent we reduce the size of the trust region.

6.5.2 Termination and convergence

For reasons of time, proofs on the termination of Algorithm 3 as well as on its convergence
to first-order and second-order critical points are beyond the scope of this thesis. In the
following, we sketch some conjectures.

We could anticipate that Algorithm 3 terminates in a finite number of iterations, as shown
by Conn et al. for a similar algorithm [Conn 2000, Theorem 12.2.1], if we assume: 1) the
functions f and gi are twice-continuously differentiable, 2) the feasible set D is nonempty,
closed and convex, 3) the first-order constraints qualifications hold at the optimum x∗ and
4) our approximated model of f is of second-order.

Convergence to first-order critical points of every limit point of {xk} can be achieved by
ensuring a model decrease at every iteration that is, at least, as large as a fraction obtained
at the generalized Cauchy point, that is, by ensuring that ρ is greater than a fraction of
1 [Conn 2000, Chapter 8.1.2]. Once the optimal active set A∗ has been identified after a
finite number of iterations, problem (6.36) behaves as an unconstrained problem. Since
constraints are linear, the “constrained” space is affine, and one may expect the sequence
{xk} to converge to second-order critical points under conditions similar to those of the
unconstrained case [Conn 2000, Theorem 6.5.5].

6.5. SAFE SEQUENTIAL QUADRATIC PROGRAMMING 45

Algorithm 3 Trust-region Safe SQP

Require: f, g,H, ǫ, |Smax|
Ensure: KKT conditions with ǫ-accuracy
1: Choose x0,S0 such that |S0| ≤ |Smax|
2: Choose η ∈ [0, 1/4)
3: k ← 0
4: repeat

5: Evaluate f(xk),∇f(xk) and Ak,i, bk,i at Sk
6: Compute (pk,vk, qk) from (6.43)
7: if ‖vk,1‖∞ > ǫ then
8: if (6.44) evaluated at xk + pk does not hold then

9: Compute Q ⊂ Sk
10: xk+1 ← xk, Sk+1 ← Q
11: else

12: Compute Q ⊂ Sk
13: xk+1 ← xk + pk, Sk+1 ← Q
14: end if

15: else

16: Compute ρk from (6.42)
17: if ρk < 1/4 then

18: Compute Q ⊂ Sk
19: else

20: if ρk > 3/4 and xk + pk ∈ ∂Sk then

21: Compute Q ⊃ Sk such that |Q| ≤ |Smax|
22: else

23: Q ← Sk
24: end if

25: end if

26: if ρk > η then

27: xk+1 ← xk + pk, Sk+1 ← Q+ pk

28: else

29: xk+1 ← xk, Sk+1 ← Q
30: end if

31: end if

32: k ← k + 1
33: until KKT conditions are satisfied with ǫ-accuracy

46 CHAPTER 6. SAFE SEQUENTIAL QUADRATIC PROGRAMMING

6.6 Conclusion

We introduced SQP as a method to solve nonlinear problems and we did an overview of
the key numerical aspects to consider in the basic line-search algorithm. We motivated the
need of having always-feasible iterates in robotics and exposed pertinent known results in the
domain of FSQP. We presented our approach to nonlinearities in the constraints: we design
safe linear constraints with respect to such nonlinear constraints. We formulated a modified
SQP approach (Safe SQP) that solves nonlinear problems using safe linear constraints.

Chapter 7

Nonlinear Model Predictive

Control for biped walking

7.1 Introduction

In this chapter we characterize in detail the MPC scheme we use for biped walking in a crowd.
We start by describing our model of motion of the CoM and how we choose to adapt

online the position, orientation and duration of the steps of the robot in Sections 7.2 and 7.3.
We then introduce the nonlinear constraints of the robot for kinematics, dynamics, collision
avoidance and stopping in Section 7.4. At the same time we present our approach to defining
safe linear constraints with respect to those nonlinear constraints. We finish with a description
of objectives of the walk in Section 7.5 and the optimization problem we solve in order to
compute the motion of the robot in Section 7.6. Part of the work presented here has been
published by Bohórquez et al. [Bohórquez 2017, Bohórquez 2018].

7.2 Motion of the CoM

Since we are coupling the whole-body and the CoM models through the acceleration of the
CoM (2.26), we want this acceleration to be continuous, i.e. c ∈ C2. We achieve this with a
piecewise constant jerk

...
c ∈ R2.

We choose as state vector x ∈ R6 the position, velocity and acceleration of the CoM in
the xy plane

x = (cx, ċx, c̈x, cy, ċy, c̈y). (7.1)

We write the following continuous system with the CoP p ∈ R2 as output

ẋ(t) = Âx(t) + B̂
...
c (t), (7.2a)

p(t) = Cx(t), (7.2b)

where

Â = diag
2









0 1 0
0 0 1
0 0 0







 , B̂ = diag
2









0
0
1







 , C = diag
2

([
1 0 − 1

ω2

])
. (7.3)

We discretize this system with a sampling period τ > 0, during which the jerk is kept at a
constant value, to obtain:

x(i|k) = Ax(i−1|k) +B
...
c (i−1|k), (7.4a)

p(i−1|k) = Cx(i−1|k), (7.4b)

47

48CHAPTER 7. NONLINEARMODEL PREDICTIVE CONTROL FOR BIPEDWALKING

where

A = eÂτ = diag
2









1 τ τ2

2
0 1 τ
0 0 1







 , B =

(∫ τ

0
eÂtdt

)

B̂ = diag
2











τ3

6
τ2

2
τ









 . (7.5)

7.2.1 Preview horizon

Our preview horizon has N samples separated by periods of time τ . Its duration H can be
written as

H = Nτ. (7.6)

We need to satisfy constraints not only at samples but also between samples. Lengagne
et al. achieve this with techniques from interval analysis [Lengagne 2007, Lengagne 2009].
Van Loock et al. uses the properties of B-splines to guarantee the satisfaction of constraints
throughout the preview horizon [Loock 2015]. In this thesis, we do not enforce the satisfaction
of constraints between samples. However, this could be done by adding proper extra margins
that bound the cubic polynomials of c and p between two consecutive samples.

7.3 Position, orientation and duration of the steps

We want the robot to change online the positions of the feet on the ground in the preview
horizon [Herdt 2010a, Herdt 2010b]

s̃k = (s(1|k), . . . , s(J |k)), (7.7)

in order to avoid collisions with people. We also want to change the orientations of the feet
on the ground

θ̃k = (θ(1|k), . . . , θ(J |k)), (7.8)

such that the robot faces the direction of the walk. This is a desired behavior because the
robot walks faster forwards than sideways [Arechavaleta 2008, Mombaur 2009]. Figure 7.1
shows the correspondence between the sample i and the step j in the preview horizon. We
sample each step Ns times which is equal to eight in the example figure.

Having a fixed step duration and maximal step length limits the maximal speed the robot
can achieve (to avoid collisions with people). We need, therefore, to adapt the duration of
the steps of the robot. We could choose to do this by directly optimizing for the duration of
each step in the horizon in a continuous [Kryczka 2015, Hu 2018, Zhao 2017] or discrete man-
ner [Ibanez 2014]. Alternatively, others have shown that the problem can be made completely
linear by either: 1) limiting the number of steps in the preview horizon to one [Khadiv 2016],
2) considering the relationship between the divergent component of the dynamics in (2.16)
and the position of the future footsteps [Griffin 2017].

We propose to vary the duration of the steps by changing τ [Aftab 2012, Diedam 2009].
Note that since the jerk is constant over intervals τ , that we define to be 1/Ns

th of the
duration of one step of the robot, when we vary τ we vary the duration of the steps. By
doing this, we obtain the following system:

x(i|k)(τ) = A(τ)x(i−1|k) +B(τ)
...
c (i−1|k), (7.9)

where the output vector p(i|k)(τ) (which is a linear combination of x(i|k)(τ)) and the positions
of people m(i|k)(τ) vary with τ . We can constrain τ to a range where the steps are not made
too fast in order to avoid excessive torque demands on the joints.

7.4. CONSTRAINTS OF WALKING 49

1 8 9 16 17 24

1

2

3

Sample i

S
te
p
j

Figure 7.1: Correspondence between samples and steps in the preview horizon with Ns = 8.

Remark 4. When we change τ from one iteration to the next one we are effectively switching
the system. Further considerations on stability [Minh 2013] and on strong recursive feasibil-
ity [Ciocca 2017] are, therefore, needed. These issues are, nonetheless, beyond the scope of
this thesis.

7.4 Constraints of walking

7.4.1 Kinematics and dynamics

We enforce kinematic constraints on the length of the legs of the robot (through the distance
between c(i|k)(τ) and sj) and on the alternation of the legs as the robot walks (through the
sequence s(j|k), s(j+1|k), . . .). Furthermore, we keep the CoP inside the support polygon of
the robot (2.12):







p(i|k)(τ) ∈ P(s(j|k), θ(j|k)), Dynamical constraint

c(i|k)(τ) ∈ C(s(j|k), θ(j|k)), Kinematic constraints
s(j+1|k) ∈ S(s(j|k), θ(j|k)),

(7.10)

Figure 7.2 depicts these constraints. The set-valued functions P(s, θ), C(s, θ) specify rectan-
gular regions of width and length W ×L and w× l, respectively. Both rotate around s with
an angle θ. The set-valued function S(s, θ) specifies a halfspace that rotates around s with
an angle θ and is separated from it a distance w + d0. More specifically, we consider

P(s, θ) , {r ∈ R2 :

[
−l/2
−w/2

]

≤ R(θ)T (r − s) ≤

[
l/2
w/2

]

}, (7.11a)

C(s, θ) , {r ∈ R2 :

[
−L/2

−0.5(1 + (−1)j)W

]

≤ R(θ)T (r − s) ≤

[
L/2

0.5(1− (−1)j)W

]

}, (7.11b)

S(s, θ) , {r ∈ R2 : (−1)j(w + d0) ≤ IyR(θ)T (r − s)}, (7.11c)

where Iy =
[
0 1

]
and R(θ) is a rotation matrix in SO(2)

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

. (7.12)

50CHAPTER 7. NONLINEARMODEL PREDICTIVE CONTROL FOR BIPEDWALKING

The terms 0.5(1−(−1)j)W and −0.5(1+(−1)j)W in (7.11b) take the valuesW, 0, respectively,
when j is odd and 0,−W , respectively, when j is even. This allow us to alternate the steps
of the robot as it walks.

Turning while walking has been addressed in many different ways [Yagi 2000, Aoi 2004,
Behnke 2006, Chestnutt 2005, Chestnutt 2007a, Perrin 2012a, Deits 2014] but never guaran-
teeing that all kinematic and dynamic constraints are properly satisfied. With MPC we can
make sure that the walking motion satisfies constraints at all times. However, the adapta-
tion of the rotations of the steps makes this a nonlinear problem [Naveau 2017] unless, for
example, we decide θ in advance [Herdt 2010a, Simone 2017].

Nonlinear dependency on θ

We compute an inner approximation of P(s, θ), C(s, θ), S(s, θ), for all θ ∈ [θ, θ], such that
the resulting sets do not depend on θ and are linear with respect to s. That is, we define
new functions

P(s) ,WP + s, C(s) ,WC + s, S(s) ,WS + s, (7.13)

that satisfy
P(s) ⊆ P(s, θ), C(s) ⊆ C(s, θ), S(s) ⊆ S(s, θ), (7.14)

for all θ ∈ [θ, θ].
Let us consider the intersections

⋂

θ

P(s, θ),
⋂

θ

C(s, θ),
⋂

θ

S(s, θ), (7.15)

shown in red in Figure 7.3. They are not empty because the function (θ, r) 7→ R(θ)Tr is
continuous and we define it over a convex set [θ, θ] of appropriate length. These intersections
are, moreover, convex since rectangles are convex sets. We want WC ,WP and WS to always
be inside these intersections. We define them as the intersection of reduced versions of C,P
and S evaluated at the boundaries θ and θ, shown in blue in Figure 7.3. That is,

WP , P̃(s, θ) ∩ P̃(s, θ) ⊆
⋂

θ

P(s, θ), (7.16a)

WC , C̃(s, θ) ∩ C̃(s, θ) ⊆
⋂

θ

C(s, θ), (7.16b)

WS , S̃(s, θ) ∩ S̃(s, θ) ⊆
⋂

θ

S(s, θ), (7.16c)

where:

• The rectangle P̃(s, θ) has length l−∆l and width w−∆w where ∆l = l(1−cos(∆θ/2))
and ∆w = w(1− cos(∆θ/2)).

• The rectangle C̃(s, θ) has length L and width W−∆W where ∆W = W (1−cos(∆θ/2)).

• The halfspace S̃(s, θ) is separated from s a distance d0 + ∆d where ∆d = 1/2(l −
w tan(∆θ/2)) sin(∆θ).

