
HAL Id: tel-02057149
https://theses.hal.science/tel-02057149

Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical simulation of acoustic propagation in a
turbulent channel flow with an acoustic liner

Robin Sebastian

To cite this version:
Robin Sebastian. Numerical simulation of acoustic propagation in a turbulent channel flow with an
acoustic liner. Fluids mechanics [physics.class-ph]. Université de Poitiers, 2018. English. �NNT :
2018POIT2297�. �tel-02057149�

https://theses.hal.science/tel-02057149
https://hal.archives-ouvertes.fr


T H E S E
Pour l’obtention du Grade de

DOCTEUR DE L’UNIVERSITE DE POITIERS

(Faculté des Sciences Fondamentales et Appliquées)
(Diplôme National - Arrêté du 25 mai 2016)

Ecole Doctorale : SIMMEA

Secteur de Recherche : Turbulence et Aeroacoustique

Présentée par : R O B I N S E B A S T I A N

N U M E R I C A L S I M U L AT I O N O F A C O U S T I C P R O PA G AT I O N
I N A T U R B U L E N T C H A N N E L F L O W W I T H A N A C O U S T I C

L I N E R

Directeur de Thèse : Prof. Eric Lamballais
Co-directeur de Thèse : Dr. David Marx et Dr. Véronique Fortuné

Soutenue le 26 Novembre 2018
devant la Commission d’Examen

J U RY

Laval J.-P. Directeur de recherche, CNRS, Lille Rapporteur
Aurégan Y. Directeur de recherche, CNRS, Maine Rapporteur
Bonnet J.-P. Directeur de recherche, CNRS, Poitiers Examinateur
Perray Debain E. Professeur, Université Technologique de Compiègne Examinateur
Piot E. Chercheur, ONERA, Toulouse Examinateur
Lamballais E. Professeur, Université de Poitiers Examinateur
Marx D. Chargé de recherche, CNRS, Poitiers Examinateur
Fortuné V. Maître de conférences, Université de Poitiers Examinateur





A C K N O W L E D G E M E N T S

I would like to express my sincere gratitude to my thesis director Prof. Eric Lamballais
and advisers Dr. David Marx and Dr. Véronique Fortuné for the continuous support
of my Ph.D study and related research, for their patience, motivation, and immense
knowledge. Your guidance helped me in all the time of research and writing of this thesis.
I could not have imagined having a better advisor and mentors for my Ph.D study.

I would like to express my special appreciation and thanks to Dr. David Marx. I would
like to thank you for encouraging my research and for allowing me to explore different
ideas. Your advice on both research as well as on my career have been priceless.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Jean-
Philippe Laval, Dr. Yves Aurégan, Prof. Emmanuel Perray Debain, Dr. Jean-Paul Bonnet
and Dr. Estelle Piot, for accepting to be in the jury of Ph.D. defence.

My sincere thanks also goes to engineers Jean Christophe Vergez and Philippe Par-
naudeau, for the IT support and access to the university computational facility SPIN
Mesocenter. I would also like to thank the French Ministry of Education for the PhD fi-
nancial grant, and GENCI-TGCC and GENCI-CINES for the computational grants. With-
out their precious support it would not be possible to conduct this research.

I thank my fellow lab-mates for the stimulating discussions, and for all the fun we have
had in the last three years.

Last but not the least, I would like to thank my parents and sister for supporting me
throughout writing this thesis and my life in general.

i





P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

Sebastian, R., Marx, D., Fortuné, V., and Lamballais, E. Numerical simulation of a com-
pressible channel flow with an acoustic liner. 23rd AIAA/CEAS Aeroacoustics Confer-
ence, AIAA Aviation Forum, 5-9 june 2017, Denver, Colorado. 2017.

Sebastian, R., Marx, D., Fortuné, V., and Lamballais, E. Numerical simulation of a com-
pressible channel flow with impedance boundary condition. New challenges in Wall
Turbulence. 2017.

Sebastian, R., Marx, D., and Fortuné, V. A scaling strategy to extract large scale motions
in compressible channel flow up to Mach 3. International Journal of Heat and Fluid Flow
(revision submitted) (2018).

Sebastian, R., Marx, D., and Fortuné, V. Numerical simulation of a turbulent channel
flow with an acosutic liner. Journal of Sound and Vibration (under review) (2018).

Sebastian, R., Marx, D., and Fortuné, V. Numerical simulation of acoustic propagation
in a turbulent spatial channel flow with acoustic liner. EFMC12. 2018.