Constraints (7.10) can then be safely approximated, for all θ ∈ [θ, θ], as:

s(j+1|k) ∈ S(s(j|k)), c(i|k)(τ) ∈ C(s(j|k)), p(i|k)(τ) ∈ P(s(j|k)). (7.17)

A similar approach is proposed by Aboudania et al. to define the set WP [Aboudonia 2017].
However, they define (what would be equivalent to) the sets WC and WS linear with respect
to θ. In this case, a quantitative comparison is not straight-forward to do.

7.4. CONSTRAINTS OF WALKING 51

l

w

θ

s

(a) Constraint on the CoP, P(s, θ).

L

W

θ

s

(b) Constraint on the CoM, C(s, θ).

θj
sj+1

θj+1

sj

(c) Constraint on the steps, S(s, θ).

Figure 7.2: Nonlinear kinematic and dynamic constraints of the robot.

52CHAPTER 7. NONLINEARMODEL PREDICTIVE CONTROL FOR BIPEDWALKING

s

(a) Constraint on the CoP, P(s).

s

(b) Constraint on the CoM, C(s).

sj+1

sj

(c) Constraint on the steps, S(s).

Figure 7.3: Safe polytopic approximations of the dynamic and kinematic constraints that
depend on θ.

7.4. CONSTRAINTS OF WALKING 53

Nonlinear dependency on τ

We compute an outer approximation of the range of the functions p(i|k)(τ) and c(i|k)(τ), for
all τ ∈ [τ , τ], such that the resulting sets do not depend on τ . These vectors are linear
combinations of the state x(i|k)(τ) which is, in turn, a cubic polynomial of τ , as can be seen
by reordering (7.4):

x(i|k)(τ) = x(i−1|k)

+



diag
2









0 1 0
0 0 1
0 0 0







x(i−1|k) + diag
2









0
0
1








...
c (i−1|k)



 τ

+



diag
2









0 0 1/2
0 0 0
0 0 0







x(i−1|k) + diag
2









0
1/2
0








...
c (i−1|k)



 τ2

+



diag
2









1/6
0
0








...
c (i−1|k)



 τ3. (7.18)

Since the complexity of the bounds we define on x(i|k)(τ) depends on the degree of this
polynomial, we reduce it by rewriting the last equation of (7.4) as

...
c (i−1|k) =

c̈(i|k) − c̈(i−1|k)

τ
, (7.19)

and substituting it back in the triple integrator to obtain the new system

x(i|k)(τ) =



diag
2









1 0 0
0 1 0
0 0 0







x(i−1|k) + diag
2









0
0
1







 c̈(i|k)





+



diag
2









0 1 0
0 0 1/2
0 0 0







x(i−1|k) + diag
2









0
1/2
0







 c̈(i|k)



 τ

+



diag
2









0 0 1/3
0 0 0
0 0 0







x(i−1|k) + diag
2









1/6
0
0







 c̈(i|k)



 τ2,

x(i|k)(τ) = αi0 +αi1τ +αi2τ
2, (7.20)

where now the input parameter is c̈(i|k). In this way, the state x(i|k)(τ) is a quadratic poly-
nomial of τ that preserves the C2 continuity of the motion of the CoM.

We define the bounds on x(i|k)(τ) by changing its representation from the monomial basis
{1, τ, τ2} to the Bernstein basis [Lorentz 1953] (traditionally used in Bézier curves):

{b0(τ), b1(τ), b2(τ)}, (7.21)

where
b0(τ) = (1− τ ′)2, b1(τ) = 2τ ′(1− τ ′), b2(τ) = τ ′2, (7.22)

and

τ ′ =
τ − τ

τ − τ
, (7.23)

for a given choice of τ , τ . These polynomials have the desirable property that for all τ ∈ [τ , τ],
bn(τ) ∈ [0, 1],

∑
bn(τ) = 1 and therefore

x(i|k)(τ) = βi0b0(τ) + βi1b1(τ) + βi2b2(τ) ∈ conv{βi0,βi1,βi2}. (7.24)

54CHAPTER 7. NONLINEARMODEL PREDICTIVE CONTROL FOR BIPEDWALKING

So, the polynomial x(i|k)(τ) is always contained in the convex hull of the points βi0,βi1,βi2

whenever τ ∈ [τ , τ]. They can be interpreted geometrically as control points of x(i|k)(τ)
where βi0 = x(i|k)(τ), βi2 = x(i|k)(τ) and βi1 is the intersection of the tangents to the points
x(i|k)(τ) and x(i|k)(τ), as can be seen in Figure 7.4. Details on the transformation from
monomial to Bernstein coordinates can be found in Appendix A.

The use of Bernstein polynomials is not uncommon in robotics due to its desirable
convexity properties. Fernbach et al. used Bézier curves to compute kinematically and
dynamically feasible transitions between two configurations of a legged robot in a multi-
contact scenario [Fernbach 2018]. Pekarovskiy et al. consider online motion generation
for reactive robotic tasks with prescribed behavior by employing spline deformation tech-
niques [Pekarovskiy 2018].

βi0 = x(i|k)(τ)

βi0 + t∗
∂x(i|k)

∂τ (τ) = βi2 + u∗
∂x(i|k)

∂τ (τ) = βi1

βi2 = x(i|k)(τ)

x(i|k)(τ)

Figure 7.4: Boundaries of x(i|k)(τ) defined as conv{βi0,βi1,βi2}.

We can define the set-valued function

Fτ (x(i|k)) , {βi0,βi1,βi2}, (7.25)

such that the convex hull of Fτ (x(i|k)) is an outer approximation of x(i|k)(τ) in the interval
[τ , τ]:

∀τ ∈ [τ , τ], x(i|k)(τ) ∈ conv {Fτ (x(i|k))}, (7.26)

as in (6.32). We can define similar set-valued functions for the vectors p(i|k)(τ), c(i|k)(τ):

Fτ (p(i|k)) , {Cβi0,Cβi1,Cβi2}, (7.27a)

Fτ (c(i|k)) , {Icβi0, Icβi1, Icβi2}, (7.27b)

where C is as in (7.3) and Ic is a selection matrix for the position of the CoM in the state
vector. In this way, constraints (7.17) can be substituted with the safe linear constraints:

s(j+1|k) ∈ S(s(j|k)), Fτ (c(i|k)) ⊆ C(s(j|k)), Fτ (p(i|k)) ⊆ P(s(j|k)). (7.28)

Relating the position and the duration of the steps

However, it is not always possible to satisfy constraints (7.28) with a single choice of s(j|k)
for all values of τ . In particular, the constraint on the CoP is the most restrictive as can be
easily seen in Figure 7.5: different trajectories of the CoP for different τ do not fit all inside
a single sequence of steps (the trajectory of the CoP for τ = τ is shown in yellow and for
τ = τ is shown in blue).

We propose to vary the steps as a function of τ :

s̃k(τ) = (s(1|k)(τ), . . . , s(J |k)(τ)). (7.29)

7.4. CONSTRAINTS OF WALKING 55

X [m]

Y
[m

]

-0.4

0.2

0.4

-5.5 -5 -4.5 -4
-0.6

0.6

-0.2

0

-5.5 -5 -4.5 -4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

X [m]

Y
[m

]

Figure 7.5: Future trajectories of the CoP for different τ .

Each step s(j|k)(τ) is now the sum of a term s0(j|k), that is constant during an interval of

duration τ , and a term s1(j|k)(τ) that depends on τ

s(j|k)(τ) = s0(j|k) + s1(j|k)(τ). (7.30)

Let the set H(j) contains the indices of the samples in the preview horizon that correspond
to the jth previewed step. We choose s1(j|k)(τ) to be the centroid of the trajectory of the CoP

inside the jth step in the preview horizon:

s1(j|k)(τ) =
1

|H(j)|

∑

i∈H(j)

p(i|k)(τ). (7.31)

Since p(i|k)(τ) = Cx(i|k)(τ) = C(αi0 +αi1τ +αi2τ
2), we have that:

s1(j|k)(τ) =
C

|H(j)|




∑

i∈H(j)

αi0 +
∑

i∈H(j)

αi1τ +
∑

i∈H(j)

αi2τ
2



 , (7.32a)

=
C

|H(j)|
(ζ̂j0 + ζ̂j1τ + ζ̂j2τ

2), (7.32b)

= ζj0 + ζj1τ + ζj2τ
2. (7.32c)

We can then write the polynomials as (we omit the subscripts (·)(i|k), (·)(j|k) to avoid
cluttering the notation):

sj+1(τ)− sj(τ) = (s0j+1 + ζ(j+1)0)− (s0j + ζj0) + (ζ(j+1)1 − ζj1)τ + (ζ(j+1)2 − ζj2)τ
2,

(7.33a)

pi(τ)− sj(τ) = (Cαi0 − (s0j + ζj0)) + (Cαi1 − ζj1)τ + (Cαi2 − ζj2)τ
2, (7.33b)

ci(τ)− sj(τ) = (Icαi0 − (s0j + ζj0)) + (Icαi1 − ζj1)τ + (Icαi2 − ζj2)τ
2, (7.33c)

along with the set-valued functions:

Fτ (sj+1 − sj) , {φ(j+1)0,φ(j+1)1,φ(j+1)2}, (7.34a)

Fτ (pi − sj) , {λi0,λi1,λi2}, (7.34b)

Fτ (ci − sj) , {πi0,πi1,πi2}. (7.34c)

The original nonlinear constraints on the dynamics and the kinematics of the robot can then
be substituted with the safe linear constraints:

Fτ (sj+1 − sj) ⊆ S, Fτ (pi − sj) ⊆ P, Fτ (ci − sj) ⊆ C. (7.35)

56CHAPTER 7. NONLINEARMODEL PREDICTIVE CONTROL FOR BIPEDWALKING

7.4.2 Collision avoidance with the crowd

In order to avoid collisions, the CoM c(i|k)(τ) has to stay away from the region occupied by
the person m(i|k)(τ)

c(i|k)(τ)−m(i|k)(τ) /∈ ball(0, D(iτ)). (7.36)

With the model of motion of the crowd described in Section 4.2.2, uncertainties in position
Dp and velocity Dv make this radius increase with time (for safety) from the real radius
Dperson of the person

D(t) = Drobot + (Dperson +Dp +Dvt). (7.37)

We compute an outer approximation to the LHS of the inclusion (7.36), for all τ ∈ [τ , τ].
We can also write m(i|k)(τ) in Bernstein basis as µ0b0(τ)+µ1b1(τ)+µ2b2(τ) and, therefore,

c(i|k)(τ)−m(i|k)(τ) = σi0b0(τ) + σi1b1(τ) + σi2b2(τ) ∈ conv{σi0,σi1,σi2}, (7.38)

where σin = Icβin − µin. We can then define the set-valued function

Fτ (c(i|k) −m(i|k)) , {σi0,σi1,σi2}, (7.39)

and redefine the constraint on collision avoidance as:

Fτ (c(i|k) −m(i|k)) * ball(0, D(iτ)). (7.40)

We can also prevent collisions between conv{σin} and ball(0, D(iτ)) by properly defining
separating planes between them [Boyd 2004, Chapter 2]. Mercy et al. ensure collision avoid-
ance with a combination of separating hyperplanes and B-spline parametrization of the mo-
tion of the CoM [Mercy 2016]. A similar approach is taken by Brossette et al. [Brossette 2017]
for continuous collision avoidance. In comparison (with Mercy et al.), we use similar tech-
niques but we solve different problems: we ensure collision avoidance at a given sample in
the preview horizon for all durations of the trajectory, while they ensure it throughout the
whole preview horizon for a given duration of the trajectory.

7.4.3 Terminal constraint for stopping

We look for a second mode controller, as in (3.25), for MPC of the form

u(i|k) = Kx(i|k), ∀i ∈ {N,N + 1, . . . } (7.41)

that prevents changes in the CoP; which implies that all its derivatives must be equal to zero.
In our triple integrator, the jerk of the CoM is related to the velocity of the CoP as follows:

...
c = ω2(ċ− ṗ). (7.42)

The feedback matrix K for (7.41) should be, therefore

K = diag
2

([
0 ω2 0

])
, (7.43)

yielding the autonomous system

ẋ = (Â+ B̂K)x. (7.44)

With the CoP stopped we can now analyze the stability of (7.44) with the eigen-
decomposition

(Â+ B̂K) = V ΛV −1, (7.45)

7.5. OBJECTIVES OF THE WALK 57

where

Λ = diag
2









−ω 0 0
0 ω 0
0 0 0







 , (7.46)

is the matrix of eigenvalues and

V −1 = diag
2









0 − 1
2ω

1
2ω2

0 1
2ω

1
2ω2

1 0 − 1
ω2







 , (7.47)

is the matrix of eigenvectors. We want to make the unstable mode of V −1x, corresponding
to the positive eigenvalue ω, equal to zero. This translates into the following condition:

ċ+
1

ω
c̈ = 0. (7.48)

We can substitute it back into (2.16) to obtain an alternative formulation:

p = c+
1

ω
ċ. (7.49)

The RHS is the Capture Point (CP)

ξ = diag
2

([
1 1

ω
0
])

x = Ex, (7.50)

which was independently described in [Pratt 2006, Hof 2008, Takenaka 2009].
We want the robot to be zero-step capturable [Koolen 2012] at the end of the preview

horizon, i.e. we want the robot to be able to stop the motion of the CoM without having to
make any extra step at the end of the preview horizon. Our terminal constraint is, therefore,
defined as:

p(N |k)(τ) = ξ(N |k)(τ). (7.51)

Remark 5. We do not describe the approximation we do when going from the continu-
ous (7.49) to the discrete constraint (7.51).