Sebastian, R., Marx, D., Fortuné, V., and Lamballais, E. Spatial simulations of compress-
ible channel flows. 2nd In(Compact) User Group Meeting, UK Turbulence Consortium.
2018.

iii





C O N T E N T S

List of Figures ix

List of Tables xiv

Listings xvi

Nomenclature xvii

Acronyms xix

1 introduction 1
1.1 Overview on Acoustic liners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview on Wall Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Overview on Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Organisation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 equations and simulation techniques 15
2.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Flow configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Isothermal rigid wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Computational grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Spatial first-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Spatial second-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2.1 Modified second-derivative for DNS . . . . . . . . . . . . . . 25
2.5.2.2 Modified second-derivative for ILES . . . . . . . . . . . . . . 26

2.5.3 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.4 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Parallel implementation and scalability . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Validation – DNS of temporal supersonic channel flow . . . . . . . . . . . . . 34

3 modified finite difference scheme for implicit large eddy
simulation 41
3.1 Parametric study of modified spatial 2nd-derivative Finite Difference Scheme 41

3.1.1 Channel flow at Reτ ≈ 400 andM = 0.5 . . . . . . . . . . . . . . . . . . 42
3.1.2 High Reτ channel flows atM = 0.5 . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Supersonic channel flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Grid requirement for wall-resolved ILES . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2.1 Mean velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2.2 Reynolds stress and rms of vorticity . . . . . . . . . . . . . . 54

v



3.2.2.3 Velocity correlation and spectra . . . . . . . . . . . . . . . . . 56
3.2.2.4 Vorticity correlation . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2.5 Velocity skewness and kurtosis . . . . . . . . . . . . . . . . . . 61

3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 scaling techniques for compressible turbulent channel
flow at mach number up to 3 65
4.1 Review of scaling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Incompressible transformation . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Compressibility effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.3 Van Driest transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.4 Semi-local transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.5 Trettel’s transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Numerical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2.1 Mean velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2.2 Rms profiles of velocity and vorticity . . . . . . . . . . . . . . 74
4.2.2.3 Velcity correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2.4 Velocity skewness and kurtosis . . . . . . . . . . . . . . . . . . 80

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 inner-outer layer scales-interaction 83
5.1 Overview on large-scale structures in wall-bounded turbulent flow . . . . . 83
5.2 Grid requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Simulation at high Reynolds & Mach number . . . . . . . . . . . . . . . . . . . 87

5.3.1 Validation of the simulations . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Evidence of Large Scale Structures and their effect on near-wall scales 89
5.3.3 Procedure to extract large-scale structures . . . . . . . . . . . . . . . . . 93
5.3.4 Organisation of large-scale structures . . . . . . . . . . . . . . . . . . . . 96
5.3.5 Quantification of large-scale influence . . . . . . . . . . . . . . . . . . . 102

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 temporal simulation of channel flow with acoustic liner 109
6.1 Boundary condition - Impedance wall . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Grid requirement for channel flow with acoustic liner . . . . . . . . . . . . . . 112
6.3 Flow statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Effect of the liner resistance R . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Effect of the resonance frequency ωres . . . . . . . . . . . . . . . . . . . 117
6.3.3 Effect of the flow Mach numberM . . . . . . . . . . . . . . . . . . . . . 119

6.4 Existence of a wave along the acoustic liner . . . . . . . . . . . . . . . . . . . . 120
6.5 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.6 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6.1 Instability due to impedance boundary . . . . . . . . . . . . . . . . . . 128
6.6.2 Comparison with the numerical simulations . . . . . . . . . . . . . . . 131

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 spatial simulation of channel flow and sound attenuation135
7.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

vi



7.1.1 Subsonic inflow boundary condition . . . . . . . . . . . . . . . . . . . . 135
7.1.1.1 Based on Local One Dimensional Inviscid (LODI) relations 136
7.1.1.2 Based on Navier-Stokes equations . . . . . . . . . . . . . . . . 137
7.1.1.3 Non-reflecting characteristics boundary condition . . . . . . 137

7.1.2 Subsonic outflow boundary condition . . . . . . . . . . . . . . . . . . . 138
7.1.2.1 Sponge zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Wave extraction using global minimization . . . . . . . . . . . . . . . . . . . . . 141
7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3.1 Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.1.1 Flow configuration . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.2 Poiseuille flow with acoustic wave . . . . . . . . . . . . . . . . . . . . . 148
7.3.2.1 Multiple plane acoustic waves . . . . . . . . . . . . . . . . . . 150
7.3.2.2 Plane and transverse acoustic waves . . . . . . . . . . . . . . 152

7.4 Spatial turbulent channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.4.1 Turbulent inflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.4.2 Turbulent flow statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4.2.1 Simulation set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4.3 Interaction between sound and turbulence . . . . . . . . . . . . . . . . 161
7.4.3.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 simulation of flow tube with acoustic liner 169
8.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2 Flow statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.3 Instability over the acoustic liner . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.4 Turbulence-liner-acoustic interaction . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.5 Effect on sound attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9 conclusion and perspectives 183
9.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Appendix

a brief history of code “compact3d” and coefficients for
compact schemes 189
a.1 History of Compact3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
a.2 Coefficient of compact schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

b grid stretching 193
b.1 Wall-normal grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

b.1.1 Tanh stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
b.1.2 Incompact stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

b.2 Stream-wise grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

c comparison between dns and iles 197

d compressible relationship 201

vii



e linearised 2d navier-stokes equations and boundary con-
ditions 203

f target solution for sponge zone 207

bibliography 209

Index 230

viii



L I S T O F F I G U R E S

1 Introduction

Figure 1.1 Illustration of engine noise treatment . . . . . . . . . . . . . . . . . . 2
Figure 1.2 Schematic of grazing flow . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.3 Regions of TBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 1.4 Illustration of DNS, LES and RANS . . . . . . . . . . . . . . . . . . . 9
Figure 1.5 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Equations and Simulation techniques

Figure 2.1 Flow configuration for the temporal channel flow simulation . . . 17
Figure 2.2 Characteristics waves entering and leaving the computational do-

main for a subsonic flow . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.3 Illustration of wall boundary treatment . . . . . . . . . . . . . . . . . 20
Figure 2.4 Modified wave-numbers for spatial first-derivative . . . . . . . . . . 23
Figure 2.5 Spatial discretisation for first-derivative in non-periodic boundary 24
Figure 2.6 Modified wave-numbers for spatial second-derivative . . . . . . . . 24
Figure 2.7 Modified wave-numbers of spatial second-derivative scheme used

for DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2.8 Shape of SVV kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 2.9 Modified wave-numbers of spatial second-derivative kernels used

for ILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 2.10 Spatial discretisation for the second-derivative in non-periodic

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 2.11 Constraint on explicit time stepping due to Reb andM . . . . . . . 32
Figure 2.12 Time constraint due to CFL and Fourier constraint with different

mesh size at the wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 2.13 2D pencil domain decomposition using 2DECOMP library . . . . . 33
Figure 2.14 Scalability curves for Compact3D . . . . . . . . . . . . . . . . . . . . . 34
Figure 2.15 Comparison of mean velocity profile . . . . . . . . . . . . . . . . . . . 36
Figure 2.16 Comparison of rms velocity profiles . . . . . . . . . . . . . . . . . . . 36
Figure 2.17 Comparison of mean profile of scalar quantities . . . . . . . . . . . . 37
Figure 2.18 Comparison of rms profile of scalar quantities . . . . . . . . . . . . . 38
Figure 2.19 Comparison of stress profiles . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2.20 Comparison of stream-wise and span-wise correlations . . . . . . . 39

3 Modified Finite Difference scheme for Implicit Large Eddy Simulation

Figure 3.1 Comparison of mean, rms velocity profiles and spectra from ILES
of channel flow with fine grid at Reτ ≈ 400 andM = 0.5 . . . . . . . 44

ix



Figure 3.2 Comparison of mean and rms velocity profiles from ILES of chan-
nel flow with coarse grid at Reτ ≈ 400 andM = 0.5 . . . . . . . . . . 45

Figure 3.3 Comparison of spectra from ILES of channel flow with coarse
grid at Reτ ≈ 400 andM = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.4 Comparison of mean and rms velocity profiles for ILES of channel
flow for Reτ = 640 and 1000 atM = 0.5 . . . . . . . . . . . . . . . . . . 48

Figure 3.5 Comparison of mean and rms velocity profiles for ILES of channel
flow atM = 1.5 and Reb = 3000 . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.6 Comparison of mean and rms velocity profiles for ILES of channel
flow atM = 3 and Reb = 4880 . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.7 Comparison of mean and rms velocity profile for analysing the
grid requirement for wall-resolved ILES . . . . . . . . . . . . . . . . . 54

Figure 3.8 Comparison of Reynolds stress profiles for analysing the grid re-
quirement for wall-resolved ILES . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.9 Comparison of
√
ω ′2 profiles for analysing the grid requirement

for wall-resolved ILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 3.10 Comparison of velocity correlation in stream-wise and span-wise

direction at y+ = 10 for analysing the grid requirement for wall-
resolved ILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.11 Comparison of stream-wise velocity spectra at y = 0.5H for analysing
the grid requirement for wall-resolved ILES . . . . . . . . . . . . . . 58