Since ξ(i|k) is a linear combination of x(i|k), as shown in (7.50), then the convex hull of
the set-valued function

Fτ (ξ(i|k)) , {Eβi0,Eβi1,Eβi2}, (7.52)

is an outer approximation of ξ(i|k)(τ), for all τ ∈ [τ , τ]. The constraint (7.51) can be safely
approximated as:

Fτ (p(N |k)) = Fτ (ξ(N |k)). (7.53)

However, this is a constraint that is difficult to satisfy. In practice we relax it by requiring,
instead, that

Fτ (ξ(N |k) − s(J |k)) ⊆ P, (7.54)

and we set (7.51) as an objective of the robot.

7.5 Objectives of the walk

The desired behavior of the robot is to:

1. Keep each person in the crowd at a comfortable distance, i.e. no less than dref from
the CoM.

58CHAPTER 7. NONLINEARMODEL PREDICTIVE CONTROL FOR BIPEDWALKING

2. Move the CoM at a reference velocity ċref.

3. Keep the CoP at the center of the foot for improved balance.

4. Minimize the jerk of the CoM for smoothness of its motion and regularization.

5. Penalize step durations different from a given reference value 8τref where energy expen-
diture is optimal.

6. Align the feet with the direction where the CoM is moving.

7. Make the robot zero-step capturable at the end of the preview horizon.

In summary, we consider the following (instantaneous) objectives at the ith sample of the
preview horizon:













dref
ċref
s(j|k)
0

τref
0

0













≤













‖c(i|k)(τ)−m(i|k)(τ)‖
ċ(i|k)(τ)

p(i|k)(τ)

(c̈(i|k) − c̈(i−1|k))/τ

τ
(cos(θ(j|k)), sin(θ(j|k)))× ċ(i|k)(τ)

p(N |k) − ξ(N |k)













≤













+∞
ċref
s(j|k)
0

τref
0

0













, (7.55)

which we compile as:

f
i
≤ fi(c̈i, sj , τ, θj) ≤ f i. (7.56)

7.6 Optimal Control Problem

7.6.1 NLP formulation

We produce a feasible motion of the CoM and the CoP as well as a feasible position, ori-
entation and duration of the steps at the kth MPC problem by solving the following NLP:

minimize.̃..
c k,s̃k,θ̃k,τ

N−1∑

i=0

‖vi‖
2
Q (7.57a)

subject to
∀i,∀j

f
i
≤ fi(

...
c i, sj , τ, θj)− vi ≤ f i, (7.57b)

sj+1 ∈ S(sj , θj), (7.57c)

ci(τ) ∈ C(sj , θj) ∩ ball(mi(τ), D(iτ)), (7.57d)

pi(τ) ∈ P(sj , θj), (7.57e)

ξN (τ) = sJ(τ), (7.57f)

τ ∈ [τ , τ], (7.57g)

θj ∈ [θj , θj], (7.57h)

with decision variables (
.̃..
c k, s̃k, θ̃k, τ). Q is a diagonal matrix of weights. We omit the

subscripts (·)(i|k), (·)(j|k) to avoid cluttering the notation.

Remark 6. In this formulation we do not consider the safe navigation strategies discussed
in Chapter 4.

7.7. CONCLUSION 59

7.6.2 Safe SQP approach

We solve each NLP (7.57) using a Safe SQP method: we solve a sequence of lexicographic
least squares subproblems with carefully crafted safe linear constraints. Specifically, we seek
to:

lex minimize
˜̈ck,s̃k,θ̃k,τ

(

viol. of constraints,
N−1∑

i=0

‖vi‖
2
Q

)

(7.58a)

subject to
∀i,∀j

f
i
≤ fi(c̈i, sj , τ, θj) +∇f

T (c̈i, sj , τ, θj)− vi ≤ f i, (7.58b)

Fτ (sj+1 − sj) ⊆ S, (7.58c)

Fτ (ci − sj) ⊆ C, (7.58d)

Fτ (ci −mi) * ball(0, D(iτ)), (7.58e)

Fτ (pi − sj) ⊆ P, (7.58f)

Fτ (ξN − sJ) ⊆ P, (7.58g)

c̈i ∈ [c̈, c̈], (7.58h)

τ ∈ [τ , τ], (7.58i)

θj ∈ [θj , θj]. (7.58j)

7.7 Conclusion

We described the formulation of the MPC we use for biped walking in great detail. We
specified the objectives of the walk and we made special emphasis on how we defined safe
linear constraints with respect to the original nonlinear constraints. We formulated each
MPC problem as a NLP and we solved each of them with a Safe SQP method.

Chapter 8

Simulations

8.1 Introduction

We present, in this chapter, simulation results and numerical evidence of the performance of
the methods and controllers described in the previous chapters.

In Section 8.2 we test the safe navigation strategies we introduced in Chapter 4 on different
crowds. In Section 8.3 we show the typical behaviors we obtain when we allow the duration
and orientation of the steps of the robot to be adapted online in order to avoid collisions with
the crowd. We evaluate the performance of the proposed Safe SQP method in comparison
with a standard line-search SQP method under two different scenarios.

Table 8.1 shows the kinematic parameters of our simulated robot, which is based on the
HRP-2 [Kaneko 2004].

8.2 Safe navigation strategies

We evaluate numerically the performance of the proposed safe navigation strategies by making
the robot traverse a moving crowd under different environmental conditions and parameters
of the controller.

Tables 8.3 and 8.4 show the parameters of the two scenarios of our numerical evaluations
whereas Table 8.2 shows parameters that are common for both scenarios. For each combina-
tion of size of the crowd and speed along the x-axis of people (M, ṁx), we randomly generate
and store 100 different crowds that only differ in the initial positions {m0} and speeds along
the y-axis {ṁy} of the people. The initial positions vary uniformly over an area of 10×8[m2]
while speeds along the y-axis follow a normal distribution N (0, 0.2). We consider fixed step
rotations and step durations in this section.

Table 8.1: Parameters of biped robot and the persons in the crowd

Parameter Symbol Value Unit

Height of CoM (2.17) cz 0.80 m
Feet dimensions (7.11) (w, l) (0.24, 0.14) (m, m)

Leg stride (7.11) (W,L) (0.30, 0.30) m
Feet separation (7.11) d0 0.01 m
Body radius (3.7) Drobot 0.50 m
Body radius (3.5) Dperson 0.50 m

60

8.2. SAFE NAVIGATION STRATEGIES 61

Table 8.2: Common parameters

Parameter Symbol Value Unit

Reference velocity (7.55)
ċxref 0.5 ms−1

ċyref 0 ms−1

Sampling time (7.4) τ 0.1 s
Samples per step Ns 8 samples
Step duration Nsτ 0.8 s

Interval of step duration Ns∆τ 0 s
Step rotation θ 0 deg

Interval of rotations ∆θ 0 deg

Table 8.3: Parameters of simulations with no uncertainty

Parameter Symbol Value Unit

Horizon duration (7.6) H {1.0, 1.8, 2.6} s
Radius of FoV (4.3) Dfov {0.5, 1, 2, 3, 4} m
Size of crowd (3.6) M {8, 16, 32} -

Velocity of the crowd
ṁx {0.25, 0.5, 1, 1.5, 2} ms−1

ṁy N (0, 0.2) ms−1

Uncertainty (4.10)
Dp 0 m
Dv 0 ms−1

During simulations, we test each configuration of the controller (H,Dfov, Dp, Dv) against
each of the 100 crowds generated for each combination (M, ṁx). Simulations last 20[s] or
until a failure occurs, i.e. when the kinematic or dynamical constraints are violated or when
the robot collides with a person.

8.2.1 No uncertainty in the motion of the crowd

Figure 8.1 synthesizes the results obtained from all simulations with no uncertainty in the
motion of the crowd. Plots on the left show the failure rate as a function of the radius of the
FoV and for different walking speeds of the crowd. Plots on the right report the corresponding
median anticipation time to failure, which is the elapsed time between the moment the earliest
alarm was triggered and the moment the failure happened. It is worth mentioning that, in
these simulations with no uncertainty, all failures are anticipated as early as permitted by
the limits of the FoV and the prediction horizon, and no false alarms are raised.

We can see two different regimes represented with either dashed lines or solid lines. The
threshold is attained when the radius Dfov of the FoV reaches

H(ṁx + ċxref), (8.1)

which is the minimum value for detecting all people that might collide with the robot over a
horizon of duration H, with walking speeds ṁx for the people and ċxref for the robot.

If the FoV is smaller than this minimum value, the anticipation time for collisions grows
linearly with the radius of the FoV and the failure rate decreases accordingly. It does not,

62 CHAPTER 8. SIMULATIONS

0.5 1.0 2.0 3.0 4.0
0

25

50

75

100

Radius of FoV[m]

F
ai
lu
re

ra
te
[%

]

H = 2.6[s]

0.5 1.0 2.0 3.0 4.0
0

1.0

1.8

2.6

Radius of FoV[m]

M
ed
ia
n
an
ti
ci
p
at
io
n
ti
m
e[
s]

H = 2.6[s]

0.5 1.0 2.0 3.0 4.0
0

25

50

75

100

Radius of FoV[m]

F
ai
lu
re

ra
te
[%

]

H = 1.8[s]

0.5 1.0 2.0 3.0 4.0
0

1.0

1.8

2.6

Radius of FoV[m]

M
ed
ia
n
an
ti
ci
p
at
io
n
ti
m
e[
s]

H = 1.8[s]

0.5 1.0 2.0 3.0 4.0
0

25

50

75

100

Radius of FoV[m]

F
ai
lu
re

ra
te
[%

]

H = 1.0[s]

0.5 1.0 2.0 3.0 4.0
0

1.0

1.8

2.6

Radius of FoV[m]

M
ed
ia
n
an
ti
ci
p
at
io
n
ti
m
e[
s]

H = 1.0[s]

Figure 8.1: Failure rate and median anticipation time for different speeds of the crowd and
different durations of the horizon.

8.2. SAFE NAVIGATION STRATEGIES 63

Table 8.4: Parameters of simulations with uncertainty

Parameter Symbol Value Unit

Horizon duration (7.6) H 1.8 s
Radius of FoV (4.3) Dfov 4 m
Size of crowd (3.6) M 16 -

Velocity of the crowd
ṁx 0.5 ms−1

ṁy N (0, 0.2) ms−1

Uncertainty (4.10)
Dp {0, 0.15, 0.30} m
Dv {0, 0.05, 0.10} ms−1

however, decrease with longer prediction horizons: it appears that longer prediction horizons
can degrade collision avoidance if the radius of the FoV is not large enough, as the robot is
making decisions without proper knowledge of the surrounding crowd.

If the FoV is larger than this minimum value, the anticipation time for collisions reaches
exactly the duration H of the prediction horizon, and the failure rate reaches a minimum,
which does not vary further with the radius of the FoV.

When the robot walks in an inattentive crowd that moves at a standard human walking
speed (between 1[ms−1] and 1.5[ms−1] [Ralston 1958]), the probability of collisions is always
higher than 50%. The robot does not have enough kinematic and dynamic capabilities to
avoid collisions with people walking that fast. We can, however, anticipate these collisions as
early as needed, with appropriate FoV and prediction horizon following the simple suggestions
of (8.1), and initiate an emergency stop.

8.2.2 Uncertainty in the motion of the crowd

Tables 8.5 and 8.6 show, for passive safety and collision mitigation strategies respectively,
the number of failures that take place when there is uncertainty in the perception of people.
In each table, the first two columns are the values of uncertainty. The next two columns
present the median velocities of both the robot and the person at the time of collision along
the direction of the contact. Cases with no collision are indicated with a dash “-”. The last
column shows the proportion of simulations that ended with a failure.

The failure rate of the emergency stop strategy varies little with the uncertainty in position
but increases with the uncertainty in velocity. Uncertainty causes this strategy to make
unnecessary and undesirable stops that lead to collisions. In the deferrable emergency stop
strategy, the failure rate seems unaffected by the uncertainty in position as well but decreases
with the uncertainty in velocity.

It is important to note that, in our model of the crowd, the motion of people does not
become more erratic with increased uncertainty. What increases is the size of the areas where
people might be in the future. With only uncertainty in position, these areas have equal size
throughout the horizon. People appear to be larger and there is less space to evade them.
With only uncertainty in velocity, these areas increase in size along the preview horizon.
People appear to be larger at the distance but reduce their size as the robot approaches
them.

The velocity of the robot at the moment of collision is either zero or close to zero but
negative, as expected. This suggests that the robot is trying to walk away from people before
the collision happens.

The controller that implements Hierarchy 4 walks away from people as much as possible,

64 CHAPTER 8. SIMULATIONS

Table 8.5: Collisions of passive safety strategies

Uncertainty Collision velocity[ms−1] Failure
rate[%]Position[m] Velocity[ms−1] Robot Person

0 0 -0.04 0.48 27
0 0.05 0.00 0.52 34
0 0.10 0.00 0.41 36

0.15 0 -0.01 0.44 28
0.15 0.05 0.00 0.40 38
0.15 0.10 0.00 0.41 38
0.30 0 0.00 0.46 34
0.30 0.05 0.00 0.50 40
0.30 0.10 0.00 0.41 39

(a) Hierarchy 1: emergency stop

Uncertainty Collision velocity[ms−1] Failure
rate[%]Position[m] Velocity[ms−1] Robot Person

0 0 -0.05 0.36 32
0 0.05 0.00 0.55 15
0 0.10 0.00 0.55 9

0.15 0 -0.01 0.42 31
0.15 0.05 0.00 0.52 15
0.15 0.10 0.00 0.55 9
0.30 0 0.00 0.45 35
0.30 0.05 0.00 0.55 15
0.30 0.10 0.00 0.53 9

(b) Hierarchy 1: deferrable emergency stop

8.2. SAFE NAVIGATION STRATEGIES 65

Table 8.6: Collisions of collision mitigation strategies

Uncertainty Collision velocity[ms−1] Failure
rate[%]Position[m] Velocity[ms−1] Robot Person

0 0 -0.33 0.39 19
0 0.05 -0.71 0.60 4
0 0.10 -0.53 0.59 2

0.15 0 -0.19 0.49 15
0.15 0.05 -0.74 0.58 5
0.15 0.10 -0.64 0.58 2
0.30 0 -0.14 0.56 15
0.30 0.05 -0.48 0.58 5
0.30 0.10 -0.28 0.57 2

(a) Hierarchy 3: relaxation of collision avoidance

Uncertainty Collision velocity[ms−1] Failure
rate[%]Position[m] Velocity[ms−1] Robot Person

0 0 -0.60 0.39 21
0 0.05 - - 11
0 0.10 - - 13

0.15 0 - - 22
0.15 0.05 - - 10
0.15 0.10 - - 13
0.30 0 - - 27
0.30 0.05 - - 12
0.30 0.10 - - 13

(b) Hierarchy 4: relaxation of collision avoidance and feasibility

66 CHAPTER 8. SIMULATIONS

Table 8.7: Parameters of simulation with adaptation of the step duration

Parameter Symbol Value Unit

Size of crowd (3.6) M 16 persons

Vel. of the crowd
ṁx

k −1.5 m.s−1

ṁy
k N (0, 0.4) m.s−1

Interval of step
duration

Ns∆τ 40 ms

Interval of step
rotations

∆θ 0 deg

even by following trajectories that lead to infeasible future states. This results in fewer
collisions than any other strategy only because the robot is deciding to fall on the ground
instead. On the other hand, with the controller that implements Hierarchy 3, the order of
the priorities requires the motion of the robot to be dynamically and kinematically feasible
during the whole prediction. The resulting number of collisions is higher but the total number
of failures is lower.

The controller that implements Hierarchy 3 delays collisions as much as possible. The
corresponding optimal control action is, in most cases, to make the robot walk away from
people while in some other specific cases (e.g. when people are coming towards the robot
from all directions at the same speed) it is to make it remain still. In any case, the difference
of velocities at the moment of collision is guaranteed to be no bigger than it would be if the
robot was at rest. Collisions are, therefore, less severe.

8.3 Safe Sequential Quadratic Programming

8.3.1 Adapting the duration of the steps

We make the robot walk in a crowd that has a higher average walking speed than the nominal
speed of the robot. We want to see the action of the controller adapting the duration of the
steps in order to walk faster.

Figure 8.2 shows the results obtained from one illustrative simulation where the robot
adapts the duration of the steps in order to walk faster. The parameters of the controller and
the crowd are specified in Table 8.7. The top subfigure shows in solid blue the x component
of the steps (sxj − cx) made by the robot during the simulation. Values above and below the
red line indicate forward and backward motion, respectively. The vertical dashed lines mark
the instants at which steps were made. The magenta dashed lines indicate the maximal step
the robot can make. The bottom subfigure shows the x component of the velocity of the
robot (ċx) during the simulation. The magenta dashed lines indicate the maximal speed the
robot can reach at a nominal step duration of 0.8[s]. The green dash-dotted line indicates
the objective speed. During the first 2[s] there are no persons present in the Field of View
(FoV). The robot walks freely and tries to reach its reference velocity ċref making steps of
nominal duration (0.8[s]).

Between 2[s] and 16[s] the robot encounters people walking in opposite direction and
moves backwards to avoid them. At first (between 2[s] and 3[s]) the robot only makes larger
steps while maintaining its nominal step duration. However, its maximal speed under such
conditions is only about −0.75m.s−1 whereas people in the crowd walk at −1.5m.s−1. Conse-
quently, it is forced (between 3[s] and 11[s]) to also make faster steps to be able to avoid

8.3. SAFE SEQUENTIAL QUADRATIC PROGRAMMING 67

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4
S
te
p
le
n
gt
h
al
on

g
x
ax

is
[m

]

Forward

Backward

nominal step duration✲✛

0 5 10 15 20
-2

-1

0

1

2

Simulation time [s]

S
p
ee
d
al
on

g
x
ax

is
[m

/s
]

Forward

Backward

Figure 8.2: Adapting the step duration while walking in a crowd.

collisions.

At 11[s] the robot resumes its forward walking motion once it has overcome most people
in its way. It has to stop occasionally a couple of times to walk around the last members of
the crowd. From 16[s] until 20[s] the robot continues walking uninterrupted at its objective
velocity.

The adaptation of [τ , τ] allows the robot to avoid infeasibilities due to difficult collision-
avoidance situations. The key here is the objective on the reference minimal distance from
people: it makes the cost function take into account potential collisions in the future so that
the optimal solution moves the system away from infeasibilities.

8.3.2 Adapting the rotation of the steps

Figure 8.3 shows the results obtained in a typical simulation where the robot adapts the
rotation of the steps in order to face its walking direction. The parameters of the controller
and the crowd for this scenario are specified in Table 8.8. The robot walks to the right and
the crowd walks in the opposite direction. The top subfigure shows the trajectory of the feet
over the course of the simulation. The rest of the subfigures are snapshots of the simulation
at different instants. In these snapshots, the black circle represents the body of the robot,
the filled rectangles are the steps currently on the ground, the unfilled rectangles are the
previewed future steps and the red circles with numbers represent people. The plot at the
top shows all the steps made by the robot during the simulation. The robot changes its
orientation several times to avoid the people in the crowd. This is illustrated in the different
snapshots shown in the same figure. Once the robot overcomes the crowd, at around 18[s], it
changes its orientation back to 0 degrees to more efficiently track its reference velocity ċref.

68 CHAPTER 8. SIMULATIONS

-4 -2 0 2 4
-0.5

0

0.5

1

1.5

2

X [m]

Y
[m

]

Biped robot walking in a crowd

-3 -2 -1

X [m]

Y
[m

]

0
-1

-0.5

0

0.5

1

1.5

12

20

Time = 5.700[s]

-2 -1 0

X [m]

Y
[m

]

-0.5

0

0.5

1

1.5

9

13

Time = 9.000[s]

0

0.5

1

1.5

2

X [m]

Y
[m

]

2-1 0 1

11

Time = 14.600[s]

0.5

1

1.5

2

2.5

X [m]

Y
[m

]

0 1 2 3

Time = 17.800[s]

Figure 8.3: Adapting the rotation of the feet of the robot while walking in a crowd.

8.3. SAFE SEQUENTIAL QUADRATIC PROGRAMMING 69

Table 8.8: Parameters of simulation with adaptation of step rotation

Parameter Symbol Value Unit

Size of crowd (3.6) M 20 persons

Vel. of the crowd
ṁx

k −0.5 m.s−1

ṁy
k N (0, 0.5) m.s−1

Interval of step
duration

Ns∆τ 0 ms

Interval of step
rotations

∆θ 30 deg

Table 8.9: Parameters of simulation for comparison with SQP

Parameter Symbol Value Unit

Interval of step
duration

Ns∆τ 80 ms

Interval of step
rotation

∆θ 30 deg

8.3.3 Comparison with SQP

We test how fast the Safe SQP scheme arrives to a feasible solution compared to the line-
search SQP we described in Section 6.2. The SQP scheme solves the problem (7.58) by doing
continuous linearizations of the constraints whereas the Safe SQP solves it using safe polytopic
approximations (7.57). In both cases, our termination criteria is constraint satisfaction with
arbitrary ǫ-precision, in this case, ǫ = 10−6. We solve the related QP and lexicographic
problems subproblems using LexLS. Table 8.9 shows the parameters of the robot we used in
these simulations.

In active set methods, the computation time needed to solve the ith optimization problem
is related to the number of factorizations (activations and deactivations of constraints in the
working set) needed to arrive to the optimal active set A∗

i . Accurately guessing this set leads
to a lower number of factorizations and faster computation times. We warm-start the ith

problem using the following heuristics:

• We take advantage of the periodicity of the motion of the robot by taking the corre-
sponding optimal active set from two physical steps ago as a guess

Aguess
i = A∗

i−2Ns
, (8.2)

where Ns is the number of times we sample each physical step of the robot.

• Similarly, we use the solution of the (i− 2Ns)
th problem as solution guess

x
guess
i = x∗

i−2Ns
. (8.3)

Walking with no crowd

We test the robot waking at a reference speed of 0.5[ms−1] along the x axis with no people
in the environment during 20[s].

70 CHAPTER 8. SIMULATIONS

Figure 8.4 shows the results obtained with the Safe SQP scheme. The plot at the top-
left reports the proportion of problems that were solved within a given amount of time.
The lower and upper1 bounds represent the CPU time spent on the instruction at line 6
in Algorithm 3 and on the whole algorithm, respectively. The plot at the top-right details
the proportion of problems that were solved with a given number of factorizations of the
active set. Each addition/subtraction of a constraint to/from the working set constitutes
a factorization. The plot at the bottom-left reports the proportion of problems that were
solved within a given number of Newton iterations of the Safe SQP algorithm. The plot at
the bottom-right shows the evolution over time of the factorizations of the active set needed
to terminate each optimization problem. The theoretical lower bound is the minimal number
of factorizations needed to arrive to the optimal active set from the active set guess.

Our guessing strategy starts acting at the 2N th problem. At this time, the motion of the
robot is still not periodic enough (presumably due to transitory effects and initial conditions)
for our active set guess to be accurate. During this phase, the theoretical lower bound of
the number of factorizations stays between 2 and 50. After around 50 problems, the motion
stabilizes into a cycle and the lower bound drops to zero for the rest of the simulation. As
a result, 65% of the problems are solved with just one active set factorization or less and
almost 80% of the problems are solved in 4[ms] or less. A feasible solution is found for 100%
of the problems after a single Newton iteration.

Figure 8.5 shows the results obtained with the SQP scheme. In this case, the lower and
upper bounds in the histogram of computation time represent the CPU time spent on the
instruction at line 6 in Algorithm 2 and on the whole algorithm, respectively. The theoretical
lower bound of active set factorizations does not converge to zero over time (presumably
because solutions are not optimal given in our termination criteria) implying that our guessing
strategy is not accurate in this scheme. Overall, this results in a slower numerical scheme
with almost 60% of the problems solved in 10[ms] or less. 100% of the problems had a feasible
solution after five Newton iterations.

Walking in a crowd

We test the robot walking at a reference speed of 0.5[ms−1] along the x axis in a crowd of 10
persons during 20[s]. We warm-start the MPC problems with the guessing strategies (8.2)
and (8.3).

Figure 8.6 shows the results obtained with the Safe SQP scheme. The walking motion of
the robot starts to converge to a cycle at around problem 50, as before. However, as soon as
people approach the robot and evasion actions are needed, the motion stops being periodic.
We solve 60% of the problems in 65[ms] or less. Our guessing strategy is, therefore, rather
unsuitable for this problem. However, we solve 92% of the problems with a single Newton
iteration and 100% of the problems with two Newton iterations. The difference, 8% of the
problems, comes from the relaxation of the infeasible safe linear constraints (6.43).

Figure 8.7 shows the results obtained with the SQP scheme. Similarly, it seems clear
that our guessing strategy is not optimal for aperiodic motions as we require up to 85[ms] to
solve 60% of the problems. Regarding feasibility: we solve around 92% of the problems with
five iterations or less and 98% of the problems within 10 iterations; the remaining 2% of the
problems are infeasible.