Figure 3.12 Comparison ofω correlation in stream-wise and span-wise direc-
tion at y+ = 10 for analysing the grid resolution for wall-resolved
ILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.13 Comparison of skewness and kurtosis of velocity components for
analysing the grid requirement for wall-resolved ILES . . . . . . . . 62

4 Scaling techniques for compressible turbulent channel flow at Mach num-
ber up to 3

Figure 4.1 Mean velocity profiles for incompressible and compressible chan-
nel with cold walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.2 Local friction length scale as a function of wall-distance . . . . . . . 70
Figure 4.3 Raw and transformed mean velocity profiles . . . . . . . . . . . . . . 74
Figure 4.4 Raw and transformed rms velocity profiles . . . . . . . . . . . . . . . 75
Figure 4.5 Rms velocity profiles for showing Reynolds number effect . . . . . 76
Figure 4.6 Raw and transformed rms vorticity profiles . . . . . . . . . . . . . . 77
Figure 4.7 Raw and transformed near-wall span-wise correlation . . . . . . . . 78
Figure 4.8 Transformed near-wall stream-wise correlation . . . . . . . . . . . . 79
Figure 4.9 Velocity skewness profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 4.10 Velocity flatness profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Inner-outer layer scales-interaction

Figure 5.1 2D pre-multiplied stream-wise velocity spectra at y+ ≈ 15 . . . . . . 86
Figure 5.2 2D pre-multiplied stream-wise velocity spectra at y/H = 0.5 . . . . 86

x



Figure 5.3 Mean and rms of stream-wise velocity profiles . . . . . . . . . . . . 88
Figure 5.4 Instantaneous visualisation of u ′∗ on the wall parallel plane close

to the wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 5.5 Pre-multiplied spectra of stream-wise velocity and qualitative rep-

resentation of scales-interaction in the inner-outer region . . . . . . 90
Figure 5.6 Tilting angle of the large-scale structures . . . . . . . . . . . . . . . . 91
Figure 5.7 Decoupling procedure for quantifying inner-outer scales interaction 92
Figure 5.8 Amplitude modulation covariance map . . . . . . . . . . . . . . . . . 93
Figure 5.9 Rms of the small- and large-scale velocity fluctuation . . . . . . . . 95
Figure 5.10 Example of feature extraction for large-scale structures . . . . . . . 96
Figure 5.11 Conditionally averaged LMLSS in the y− z plane . . . . . . . . . . . 97
Figure 5.12 Example of detected large-scale structures after different thresh-

olding criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 5.13 Conditionally averaged 3D large-scale structure . . . . . . . . . . . . 100
Figure 5.14 Comparison of large-scale footprint at differentM with detection

based on conventional wall-units . . . . . . . . . . . . . . . . . . . . . 101
Figure 5.15 Comparison of large-scale footprint at differentM with detection

based on semi-local units . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 5.16 Organisation of large-scale structures . . . . . . . . . . . . . . . . . . 102
Figure 5.17 Conditional statistic for the high- and low-momentum large-scale

structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 5.18 Conditional average of rms of stream-wise velocity for the high-

and low-momentum large-scale structures . . . . . . . . . . . . . . . 107
Figure 5.19 Conditional average of rms of stream-wise velocity for the high-

and low-momentum large-scale structures for Re∗τ = 590 and 640 . 107

6 Temporal simulation of channel flow with acoustic liner

Figure 6.1 Validation curves for impedance boundary condition . . . . . . . . 111
Figure 6.2 Grid convergence for impedance wall test cases . . . . . . . . . . . . 113
Figure 6.3 Comparison of channel flow simulation with Scalo et al. (2015)[240] 114
Figure 6.4 Results for varying liner resistance . . . . . . . . . . . . . . . . . . . . 117
Figure 6.5 Change in drag as a function of liner resistance . . . . . . . . . . . . 117
Figure 6.6 Mean velocity profile for varying resonance frequency of the liner 118
Figure 6.7 Turbulent statistics for varying liner resonance frequency . . . . . . 119
Figure 6.8 Change in drag as a function ofM number . . . . . . . . . . . . . . 120
Figure 6.9 Velocity spectra for varying liner resonance frequency . . . . . . . . 121
Figure 6.10 Instantaneous visualization of turbulent structures for channel

flow with acoustic liner . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 6.11 Slice of instantaneous flow field for varying liner resonance fre-

quency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 6.12 Amplitude of wave along the liner . . . . . . . . . . . . . . . . . . . . 125
Figure 6.13 Phase averaged drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 6.14 Phase averaged Reynolds stress . . . . . . . . . . . . . . . . . . . . . . 127
Figure 6.15 Complex phase speed spectrum for parabolic base flow . . . . . . . 129
Figure 6.16 Complex phase speed spectrum with MSD wall tuned to desta-

bilise A-branch mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



Figure 6.17 Eigenfunction for parabolic and steeper base flow with bottom
MSD wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 6.18 Comparison between simulation and temporal linear stability anal-
ysis for test-case AC02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 6.19 Comparison of eigenfunction from simulation and linear stability
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Spatial simulation of channel flow and sound attenuation

Figure 7.1 Sponge layer for a spatial channel flow simulation . . . . . . . . . . 140
Figure 7.2 Up-stream and down-stream travelling acoustic waves and the

measurement configuration for the TMM . . . . . . . . . . . . . . . . 141
Figure 7.3 Comparison of raw and span-wise averaged signal . . . . . . . . . . 143
Figure 7.4 Example of transverse acoustic modes . . . . . . . . . . . . . . . . . . 144
Figure 7.5 Flow configuration for Poiseuille flow validation . . . . . . . . . . . 146
Figure 7.6 Time evolution of inlet and outlet mass flow rate . . . . . . . . . . . 147
Figure 7.7 Mass flow rate and percentage change in pressure and tempera-

ture in stream-wise direction . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 7.8 Flow field for the low Reynolnds number poiseuille flow . . . . . . 149
Figure 7.9 Comparison of simulation results with analytical solution . . . . . 150
Figure 7.10 Perturbation field with two plane waves . . . . . . . . . . . . . . . . . 151
Figure 7.11 Comparison of wave profiles from simulation and modal analysis 152
Figure 7.12 Instantaneous acoustic pressure field with plane and transverse

wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 7.13 Comparison of transverse wave profile from simulation and modal

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 7.14 Flow configuration for turbulent spatial channel flow simulation . 155
Figure 7.15 Mean flow field of turbulent channel flow . . . . . . . . . . . . . . . 157
Figure 7.16 Stream-wise distribution of mean flow variables . . . . . . . . . . . 158
Figure 7.17 Evolution of mean pressure and temperature . . . . . . . . . . . . . 159
Figure 7.18 Profiles of mean stream-wise velocity and temperature . . . . . . . 159
Figure 7.19 Comparison of Reynolds stresses profiles . . . . . . . . . . . . . . . . 160
Figure 7.20 Comparison of rms profiles of thermodynamic quantities . . . . . . 161
Figure 7.21 Simulation setup to study sound attenuation in a turbulent chan-

nel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 7.22 Schematic of acoustic and turbulent boundary layers . . . . . . . . 162
Figure 7.23 Instantaneous pressure perturbation field in turbulent channel

with multiple plane waves . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 7.24 Frequency spectra of wall-pressure . . . . . . . . . . . . . . . . . . . . 164
Figure 7.25 Comparison of down-stream travelling acoustic wave profiles . . . 165
Figure 7.26 Comparison of wave profiles from simulation and modal analysis 166
Figure 7.27 Damping coefficient for the down-stream and up-stream travel-

ling waves in a turbulent channel flow . . . . . . . . . . . . . . . . . . 166

8 Simulation of flow tube with acoustic liner

Figure 8.1 Configuration for flow tube with acoustic liner . . . . . . . . . . . . 169

xii



Figure 8.2 Instantaneous flow visualisation at bottom wall of the flow tube
with lined section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 8.3 Contours of mean spatial flow-field for the flow tube with lined
section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 8.4 Evolution of mean velocity over the lined surface . . . . . . . . . . . 173
Figure 8.5 Stream-wise distribution of mean flow variables . . . . . . . . . . . 173
Figure 8.6 Evolution of mean pressure and temperature in the flow tube

with acoustic liner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 8.7 Comparison of Reynolds stress profiles . . . . . . . . . . . . . . . . . 175
Figure 8.8 Instantaneous wall-normal velocity on the impedance surface . . . 176
Figure 8.9 Spatial and temporal spectra over the acoustic liner . . . . . . . . . 176
Figure 8.10 Eigen function over acoustic liner . . . . . . . . . . . . . . . . . . . . . 177
Figure 8.11 Linear Stability Analysis (LSA) of experiment of Marx et al. (2010)[181]

(liner corresponding to test-case AC01) . . . . . . . . . . . . . . . . . 178
Figure 8.12 Turbulence-acoustic interaction for experiment of Marx et al. (2010)[181]178
Figure 8.13 LSA of simulation with liner corresponding to test-case AC02 . . . 179
Figure 8.14 Turbulence-acoustic interaction for simulation test-case AC02 . . . 179
Figure 8.15 Pressure signal and SPL on the top wall . . . . . . . . . . . . . . . . . 180
Figure 8.16 Stability analysis for varying resistance of the liner . . . . . . . . . . 181
Figure 8.17 Comparison of complex wave-number over liner against the modal