The “shape” of the histograms of computation time and active set factorizations for both
the Safe SQP and the SQP schemes are similar for this scenario. Being able to obtain a
feasible solution in a single Newton iteration is an advantage only if not many active set
factorizations are needed, i.e. if the active set guess is close to the optimal.

1Our implementation is written in Octave and is not optimized for performance. We estimate that the

upper bound can be lowered significantly.

8.3. SAFE SEQUENTIAL QUADRATIC PROGRAMMING 71

100 101 102 103
0

20

40

60

80

100

Computation time [ms]

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of computation time

Lower bound

Upper bound

100 101 102 103
0

20

40

60

80

100

Active set factorizations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of active set factorizations

0 2 4 6 8 10
0

20

40

60

80

100

Newton iterations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of Newton iterations

0 50 100 150 200 250 300
100

101

102

103

MPC problems

A
ct
iv
e
se
t
fa
ct
or
iz
at
io
n
s

Active set factorizations over time

Actual factorizations

Theoretical lower bound

Figure 8.4: The robot walking with no crowd under a Safe SQP scheme.

72 CHAPTER 8. SIMULATIONS

100 101 102 103
0

20

40

60

80

100

Computation time [ms]

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of computation time

Lower bound

Upper bound

100 101 102 103
0

20

40

60

80

100

Active set factorizations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of active set factorizations

0 2 4 6 8 10
0

20

40

60

80

100

Newton iterations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of Newton iterations

0 50 100 150 200
100

101

102

103

MPC problems

A
ct
iv
e
se
t
fa
ct
or
iz
at
io
n
s

Active set factorizations over time

Actual factorizations

Theoretical lower bound

Figure 8.5: The robot walking with no crowd under a SQP scheme.

8.3. SAFE SEQUENTIAL QUADRATIC PROGRAMMING 73

100 101 102 103
0

20

40

60

80

100

Computation time [ms]

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of computation time

Lower bound

Upper bound

100 101 102 103
0

20

40

60

80

100

Active set factorizations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of active set factorizations

0 2 4 6 8 10
0

20

40

60

80

100

Newton iterations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of Newton iterations

0 50 100 150 200 250 300 350
100

101

102

103

MPC problems

A
ct
iv
e
se
t
fa
ct
or
iz
at
io
n
s

Active set factorizations over time

Actual factorizations

Theoretical lower bound

Figure 8.6: The robot walking in a crowd under a Safe SQP scheme.

74 CHAPTER 8. SIMULATIONS

100 101 102 103
0

20

40

60

80

100

Computation time [ms]

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of computation time

Lower bound

Upper bound

100 101 102 103
0

20

40

60

80

100

Active set factorizations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of active set factorizations

0 2 4 6 8 10
0

20

40

60

80

100

Newton iterations

F
ea
si
b
le
p
ro
b
le
m
s
[%

]

Histogram of Newton iterations

0 50 100 150 200
100

101

102

103

MPC problems

A
ct
iv
e
se
t
fa
ct
or
iz
at
io
n
s

Active set factorizations over time

Actual factorizations

Theoretical lower bound

Figure 8.7: The robot walking in a crowd under a SQP scheme.

8.4. CONCLUSION 75

8.4 Conclusion

We simulated an HRP-2 robot walking in different crowds.
We tested the collision mitigation strategies introduced in Chapter 4 and compared them

to standard passive safety controllers. Given maximal relative walking speed of the crowd,
we determined the minimal radius of the FoV needed in order to have a desired anticipation
time to collisions. We showed that, when there is uncertainty in the position and velocity of
the crowd, collision mitigation strategies reduce the number of collisions and, moreover, they
are less severe when they occur.

We made the robot adapt the rotation and duration of its steps in order to avoid collisions
with the crowd using safe linear constraints. We also tested the performance of the Safe SQP
method, proposed in Chapter 6, compared to a standard SQP when trying to solve the MPC
introduced in Chapter 7. We showed that the proposed method could arrive to a feasible
solution in just one Newton iteration, as desired. We realized that correctly warm-starting
the NLP problem is crucial to have short computation times and that good active set and
solution guesses are not trivial to propose.

Chapter 9

Conclusion

9.1 Summary

This thesis aimed at improving the safety of the navigation of a biped robot in a crowd and
the safety of the computations of such motions. We started our dissertation by introducing
the dynamical model of motion of the CoM in Chapter 2. Following the requirements of the
motion of the robot and the assumption we made on the walking scenario we concluded, in
Chapter 3, that the problem of avoiding failures and collisions could be addressed with opti-
mal control techniques and, in particular, with an MPC scheme. In Chapter 4 we explained in
detail the setting of the crowd navigation problem and defined the properties of the proposed
collision mitigation strategy. We formulated controllers, written as lexicographic problems,
that synthesize motions that satisfy such properties. At this point we stepped back in order to
reflect on the implications of having strict priorities among the objectives of a robot and how
this can constitute a plausible approach to dealing with the complexities of the social interac-
tions and expectations between robots and people. We presented some numerical aspects of
lexicographic programming in Chapter 5. We then addressed the problem of computing feasi-
ble Newton iterates in Chapter 6. We proposed to create safe linear constraints with respect
to the nonlinear constraints, solving the nonlinear problem with a series of convex problems
in Algorithm 3 (trust-region Safe SQP). We presented in abundant detail the MPC scheme
we use to generate walking motions of the robot in a crowd in Chapter 7. We made emphasis
in how we dealt with the nonlinearities introduced in the constraints when we allowed the
rotations and the duration of the steps to vary. We evaluated the controllers we proposed
in a series of simulations described in Chapter 8. Given appropriate perception capabilities
of the robot, we showed that the collision mitigation controllers reduced the number and
severity of collisions in comparison with passive safety specially when there is uncertainty in
the motion of the crowd. We showed that our approach to nonlinear constraints allows the
robot to produce a higher variety of motions with reduced computation costs under some
scenarios. In more complex scenarios, such as a moving crowd, we acknowledge how sensible
the computation costs can be with respect to the warm-start strategy employed.

9.2 Perspectives

The results presented in this work can lead to a number of possible future research directions.

76

9.2. PERSPECTIVES 77

9.2.1 Safe navigation strategies

Major research directions

• Develop a general safe navigation model. A backup plan takes the robot to a safe state
in case something goes wrong. Safety is guaranteed if such safe state can be reached
within some arbitrary time at any moment. In the specific case of walking, safety and
progress “point” in the same direction: we can produce a single trajectory that is safe
and that allows us to make progress towards the objectives of the robot. We argue that
this is not true in the general case and we have to calculate two different trajectories:
one for progress and another for safety. The robot would try to pursue its objectives
as long as that does not impede it from reaching (if necessary) the safe state on time.
The length of the two trajectories are independent. We vary the level of safety of the
robot by changing the length of the safe trajectory.

• Develop a strategy that minimizes damages that occur after an inevitable collision.
Example case: the robot is working on the airframe of a new aircraft and it notices
an inattentive coworker walking directly towards its position. The collision is by now
unavoidable and the fall will damage the airframe. However, if it moves a couple of
steps backwards the collision will still take place but it will fall far from the airframe.

Minor research directions

• Prove that the lexicographic controller described in Hierarchy 3 produces motions that
satisfy Definitions 4 and 5.

• Account for occlusions in the FoV. Until now it is not the case in Definition 2.

9.2.2 Lexicographic programming

Investigate the numerical methods to solve nonlinear lexicographic least-squares programming
problems, first discussed by Wieber et al. [Wieber 2017].

9.2.3 Safe SQP

Prove the conjectures of Section 6.5 regarding the termination and convergence to first-order
and second-order critical points of Algorithm 3.

9.2.4 Nonlinear MPC for biped walking

Major research directions

• Study the stability and strong recursive feasibility of the switched system (7.9).

• Integrate to the proposed MPC scheme the adaptation of the height of the
CoM [Brasseur 2015] and the application of external forces [Serra 2016].

Minor research directions

• Guarantee the satisfaction of constraints between samples in the preview horizon.

• Define sets WP ,WC and WS (7.16) that vary linearly with respect to the orientation of
the foot θ.

• Define a more refined objective function for the orientation of the steps.

78 CHAPTER 9. CONCLUSION

9.2.5 Simulations

Major research directions

Determine a way to guess the optimal active set when the robot is walking in a crowd while
adapting the rotation and duration of its steps.

Minor research directions

• Address the uncertainty of the motion of people in a more standard way, i.e. where
the robot can be at any position inside the uncertainty circle and not necessarily at the
center.

• Compare Safe SQP with FSQP methods in the scenario of the robot walking in a crowd.

Appendix A

Bernstein polynomials

Given a quadratic polynomial x(τ) for τ ∈ [τ , τ] with coordinates α = (α0, α1, α2) in the
monomial basis {1, τ, τ2}, we first find the equivalent coordinates in the normalized monomial
basis {1, τ ′, τ ′2}, for τ ′ ∈ [0, 1], by defining τ = τ + (τ − τ)τ ′ and solving for all τ ′

α0 + α1τ + α2τ
2 = α′

0 + α′
1τ

′ + α′
2τ

′2,

to obtain 



α′
0

α′
1

α′
2



 =





1 τ τ2

0 τ − τ 2(τ − τ)τ
0 0 (τ − τ)2









α0

α1

α2



 .

Then we find its coordinates β = (β0, β1, β2) in the Bernstein basis {(1 − τ ′)2, 2τ ′(1 −
τ ′), τ ′2} by solving, once again, for all τ ′

α′
0 + α′

1τ
′ + α′τ ′2 = β0(1− τ ′)2 + β12τ

′(1− τ ′) + β2τ
′2,

to obtain: 



β0
β1
β2



 =





1 0 0
1 1/2 0
1 1 1









α′
0

α′
1

α′
2



 .

79

Appendix B

Concepts of convex analysis

B.1 Sets and polyhedra

A set S ⊂ Rn is convex if the line that connects any two points in S is also in S, i.e. for any
x1,x2 ∈ S and for any γ ∈ [0, 1] we have that

γx1 + (1− γ)x2 ∈ S. (B.1)

Let the subsetsM1 ⊂M andM2 ⊂M be non-empty. The Hausdorff distance between
them in the metric space (M, d), denoted dH(M1,M2), is defined as

dH(M1,M2) = max{ sup
x∈M1

inf
y∈M2

d(x,y), sup
y∈M2

inf
x∈M1

d(x,y)}. (B.2)

The distance dH(M1,M2) is equal to zero if and only ifM1 andM2 have the same closure.

A convex hull of a finite set of points {x1, . . . ,xn}, denoted conv{x1, . . . ,xn}, is the set
of all convex combinations of those points

conv{x1, . . . ,xn} , {γ1x1 + · · ·+ γnxn :
∑

i

γi = 1, ∀i γi ≥ 0}. (B.3)

A conic hull of a finite set of points {x1, . . . ,xn}, denoted cone{x1, . . . ,xn}, is the set of
all conic combinations of those points

cone{x1, . . . ,xn} , {γ1x1 + · · ·+ γnxn : ∀i γi ≥ 0}. (B.4)

A polyhedron P ⊂ Rn is the solution of a finite number of linear equalities and inequalities:

P = {x ∈ Rn : b ≤ Ax ≤ b}, (B.5)

where

A =






aT
1
...

aT
m




 , b =






b1
...
bm




 , b =






b1
...

bm




 . (B.6)

Equalities can be considered in this formulation with bi = bi. All polyhedra are convex sets
because they are the result of the intersection (an operation that preserves convexity) of hy-
perplanes and halfspaces (both of which are convex sets). A convex hull is a polyhedron and,
conversely, any polyhedron can also be written as the convex hull of its vertices [Boyd 2004,
Chapter 2]. A bounded polyhedron is a polytope.

80

B.2. FUNCTIONS 81

B.2 Functions

A function f : Rn → R is convex if the line that connects two points on the graph of f is
above or on the graph, i.e. if for any two points x1,x2 ∈ Rn and for any γ ∈ [0, 1] we have
that

γf(x1) + (1− γ)f(x2) ≥ f(γx1 + (1− γ)x2). (B.7)

Let K be a proper convex cone in Rm. A function g : Rn → Rm is K-convex if for any
x1,x2 ∈ Rn and for any γ ∈ [0, 1] we have that

γg(x1) + (1− γ)g(x2) ∈ g(γx1 + (1− γ)x2) +K. (B.8)

A set-valued function F : X Y maps each x ∈ X ⊆ Rn to a set F(x) ⊂ Y ⊆ Rm. F is
also said to be a map from X to the power set of Y, that is, F : X → 2Y . This set-valued
function F is said to be convex-valued if, for any x ∈ X , the set F(x) is convex. F is said to
be K-convex if, for any x1,x2 ∈ X and for any γ ∈ [0, 1] we have that

γF(x1) + (1− γ)F(x2) ⊂ F(γx1 + (1− γ)x2) +K. (B.9)

Let F1 : X Y and F2 : Y Z be two set-valued functions. The composition map of
F1 and F2 is the map F2 ◦ F1 : X Z such that

(F2 ◦ F1)(x) =
⋃

y∈F1(x)

F2(y). (B.10)

for x ∈ X .