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 8.18 Sound attenuation in the flow-tube with liner . . . . . . . . . . . . . 182

C Comparison between DNS and ILES

Figure C.1 Comparison of velocity spectra obtained from different simula-
tion techniques for channel flow at Reb = 3000 andM = 1.5 . . . . 198

Figure C.2 Comparison of mean velocity profiles . . . . . . . . . . . . . . . . . . 199
Figure C.3 Comparison of rms velocity profiles . . . . . . . . . . . . . . . . . . . 200
Figure C.4 Comparison of Reynolds stress profiles . . . . . . . . . . . . . . . . . 200

D Compressible relationship

Figure D.1 Evolution of density and viscosity ratio as the function of M
number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure D.2 Evolution of ρwuτ as the function ofM number . . . . . . . . . . . 202

F Target solution for sponge zone

Figure F.1 Schematic for computing the target field for the sponge zone . . . 207

xiii



L I S T O F TA B L E S

2 Equations and Simulation techniques

Table 2.1 Spatial discretisation for first-derivative . . . . . . . . . . . . . . . . . 23
Table 2.2 Spatial discretisation for second-derivative . . . . . . . . . . . . . . . 29
Table 2.3 Parameters of validation test-case for DNS of supersonic channel

flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 2.4 Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Modified Finite Difference scheme for Implicit Large Eddy Simulation

Table 3.1 Computational grids used for the parametric study of modified
spatial 2nd-derivative FDS at Reτ ≈ 400 andM = 0.5 . . . . . . . . . 42

Table 3.2 SVV kernels used for the parametric study of modified spatial
2nd-derivative FDS for ILES of channel flow at Reτ ≈ 400 andM = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.3 Mean flow variables and errors in their prediction with different
SVV kernels for ILES of channel flow at Reτ ≈ 400 atM = 0.5 . . . 43

Table 3.4 Simulation parameters and results for the parametric study of
modified spatial 2nd-derivative FDS for ILES of high Reτ channel
flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.5 Computational grids used for the parametric study of modified
spatial 2nd-derivative FDS for ILES of supersonic channel flows . . 49

Table 3.6 Mean flow variables and their errors with different SVV kernels
for ILES of supersonic channel flows . . . . . . . . . . . . . . . . . . . 51

Table 3.7 Test-cases for analysing grid requirement for ILES of channel flows 53

4 Scaling techniques for compressible turbulent channel flow at Mach num-
ber up to 3

Table 4.1 Simulation test-cases for analysing the scaling techniques . . . . . 73
Table 4.2 Mean flow variables for simulation test-cases for analysing scal-

ing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Inner-outer layer scales-interaction

Table 5.1 Simulation test-cases for studying inner-outer scales interaction
at differentM numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 5.2 Area occupied by the large-scale structures . . . . . . . . . . . . . . . 103
Table 5.3 Change in drag due to the large-scale structures . . . . . . . . . . . 104
Table 5.4 Contribution to skin-friction from the large-scale structures . . . . 104

xiv



6 Temporal simulation of channel flow with acoustic liner

Table 6.1 Grid convergence analysis with impedance boundary condition . 112
Table 6.2 Simulation test-cases with impedance boundary condition . . . . . 115
Table 6.3 Characteristics of the wave along the liner . . . . . . . . . . . . . . . 122
Table 6.4 Comparison between simulation and linear stability analysis . . . 132

7 Spatial simulation of channel flow and sound attenuation

Table 7.1 Comparison of wave properties computed from simulation and
modal analysis for multiple plane acoustic waves . . . . . . . . . . . 152

Table 7.2 Comparison of wave properties computed from simulation and
modal analysis for plane and transverse acoustic waves . . . . . . . 154

Table 7.3 Simulation parameters to study wave attenuation in turbulent
channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Table 7.4 Details of signal used for post-processing . . . . . . . . . . . . . . . . 164
Table 7.5 Properties of acoustic waves in turbulent channel flow . . . . . . . 167

A Brief history of code “Compact3D” and coefficients for compact schemes

Table A.1 Compact schemes for spatial first-derivative . . . . . . . . . . . . . . 190
Table A.2 Compact schemes for spatial second-derivative . . . . . . . . . . . . 191

C Comparison between DNS and ILES

Table C.1 Computational grids for testing DNS and ILES . . . . . . . . . . . . 197
Table C.2 Computational grid for comparing the benchmark channel flow

test-case with other solvers . . . . . . . . . . . . . . . . . . . . . . . . . 199

xv



L I S T I N G S

B Grid stretching

Listing 1 Wall-normal grid stretching . . . . . . . . . . . . . . . . . . . . . . . . . 193