Appendix C

Warm start of MPC

C.1 MPC as a sequence of neighboring SQPs

We use some of the techniques discussed in [Diehl 2009].

C.1.1 Linearization of the collision avoidance constraint

In order to avoid clutter in the notation, we do not include the dependency on τ of the vectors
c and m and the scalar d in the following. Let Di be the minimial distance the CoM has to
maintain for people in the crowd at the sample time i in the preview horizon, then it follows
that constraint (7.36) can be written as

(c(i|k) −m(i|k))
T

‖c(i|k) −m(i|k)‖
(c(i|k) −m(i|k)) ≥ Di, (C.1)

which reveals that the CoM is restricted to the moving halfspace H(m(i|k), Di), that is

c(i|k) ∈ H(m(i|k), Di), (C.2)

where
H(o, R) , {r : n̂T (r − o) ≥ R, n̂ = normal(r − o)}. (C.3)

The constraint (C.2) is clearly nonlinear because of the normal vector

n̂ = normal(c(i|k) −m(i|k)). (C.4)

Let us make explicit this dependency with a change in the notation of H

H(n̂,o, R) , {r : n̂T (r − o) ≥ R}. (C.5)

However, if τ is small enough then we can assume that n̂(i|k) = normal(c(i|k) −m(i|k)) from

the kth computation of the MPC does not differ too much from n̂(i|k−1) = normal(c(i|k−1) −
m(i|k−1)) obtained in the previous computation k − 1

lim
τ→0
‖n̂(i|k) − n̂(i|k−1)‖ = 0, (C.6)

and we can use it to approximate the original constraint and obtain a completely linear
formulation

c(i|k) ∈ H(n̂(i|k−1),m(i|k), Di). (C.7)

82

Bibliography

[Aboudonia 2017] A. Aboudonia, N. Scianca, D. D. Simone, L. Lanari and G. Oriolo. Hu-
manoid gait generation for walk-to locomotion using single-stage MPC. In 2017 IEEE-
RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE, nov
2017. (Cited on page 50.)

[Aftab 2012] Z. Aftab, T. Robert and P.-B. Wieber. Ankle, hip and stepping strategies for
humanoid balance recovery with a single Model Predictive Control scheme. In 2012
12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).
IEEE, nov 2012. (Cited on page 48.)

[Ahn 2018] J. Ahn, O. Campbell, D. Kim and L. Sentis. Fast Kinodynamic Bipedal Locomo-
tion Planning with Moving Obstacles. 2018. (Cited on page 13.)

[Al Homsi 2016] S. Al Homsi, A. Sherikov, D. Dimitrov and P.-B. Wieber. A hierarchical
approach to minimum-time control of industrial robots. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2368–2374, 2016. (Cited on page
26.)

[Aoi 2004] S. Aoi, K. Tsuchiya and K. Tsujita. Turning control of a biped locomotion robot
using nonlinear oscillators. In IEEE International Conference on Robotics and Au-
tomation, 2004. Proceedings. ICRA 2004. IEEE, 2004. (Cited on page 50.)

[Arechavaleta 2008] G. Arechavaleta, J.-P. Laumond, H. Hicheur and A. Berthoz. An Opti-
mality Principle Governing Human Walking. IEEE Transactions on Robotics, vol. 24,
no. 1, pages 5–14, feb 2008. (Cited on page 48.)

[Asama 2004] H. Asama and T. Fraichard. Inevitable collision states - a step towards safer
robots. Advanced Robotics, vol. 18, pages 1001–1024, 2004. (Cited on page 14.)

[Aubin 1991] J.-P. Aubin. Viability theory. Birkhäuser, 1991. (Cited on page 14.)

[Ayaz 2009] Y. Ayaz, A. Konno, K. Munawar, T. Tsujita and M. Uchiyama. Planning foot-
steps in obstacle cluttered environments. 2009 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, Jul 2009. (Cited on page 13.)

[Behnke 2006] S. Behnke. Online trajectory generation for omnidirectional biped walking. In
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. IEEE, 2006. (Cited on page 50.)

[Bohórquez 2016] N. Bohórquez, A. Sherikov, D. Dimitrov and P.-B. Wieber. Safe navigation
strategies for a biped robot walking in a crowd. In IEEE-RAS International Conference
on Humanoid Robots (Humanoids), pages 379–386, Cancun, Mexico, November 2016.
IEEE. (Cited on page 20.)

83

84 BIBLIOGRAPHY

[Bohórquez 2017] N. Bohórquez and P.-B. Wieber. Adaptive step duration in biped walking:
a robust approach to nonlinear constraints. In IEEE RAS International Conference
on Humanoid Robots 2017, Birmingham, United Kingdom, November 2017. (Cited
on page 47.)

[Bohórquez 2018] N. Bohórquez and P.-B. Wieber. Adaptive step rotation in biped walking. In
IEEE/RSJ International Conference on Intelligent Robots and Systems 2018, Madrid,
Spain, October 2018. (Cited on page 47.)

[Bouraine 2012] S. Bouraine, T. Fraichard and H. Salhi. Provably Safe Navigation for Mobile
Robots with Limited Field-of-Views in Dynamic Environments. Autonomous Robots,
vol. 32, no. 3, pages 267–283, April 2012. (Cited on page 15.)

[Boyd 2004] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004. (Cited on pages 30, 40, 56, and 80.)

[Brasseur 2015] C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov and P.-B. Wieber. A
robust linear MPC approach to online generation of 3D biped walking motion. In
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).
Institute of Electrical & Electronics Engineers (IEEE), nov 2015. (Cited on pages 9
and 77.)

[Bronshtein 1975] E. M. Bronshtein and L. D. Ivanov. Approximation of convex sets by
polyhedrons. Sib. Mat. Zh., no. 16, page 1110–1112, 1975. (Cited on page 42.)

[Brossette 2017] S. Brossette and P.-B. Wieber. Collision avoidance based on separating
planes for feet trajectory generation. In Humanoids 2017 - IEEE RAS International
Conference on Humanoid Robots , pages 509–514, Birmingham, United Kingdom,
November 2017. IEEE. (Cited on page 56.)

[Cannon 2018] M. Cannon. Lecture Notes: C21 Model Predictive Control. Available:
https://markcannon.github.io/assets/downloads/teaching/C21_Model_Predictive_Control/mp

July 2018. (Cited on page 17.)

[Chestnutt 2003] J. Chestnutt, J. Kuffner, K. Nishiwaki and S. Kagami. Planning Biped
Navigation Strategies in Complex Environments. In in IEEE Int. Conf. Humanoid
Robots, 2003. (Cited on page 13.)

[Chestnutt 2004] J. Chestnutt and J. Kuffner. A tiered planning strategy for biped navigation.
4th IEEE/RAS International Conference on Humanoid Robots, 2004., 2004. (Cited
on page 13.)

[Chestnutt 2005] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins and T. Kanade.
Footstep Planning for the Honda ASIMO Humanoid. Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, 2005. (Cited on pages 13
and 50.)

[Chestnutt 2007a] J. Chestnutt, P. Michel, J. Kuffner and T. Kanade. Locomotion among
dynamic obstacles for the honda ASIMO. In 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, oct 2007. (Cited on pages 13 and 50.)

[Chestnutt 2007b] J. Chestnutt, K. Nishiwaki, J. Kuffner and S. Kagami. An adaptive action
model for legged navigation planning. 2007 7th IEEE-RAS International Conference
on Humanoid Robots, Nov 2007. (Cited on page 13.)

https://markcannon.github.io/assets/downloads/teaching/C21_Model_Predictive_Control/mpc_notes.pdf

BIBLIOGRAPHY 85

[Chevallereau 2009] C. Chevallereau, J. Grizzle and C.-L. Shih. Asymptotically Stable Walk-
ing of a Five-Link Underactuated 3-D Bipedal Robot. IEEE Transactions on Robotics,
vol. 25, no. 1, pages 37–50, feb 2009. (Cited on page 7.)

[Ciocca 2017] M. Ciocca, P.-B. Wieber and T. Fraichard. Strong Recursive Feasibility in
Model Predictive Control of Biped Walking. In HUMANOIDS 2017 - IEEE-RAS Inter-
national Conference on Humanoid Robots, Birmingham, United Kingdom, November
2017. (Cited on pages 18 and 49.)

[Collins 2005] S. Collins, A. Ruina, R. Tedrake and M. Wisse. Efficient Bipedal Robots Based
on Passive-Dynamic Walkers. Science, vol. 307, no. 5712, pages 1082–1085, feb 2005.
(Cited on page 7.)

[Conn 2000] A. Conn, N. Gould and P. Toint. Trust region methods. MPS-SIAM Series on
Optimization. Society for Industrial and Applied Mathematics, 2000. (Cited on page
44.)

[Da Silva Filho 2017] J. G. Da Silva Filho and T. Fraichard. Human Robot Motion: A Shared
Effort Approach. In European Conference on Mobile Robotics, Paris, France, Septem-
ber 2017. (Cited on page 21.)

[Deits 2014] R. Deits and R. Tedrake. Footstep planning on uneven terrain with mixed-integer
convex optimization. 2014 IEEE-RAS International Conference on Humanoid Robots,
Nov 2014. (Cited on pages 13 and 50.)

[Deits 2015] R. Deits and R. Tedrake. Computing large convex regions of obstacle-free space
through semidefinite programming, pages 109–124. Springer International Publishing,
Cham, 2015. (Cited on page 42.)

[Diedam 2009] H. Diedam. Fast nmpc algorithms for humanoid robot walking. Master’s
thesis, University of Heidelberg, 2009. (Cited on page 48.)

[Diehl 2009] M. Diehl, H. J. Ferreau and N. Haverbeke. Efficient Numerical Methods for
Nonlinear MPC and Moving Horizon Estimation. In Nonlinear Model Predictive
Control, pages 391–417. Springer Science, 2009. (Cited on page 82.)

[Diehl 2017] M. Diehl and S. Gros. Numerical Optimal Control (preliminary and incomplete
draft), May 2017. (Cited on page 37.)

[Dimitrov 2014] D. Dimitrov, P.-B. Wieber and A. Escande. Multi-Objective Control of
Robots. Journal of the Robotics Society of Japan, vol. 32, no. 6, pages 512–518,
2014. (Cited on page 31.)

[Dimitrov 2015] D. Dimitrov, A. Sherikov and P.-B. Wieber. Efficient resolution of potentially
conflicting linear constraints in robotics. Submitted to IEEE TRO (05/August/2015),
August 2015. (Cited on page 32.)

[Escande 2014] A. Escande, N. Mansard and P.-B. Wieber. Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation. The International Journal of
Robotics Research, 2014. (Cited on pages 26 and 32.)

[Faiz 1999] T. N. Faiz. Real-time and optimal trajectory generation for nonlineary systems.
PhD thesis, University of Delaware, 1999. (Cited on page 41.)

86 BIBLIOGRAPHY

[Fernbach 2017] P. Fernbach, S. Tonneau, A. Del Prete and M. Täıx. A Kinodynamic steering-
method for legged multi-contact locomotion. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, page 7p., Vancouver, Canada, September 2017.
(Cited on page 13.)

[Fernbach 2018] P. Fernbach, S. Tonneau and M. Täıx. CROC: Convex Resolution Of Cen-
troidal dynamics trajectories to provide a feasibility criterion for the multi contact
planning problem. working paper or preprint, May 2018. (Cited on page 54.)

[Fiorini 1998] P. Fiorini and Z. Shillert. Motion Planning in Dynamic Environments using
Velocity Obstacles. International Journal of Robotics Research, vol. 17, pages 760–772,
1998. (Cited on page 14.)

[Fox 1997] D. Fox, W. Burgard and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, vol. 4, pages 23–33, 1997. (Cited
on page 13.)

[Fraichard 2007] T. Fraichard. A Short Paper about Motion Safety. Proceedings 2007 IEEE
International Conference on Robotics and Automation, Apr 2007. (Cited on page
22.)

[Fraichard 2012] T. Fraichard and T. M. Howard. Handbook of intelligent vehicles, chapitre
Iterative Motion Planning and Safety Issue, pages 1433–1458. Springer London, Lon-
don, 2012. (Cited on page 13.)

[Fraichard 2014] T. Fraichard, R. Paulin and P. Reignier. Human-Robot Motion: An
Attention-Based Navigation Approach. In IEEE Int. Symp. on Robot and Human
Interactive Communication (ROMAN), Edinburgh, United Kingdom, August 2014.
(Cited on page 28.)

[Fujimoto 1996] Y. Fujimoto and A. Kawamura. Proposal of biped walking control based on
robust hybrid position/force control. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 3, pages 2724–2730 vol.3, Apr 1996.
(Cited on page 9.)

[Griffin 2017] R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa and J. Pratt. Walking
stabilization using step timing and location adjustment on the humanoid robot, At-
las. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, sep 2017. (Cited on page 48.)

[Grizzle 2014] J. W. Grizzle, C. Chevallereau, R. W. Sinnet and A. D. Ames. Models, feedback
control, and open problems of 3D bipedal robotic walking. Automatica, vol. 50, no. 8,
pages 1955–1988, aug 2014. (Cited on page 7.)

[Harada 2009] K. Harada, M. Morisawa, S. Nakaoka, K. Kaneko and S. Kajita. Kinodynamic
Planning for Humanoid Robots Walking on Uneven Terrain. JRM, vol. 21, pages 311–
316, 2009. (Cited on page 13.)

[Hauser 1994] J. Hauser and C. C. Chung. Converse Lyapunov functions for exponentially
stable periodic orbits. Systems & Control Letters, vol. 23, no. 1, pages 27–34, jul 1994.
(Cited on page 15.)

[Herdt 2010a] A. Herdt, N. Perrin and P.-B. Wieber. Walking without thinking about it. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
oct 2010. (Cited on pages 48 and 50.)

BIBLIOGRAPHY 87

[Herdt 2010b] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur and M. Diehl.
Online Walking Motion Generation with Automatic Foot Step Placement. Advanced
Robotics -Utrecht-, vol. 24, no. 5-6, pages 719–737, 2010. (Cited on page 48.)

[Hof 2008] A. L. Hof. The ‘extrapolated center of mass’ concept suggests a simple control of
balance in walking. Human Movement Science, vol. 27, no. 1, pages 112–125, feb 2008.
(Cited on page 57.)

[Homsi 2016] S. A. Homsi. Online generation of time- optimal trajectories for industrial
robots in dynamic environments. Theses, Université Grenoble Alpes, March 2016.
(Cited on page 24.)

[Hornung 2012] A. Hornung and M. Bennewitz. Adaptive level-of-detail planning for effi-
cient humanoid navigation. 2012 IEEE International Conference on Robotics and
Automation, May 2012. (Cited on page 13.)

[Horst 1984] R. Horst. On the convexification of nonlinear programming problems: An
applications-oriented survey. European Journal of Operational Research, vol. 15, no. 3,
pages 382–392, mar 1984. (Cited on page 41.)

[Hu 2018] W. Hu, I. Chatzinikolaidis, K. Yuan and Z. Li. Comparison Study of Nonlinear
Optimization of Step Durations and Foot Placement for Dynamic Walking. CoRR,
vol. abs/1805.02155, 2018. (Cited on page 48.)

[Hurmuzlu 2004] Y. Hurmuzlu, F. Génot and B. Brogliato. Modeling, stability and control
of biped robots—a general framework. Automatica, vol. 40, no. 10, pages 1647–1664,
oct 2004. (Cited on page 5.)

[Ibanez 2014] A. Ibanez, P. Bidaud and V. Padois. Emergence of humanoid walking behav-
iors from mixed-integer model predictive control. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, sep 2014. (Cited on page 48.)

[Isermann 1982] H. Isermann. Linear lexicographic optimization. Operations-Research-
Spektrum, vol. 4, no. 4, pages 223–228, Dec 1982. (Cited on page 24.)

[ISO 2011] ISO. Robots and robotic devices – safety requirements for industrial robots –
part 1: Robots. ISO 10218-1:2011. ISO, Geneva, Switzerland, 2011. (Cited on page
15.)

[ISO 2014] ISO. Robots and robotic devices – safety requirements for personal care robots.
ISO 13482:2014. ISO, Geneva, Switzerland, 2014. (Cited on page 15.)

[Johnson 1985] K. L. Johnson. Contact mechanics. Cambridge University Press, 1985. (Cited
on page 25.)

[Jones 2010] C. N. Jones and M. Morari. Polytopic Approximation of Explicit Model Pre-
dictive Controllers. IEEE Transactions on Automatic Control, vol. 55, no. 11, pages
2542–2553, nov 2010. (Cited on page 42.)

[Kajita 2003] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and
H. Hirukawa. Biped walking pattern generation by using preview control of zero-
moment point. In Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, volume 2, pages 1620–1626 vol.2, Sept 2003. (Cited on
page 11.)

88 BIBLIOGRAPHY

[Kaneko 2004] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi and T. Isozumi. Humanoid robot HRP-2. In Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on, volume 2, pages
1083–1090 Vol.2, April 2004. (Cited on page 60.)

[Kanoun 2011] O. Kanoun, F. Lamiraux and P.-B. Wieber. Kinematic Control of Redun-
dant Manipulators: Generalizing the Task-Priority Framework to Inequality Task.
Robotics, IEEE Transactions on, vol. 27, no. 4, pages 785–792, Aug 2011. (Cited on
pages 31 and 32.)

[Kerrigan 2001] E. C. Kerrigan. Robust constraint satisfaction: Invariant sets and predictive
control. PhD thesis, University of Cambridge, 2001. (Cited on page 18.)

[Khadiv 2016] M. Khadiv, A. Herzog, S. Moosavian and L. Righetti. Step Timing Adjust-
ment: A Step Toward Generating Robust Gaits. In Proceedings of the 2016 IEEE-RAS
International Conference on Humanoid Robots, 2016. (Cited on pages 41 and 48.)

[Khatib 1986] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. The International Journal of Robotics Research, vol. 5, no. 1, pages 90–98,
1986. (Cited on page 13.)

[Koolen 2012] T. Koolen, T. de Boer, J. Rebula, A. Goswami and J. Pratt. Capturability-
based analysis and control of legged locomotion, Part 1: Theory and application to
three simple gait models. The International Journal of Robotics Research, vol. 31,
no. 9, pages 1094–1113, 2012. (Cited on page 57.)

[Kryczka 2015] P. Kryczka, P. Kormushev, N. G. Tsagarakis and D. G. Caldwell. Online re-
generation of bipedal walking gait pattern optimizing footstep placement and timing. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, sep 2015. (Cited on page 48.)

[Kuindersma 2015] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Perme-
nter, T. Koolen, P. Marion and R. Tedrake. Optimization-based locomotion planning,
estimation, and control design for the atlas humanoid robot. Autonomous Robots,
vol. 40, no. 3, pages 429–455, jul 2015. (Cited on page 13.)

[Large 2005] F. Large, C. Laugier and Z. Shiller. Navigation Among Moving Obstacles Using
the NLVO: Principles and Applications to Intelligent Vehicles. Autonomous Robots,
vol. 19, no. 2, pages 159–171, 2005. (Cited on page 14.)

[Latombe 1991] J.-C. Latombe. Robot motion planning. Kluwer, Boston, MA, 1991. (Cited
on page 13.)

[LaValle 2006] S. M. LaValle. Planning algorithms. Cambridge University Press, Cambridge,
U.K., 2006. Available at http://planning.cs.uiuc.edu/. (Cited on pages 13 and 22.)

[Lawrence 1996] C. T. Lawrence and A. L. Tits. Nonlinear equality constraints in feasible
sequential quadratic programming∗. Optimization Methods and Software, vol. 6, no. 4,
pages 265–282, jan 1996. (Cited on page 40.)

[Lawrence 2001] C. T. Lawrence and A. L. Tits. A Computationally Efficient Feasible Se-
quential Quadratic Programming Algorithm. SIAM Journal on Optimization, vol. 11,
no. 4, pages 1092–1118, jan 2001. (Cited on page 40.)

BIBLIOGRAPHY 89

[Lebbah 2005] Y. Lebbah, C. Michel, M. Rueher, D. Daney and J.-P. Merlet. Efficient and
Safe Global Constraints for Handling Numerical Constraint Systems. SIAM Journal
on Numerical Analysis, vol. 42, no. 5, pages 2076–2097, jan 2005. (Cited on page 41.)

[Lebbah 2007] Y. Lebbah, C. Michel and M. Rueher. An efficient and safe framework for
solving optimization problems. Journal of Computational and Applied Mathematics,
vol. 199, pages 372–377,, February 2007. (Cited on page 41.)

[Lengagne 2007] S. Lengagne, N. Ramdani and P. Fraisse. Guaranteed Computation of Con-
straints for Safe path Planning. In Humanoids, Pittsburgh, PA, United States, Novem-
ber 2007. (Cited on page 48.)

[Lengagne 2009] S. Lengagne, P. Fraisse and N. Ramdani. Planning and fast re-planning of
safe motions for humanoid robots: Application to a kicking motion. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, oct 2009. (Cited
on page 48.)

[Liu 2012] H. Liu, Q. Sun and T. Zhang. Hierarchical RRT for humanoid robot footstep
planning with multiple constraints in complex environments. 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Oct 2012. (Cited on page
13.)

[Liu 2017] S. B. Liu, H. Roehm, C. Heinzemann, I. Lutkebohle, J. Oehlerking and M. Althoff.
Provably safe motion of mobile robots in human environments. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2017.
(Cited on page 22.)

[Loock 2015] W. V. Loock, G. Pipeleers and J. Swevers. B-spline parameterized optimal
motion trajectories for robotic systems with guaranteed constraint satisfaction. Me-
chanical Sciences, vol. 6, no. 2, pages 163–171, sep 2015. (Cited on page 48.)

[Lorentz 1953] G. Lorentz. Bernstein polynomials. Mathematical expositions. University of
Toronto Press, 1953. (Cited on page 53.)

[Louembet 2007] C. Louembet. Generation de trajectoires optimales pour systemes differen-
tiellement plats application aux manoeuvres d’attitude sur orbite. PhD thesis, Univer-
sité Bordeaux 1, 2007. (Cited on page 41.)

[Macek 2009] K. Macek, D. A. Vasquez Govea, T. Fraichard and R. Y. Siegwart. Towards
Safe Vehicle Navigation in Dynamic Urban Scenarios. Automatika, November 2009.
(Cited on pages 13 and 15.)

[McGeer 1990a] T. McGeer. Passive walking with knees. In Proceedings., IEEE International
Conference on Robotics and Automation. IEEE Comput. Soc. Press, 1990. (Cited
on page 7.)

[McGeer 1990b] T. McGeer. Passive Dynamic Walking. The International Journal of
Robotics Research, vol. 9, no. 2, pages 62–82, apr 1990. (Cited on page 7.)

[Mercy 2016] T. Mercy, W. V. Loock and G. Pipeleers. Real-time motion planning in the
presence of moving obstacles. In 2016 European Control Conference (ECC). IEEE,
jun 2016. (Cited on page 56.)

[Miettinen 1998] K. Miettinen. Nonlinear multiobjective optimization. Springer US, 1998.
(Cited on page 30.)

90 BIBLIOGRAPHY

[Minh 2013] V. T. Minh. Stability for switched dynamic hybrid systems. Mathematical and
Computer Modelling, vol. 57, no. 1-2, pages 78–83, jan 2013. (Cited on page 49.)

[Mombaur 2009] K. Mombaur, A. Truong and J.-P. Laumond. From human to humanoid
locomotion—an inverse optimal control approach. Autonomous Robots, vol. 28, no. 3,
pages 369–383, dec 2009. (Cited on page 48.)

[Morisawa 2007] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro,
K. Kaneko and H. Hirukawa. Experimentation of Humanoid Walking Allowing Im-
mediate Modification of Foot Place Based on Analytical Solution. In Robotics and
Automation, 2007 IEEE International Conference on, pages 3989–3994, April 2007.
(Cited on page 8.)

[Nadim Faiz 2001] S. A. Nadim Faiz and R. Murray. Differentially Flat Systems with Inequal-
ity Constraints: An Approach to Real-Time Feasible Trajectory Generation. Journal
of Guidance, Control, and Dynamics, vol. 24, no. 2, pages 219–227, 2001. (Cited on
page 41.)

[Naveau 2017] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur and P. Soueres.
A Reactive Walking Pattern Generator Based on Nonlinear Model Predictive Control.
IEEE Robotics and Automation Letters, vol. 2, no. 1, pages 10–17, jan 2017. (Cited
on page 50.)

[Nocedal 2006] J. Nocedal and S. J. Wright. Numerical optimization. Springer, New York,
NY, USA, second édition, 2006. (Cited on pages 35, 36, 37, 38, 39, and 44.)

[Panier 1993] E. R. Panier and A. L. Tits. On combining feasibility, descent and superlin-
ear convergence in inequality constrained optimization. Mathematical Programming,
vol. 59, no. 1, pages 261–276, Mar 1993. (Cited on page 40.)

[Pekarovskiy 2018] A. Pekarovskiy, T. Nierhoff, S. Hirche and M. Buss. Dynamically Consis-
tent Online Adaptation of Fast Motions for Robotic Manipulators. IEEE Transactions
on Robotics, vol. 34, no. 1, pages 166–182, feb 2018. (Cited on page 54.)