Listing 2 Stream-wise grid stretching . . . . . . . . . . . . . . . . . . . . . . . . . 194

xvi



N O M E N C L AT U R E

Physical quantities

η Kolmogorov scale

γ Ratio of specific heats

µ Dynamic fluid viscosity

ω Angular frequency

ρ Fluid density

τ Stress

ξ Damping ratio

c Speed of sound

cf Drag coefficient

cp Adiabatic specific heat

H Channel half-height

h Enthalpy

K Stiffness

Kt Thermal conductivity

lν Viscous length-scale

M Mass

p Pressure

q Heal flux

R Resistance

ruv Reynolds stress

s Entropy

T Temperature

t Time

u; u1 Stream-wise velocity

uτ Friction velocity

v; u2 Wall-normal velocity

w; u3 Span-wise velocity

x; x1 Stream-wise coordinate

y; x2 Wall-normal coordinate

z; x3 Span-wise coordinate

Non-dimensional numbers

κ von Kármán constant

M Mach number

Bq Heat flux

Pr Prandtl number

Re Reynolds number

C Log-law intercept

xvii



Numerics

α; β; a; b; c; d FDS coefficients

ν Spectral viscosity

ν0 Spectral viscosity at cut-off

σi stability footprint on imaginary
axis

σr stability footprint on real axis

k Spatial wave-number

k ′ Modified wave-number for 1th

spatial derivative

k ′′ Modified wave-number for 2nd

spatial derivative

kc Spatial cut-off wave-number

kη Wave-number for Kolmogorov
scale

Nfac; c1 Parameters for SVV kernel
shape

Simulation parameters

∆x,y,z,t Discretisation

Lx,y,z Domain length

Nx,y,z Number of grid points

Other

F Flux vector

F Flatness

S Skewness

A; <A> Mean of quantity A

A ′ Fluctuation of quantity A

q Solution vector

√
A ′2 rms of quantity A

F Forcing term

X±; Y±; Z± Acoustic waves

Xs; Ys; Zs Entropy waves

Xv,w; Yu,w; Zu,v Vorticity waves

Subscripts

Ab Bulk quantity A

Ac Value of quantity A at centre of
the channel

At Turbulent quantity of A

Aw Value of quantity A at the wall

Aflow Quantity A of the flow

Ares Quantity A of the resonance

Awave Quantity A of the wave

Aτ Friction quantity A

xviii



Superscripts
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1
I N T R O D U C T I O N

Aircraft and engine manufacturers are always under the continuous pressure of growing
demand for quieter aircraft. This is due to the increasing quality of life and due to the
necessity to compensate air traffic growth and the encroachment of neighbouring com-
munities for larger airport infrastructures. Air traffic is increasing because of the time
efficiency of aircraft, and it is speculated to double in the next 20 years. But at the same
time aircrafts are noisy and the well-known issues associated with elevated aircraft noise
level includes stress, sleep depreciation and hypertension among others. Governments
and other related institutions are taking necessary actions to control the noise emission
and protect people. Major source of aircraft noise can be broadly classified into (a) engine,
(b) airframe and (c) mechanical vibrations. The growth in the theoretical description of
many aeroacoustic mechanisms in the past sixty years has led to a progressive reduction
of aircraft noise.

Engine noise is a major contributor to the aircraft noise. The first generation of aircrafts
in 1960s were very noisy, which led to the introduction of high by-pass ratio turbofan
engines and effective nacelle acoustic treatment. These type of engines not only reduced
the sound level by 25-30 dB, but they were also very fuel efficient. This makes turbofan
engines the only choice for commercial aircrafts. However, since the 1980s the noise
reduction trend has not been so significant. Therefore, any further noise reduction is
very difficult to be achieved without affecting the aircraft operating cost. Due to the
entry of ultra high-bypass ratio turbofans into service and novel noise control devices
on modern civil aircraft, the engine noise is expected to be comparable and even lower
than the airframe noise generated by the high-lift devices and by the undercarriage. A
great deal of interest have been devoted during the last years to the rediscovery and
improvement of analytical models for both airframe and engine noise prediction using
multi-disciplinary/multi-objective optimisation processes which relies on fast numerical
methods[7, 8, 170, 171].