[Perrin 2012a] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux and E. Yoshida. Fast hu-
manoid robot collision-free footstep planning using swept volume approximations’,
Robotics. IEEE Transactions on, page 439, 2012. (Cited on pages 13 and 50.)

[Perrin 2012b] N. Perrin, O. Stasse, F. Lamiraux, Y. J. Kim and D. Manocha. Real-time
footstep planning for humanoid robots among 3D obstacles using a hybrid bounding
box. 2012 IEEE International Conference on Robotics and Automation, May 2012.
(Cited on page 13.)

[Pham 2014] Q. Pham, S. Caron, P. Lertkultanon and Y. Nakamura. Planning Truly Dy-
namic Motions: Path-Velocity Decomposition Revisited. CoRR, vol. abs/1411.4045,
2014. (Cited on page 13.)

[Pratt 2006] J. Pratt, J. Carff, S. Drakunov and A. Goswami. Capture Point: A Step toward
Humanoid Push Recovery. In Humanoid Robots, 2006 6th IEEE-RAS International
Conference on, pages 200 –207, dec. 2006. (Cited on page 57.)

[Quinlan 1993] S. Quinlan and O. Khatib. Elastic Bands: Connecting Path Planning and
Control. In ICRA (2), pages 802–807. IEEE Computer Society Press, 1993. (Cited
on page 13.)

BIBLIOGRAPHY 91

[Ralston 1958] H. J. Ralston. Energy-speed relation and optimal speed during level walking.
Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiolo-
gie, vol. 17, no. 4, pages 277–283, 1958. (Cited on page 63.)

[Rawlings 2016] J. B. Rawlings and D. Q. Mayne. Model predictive control: Theory and
design. Nob Hill Publishing, 2016. (Cited on page 15.)

[Scianca 2016] N. Scianca, M. Cognetti, D. D. Simone, L. Lanari and G. Oriolo. Intrinsically
stable MPC for humanoid gait generation. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids). IEEE, nov 2016. (Cited on page 15.)

[Seder 2007] M. Seder and I. Petrovic. Dynamic window based approach to mobile robot mo-
tion control in the presence of moving obstacles. Proceedings 2007 IEEE International
Conference on Robotics and Automation, Apr 2007. (Cited on page 14.)

[Serra 2016] D. Serra, C. Brasseur, A. Sherikov, D. Dimitrov and P.-B. Wieber. A Newton
method with always feasible iterates for Nonlinear Model Predictive Control of walk-
ing in a multi-contact situation. In IEEE-RAS 2016 - International Conference on
Humanoid Robots (Humanoids), pages 932–937, Cancun, Mexico, November 2016.
IEEE. (Cited on pages 9 and 77.)

[Sherikov 2014] A. Sherikov, D. Dimitrov and P.-B. Wieber. Whole body motion controller
with long-term balance constraints. In Humanoid Robots (Humanoids), 2014 14th
IEEE-RAS International Conference on, pages 444–450, Nov 2014. (Cited on page
9.)

[Sherikov 2015] A. Sherikov, D. Dimitrov and P.-B. Wieber. Balancing a humanoid robot
with a prioritized contact force distribution. In Humanoid Robots (Humanoids), 2015
15th IEEE-RAS International Conference on, Nov 2015. (Cited on page 26.)

[Sherikov 2016] A. Sherikov. Balance preservation and task prioritization in whole body mo-
tion control of humanoid robots. PhD thesis, Communauté Université Grenoble Alpes,
2016. (Cited on pages ix, 5, 7, 16, and 17.)

[Siciliano 1991] B. Siciliano and J.-J. Slotine. A general framework for managing multiple
tasks in highly redundant robotic systems. In Fifth International Conference on Ad-
vanced Robotics Robots in Unstructured Environments. IEEE, 1991. (Cited on page
32.)

[Simone 2017] D. D. Simone, N. Scianca, P. Ferrari, L. Lanari and G. Oriolo. MPC-based hu-
manoid pursuit-evasion in the presence of obstacles. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2017. (Cited on
page 50.)

[Sreenath 2010] K. Sreenath, H.-W. Park, I. Poulakakis and J. W. Grizzle. A Compliant
Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on
MABEL. The International Journal of Robotics Research, vol. 30, no. 9, pages 1170–
1193, sep 2010. (Cited on page 7.)

[Sun 2015] Z. Sun, Y. Tian, H. Li and J. Wang. A superlinear convergence feasible sequen-
tial quadratic programming algorithm for bipedal dynamic walking robot via discrete
mechanics and optimal control. Optimal Control Applications and Methods, vol. 37,
no. 6, pages 1139–1161, dec 2015. (Cited on page 40.)

92 BIBLIOGRAPHY

[Tajima 2009] R. Tajima, D. Honda and K. Suga. Fast running experiments involving a
humanoid robot. In Robotics and Automation, 2009. ICRA ’09. IEEE International
Conference on, pages 1571–1576, May 2009. (Cited on page 8.)

[Takenaka 2009] T. Takenaka, T. Matsumoto and T. Yoshiike. Real time motion generation
and control for biped robot -1st report: Walking gait pattern generation-. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages
1084 –1091, oct. 2009. (Cited on pages 8, 15, and 57.)

[Tamiz 1995] M. Tamiz, D. F. Jones and E. El-Darzi. A review of Goal Programming and its
applications. Annals of Operations Research, vol. 58, no. 1, pages 39–53, Jan 1995.
(Cited on page 31.)

[Van den Broeck 2011] L. Van den Broeck, M. Diehl and J. Swevers. A model predictive
control approach for time optimal point-to-point motion control. Mechatronics, vol. 21,
no. 7, pages 1203–1212, oct 2011. (Cited on page 23.)

[Vasquez 2009] D. Vasquez, T. Fraichard and C. Laugier. Growing Hidden Markov Models:
An Incremental Tool for Learning and Predicting Human and Vehicle Motion. The
International Journal of Robotics Research, vol. 28, no. 11-12, pages 1486–1506, 2009.
(Cited on page 28.)

[Villa 2017] N. A. Villa and P.-B. Wieber. Model predictive control of biped walking with
bounded uncertainties. In 2017 IEEE-RAS 17th International Conference on Hu-
manoid Robotics (Humanoids). IEEE, nov 2017. (Cited on page 17.)

[Vukobratović 2004] M. Vukobratović and B. Borovac. ZERO-MOMENT POINT —
THIRTY FIVE YEARS OF ITS LIFE. International Journal of Humanoid Robotics,
vol. 01, no. 01, pages 157–173, mar 2004. (Cited on page 9.)

[Wieber 2002] P.-B. Wieber. On the stability of walking systems. In Proceedings of the In-
ternational Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Japon,
2002. (Cited on pages 12 and 14.)

[Wieber 2006] P.-B. Wieber. Holonomy and Nonholonomy in the Dynamics of Articulated
Motion. In M. Diehl and K. Mombaur, editors, Fast Motions in Biomechanics and
Robotics, volume 340 of Lecture Notes in Control and Information Sciences, pages
411–425. Springer Berlin Heidelberg, 2006. (Cited on page 8.)

[Wieber 2008] P.-B. Wieber. Viability and Predictive Control for Safe Locomotion. In IEEE-
RSJ International Conference on Intelligent Robots & Systems, Nice, France, 2008.
(Cited on page 14.)

[Wieber 2015] P.-B. Wieber, R. Tedrake and S. Kuindersma. Springer handbook of robotics,
chapitre Modeling and Control of Legged Robots. Springer London, London, 2015.
(Cited on pages 5 and 8.)

[Wieber 2017] P.-B. Wieber, A. Escande, D. Dimitrov and A. Sherikov. Geometric and
numerical aspects of redundancy, pages 67–85. Springer International Publishing,
Cham, 2017. (Cited on pages 26, 33, and 77.)

[Wright 2004] S. J. Wright and M. J. Tenny. A Feasible Trust-Region Sequential Quadratic
Programming Algorithm. SIAM Journal on Optimization, vol. 14, no. 4, pages 1074–
1105, jan 2004. (Cited on page 40.)

BIBLIOGRAPHY 93

[Yagi 2000] M. Yagi and V. Lumelsky. Synthesis of turning pattern trajectories for a biped
robot in a scene with obstacles. In Proceedings. 2000 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113). IEEE,
2000. (Cited on page 50.)

[Zaytsev 2015] P. Zaytsev, S. J. Hasaneini and A. Ruina. Two steps is enough: no need to
plan far ahead for walking balance. In Proceedings of the International Conference on
Robotics and Automation (ICRA), May 2015. (Cited on page 17.)

[Zhao 2017] M. Zhao and S. Yu. Push recovery by stepping with step timing adjustment. In
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,
dec 2017. (Cited on page 48.)

[Zhu 2010] Z. Zhu, W. Zhang and Z. Geng. A feasible SQP method for nonlinear program-
ming. Applied Mathematics and Computation, vol. 215, no. 11, pages 3956 – 3969,
2010. (Cited on page 40.)

	Title
	Abstract
	Resume
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms

	1 Introduction
	1.1 Motivations
	1.2 Summary of contributions
	1.2.1 List of publications

	1.3 Outline
	1.4 Notation
	1.4.1 Functions
	1.4.2 Sets
	1.4.3 Vectors and matrices
	1.4.4 Software

	I Design aspects
	2 Modeling a biped robot
	2.1 Introduction
	2.2 Mechanical model of a biped robot
	2.3 Walking motion control
	2.3.1 Center of Pressure

	2.4 Conclusion

	3 Control design
	3.1 Introduction
	3.2 Specifications of the walking motion
	3.2.1 Objectives
	3.2.2 Constraints
	3.2.3 Classical approach

	3.3 Walking motion generation as a control problem
	3.4 Reasoning on an infinite horizon
	3.5 Reasoning on a finite horizon
	3.5.1 Avoiding failures
	3.5.2 Avoiding collisions

	3.6 Model Predictive Control
	3.6.1 Dynamics
	3.6.2 Cost function
	3.6.3 Constraints

	3.7 Conclusion

	4 Safe navigation strategies
	4.1 Introduction
	4.2 Setting
	4.2.1 Motion of the robot
	4.2.2 Motion of the crowd

	4.3 Collision mitigation
	4.4 Control design for collision mitigation
	4.4.1 Maximal Collision Delay
	4.4.2 Minimal Collision Velocity

	4.5 Hierarchy of time for failures and collision avoidance
	4.5.1 Passive safety
	4.5.2 Variations of collision mitigation

	4.6 Ethical considerations
	4.7 Conclusion

	II Numerical aspects
	5 Lexicographic Programming
	5.1 Introduction
	5.2 Lexicographic least-squares programming
	5.2.1 Null-space projections
	5.2.2 Cascade of QPs
	5.2.3 Advanced decompositions

	5.3 Solutions near singularities
	5.4 Conclusion

	6 Safe Sequential Quadratic Programming
	6.1 Introduction
	6.2 Sequential Quadratic Programming
	6.2.1 Active set methods
	6.2.2 Warm-start
	6.2.3 The Hessian of the Lagrangian
	6.2.4 Merit functions
	6.2.5 Maratos effect and second-order correction
	6.2.6 A line search algorithm

	6.3 Feasible Sequential Quadratic Programming
	6.4 Convexification of constraints
	6.4.1 Convexification by transformation
	6.4.2 Convexification by polytopic approximation

	6.5 Safe Sequential Quadratic Programming
	6.5.1 A trust-region algorithm
	6.5.2 Termination and convergence

	6.6 Conclusion

	7 Nonlinear Model Predictive Control for biped walking
	7.1 Introduction
	7.2 Motion of the CoM
	7.2.1 Preview horizon

	7.3 Position, orientation and duration of the steps
	7.4 Constraints of walking
	7.4.1 Kinematics and dynamics
	7.4.2 Collision avoidance with the crowd
	7.4.3 Terminal constraint for stopping

	7.5 Objectives of the walk
	7.6 Optimal Control Problem
	7.6.1 NLP formulation
	7.6.2 Safe SQP approach

	7.7 Conclusion

	8 Simulations
	8.1 Introduction
	8.2 Safe navigation strategies
	8.2.1 No uncertainty in the motion of the crowd
	8.2.2 Uncertainty in the motion of the crowd

	8.3 Safe Sequential Quadratic Programming
	8.3.1 Adapting the duration of the steps
	8.3.2 Adapting the rotation of the steps
	8.3.3 Comparison with SQP

	8.4 Conclusion

	9 Conclusion
	9.1 Summary
	9.2 Perspectives
	9.2.1 Safe navigation strategies
	9.2.2 Lexicographic programming
	9.2.3 Safe SQP
	9.2.4 Nonlinear MPC for biped walking
	9.2.5 Simulations

	Appendix A Bernstein polynomials
	Appendix B Concepts of convex analysis
	B.1 Sets and polyhedra
	B.2 Functions

	Appendix C Warm start of MPC
	C.1 MPC as a sequence of neighboring SQPs
	C.1.1 Linearization of the collision avoidance constraint