A turbofan engine produces both tonal and broadband noises. Tonal noise is generated
due to the fan, and the broadband noise is due to the turbulence. Various technologies
have been developed to reduce the engine noise, such as scarf inlet, forward swept fans,
trailing-edge blowing, among others acoustic treatment. Acoustic liners are key technol-
ogy to absorb sound in ducts such as turbofan engines, and it is the passive method for
noise reduction. Acoustic liner is a sandwich panel and work as a group of Helmholtz
resonators. A single degree of freedom liner panel will include the perforated face-sheet,
honeycomb structure and the solid back-plate. Some liners have multiple layers of hon-
eycomb and perforated face-sheet for multiple degrees of freedom. In many practical
applications they are subjected to high-speed flows and turbulence. In turbofan engines,
liners are usually applied on the internal walls of the engine nacelle to absorb the radi-
ated acoustic energy (see figure 1.1 for an example of acoustic liner.) Many studies have
been devoted to understand the behaviour of acoustic liner, owing to the importance of
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Acoustic liner

Figure 1.1: Illustration of engine noise treatment.

noise reduction. In the past, most of the research was done with the help of experimental
techniques. Experimental techniques have several advantages, but the major drawback
is the intrusive measurement of the flow. This indeed limits access to the major part of
the flow, where one might find interesting physics. On the other hand numerical sim-
ulation gives access to every point in space, but the major setback is the truncation of
the computational domain and high computational cost. With the recent developments
in the computer technology, High Performance Computing (HPC) has entered the reality
of petascale computing. Currently, HPC has deep consequences for scientific research as
it open doors for solving complex turbulence problems, which were once considered im-
possible. The major objective of this Ph.D. thesis is to study how acoustic liners affect the
turbulent flow and noise attenuation with the help of numerical simulations. This is an
attempt to study the interaction within a complex flow physics, therefore this topic of-
fers wide range of possibility for research. The thesis was conceived as a 6 step approach,
therefore before presenting the motivations and the multiple objectives (in Section 1.4)
a brief introduction on acoustic liners, wall-turbulence and the numerical simulation is
given in Sections 1.1 – 1.3. Finally, the organisation of the thesis is presented in Section
1.5.

1.1 overview on acoustic liners

Acoustic liner covers most of the available surface in turbofan engines depending on the
installation of other engine systems. The typical acoustic liners are locally reacting and
the acoustic impedance of the liner will depend on properties of the lining, grazing flow
and frequency of the sound. In the future the bypass ratio of the turbofan engine will in-
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crease and the inlet length will not be scaled with the same factor. Since the performance
of the liner is limited to its length, these changes will make liners less effective. Different
methods of optimisation can focus on the variations in the depth of the honeycomb core,
core-cell dimensions and number of layers. However from the engineering point of view,
manufacturers should also keep in mind that the liner will increase the overall engine
weight.

Since 1970’s acoustic liner with adjustable impedance that has potential application in
the active control of duct noise and unstable flow in turbo-machines has received some
attention[62, 305]. It is well known that the grazing flow changes the acoustic impedance
of the liner, thereby affecting the noise attenuation in the duct. A better understand-
ing of this so called grazing flow effect is necessary for the design of efficient acoustic
liners[102, 148, 204]. During the past decades, considerable research has been carried out to
understand the effect of grazing flow on the acoustic impedance of the liner[138]. The
acoustic resistance of perforated face-sheet linearly increases and the acoustic reactance
slightly decreases with increasing grazing flow velocity[57, 96, 102, 138, 221]. The visualisation
and the measurements of the flow details in the vicinity of an orifice reveal that vortices
are generated from leading edge of the orifice under the acoustic excitation and con-
vected down-stream by the mean grazing flow[208, 295]. The vortical and acoustic flow at
an orifice in the presence of grazing flow interacts strongly, and this leads to the change
of the orifice acoustic impedance. Several investigations have been concentrated on de-

Grazing flow

Perforated facesheet

Solid backplate

Honeycomb core

Figure 1.2: Schematic of grazing flow.

scribing how sound energy is dissipated in the near-field of the orifice and theoretical
models have been developed[108, 116, 143, 236, 288]. Although several models has been pro-
posed with different assumption and in order to make the model flexible the problem
has been generally over simplified. Theoretical modelling of the acoustic behaviour of
perforates subjected to grazing flow is mainly dependent on the experimental data. Mea-
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surement of the impedance of perforated plates is generally restricted to a single orifice,
and it has been assumed that the results could be extrapolated to multi-orifice perfo-
rated plates via the percentage open area or porosity of the perforate[148]. Ronneberger
(1972)[235], Goldman and Panton (1976)[96] and Rao and Munjal (1986)[228] among oth-
ers measured the impedance of the orifice within a thin boundary layer and found that
the boundary layer thickness affects the impedance of the orifice. Goldman and Chung
(1982)[97] found that the orifice impedance was affected only by the inner-region of the
boundary layer. Later Cummings (1986)[57] concluded that boundary layer turbulence is
an important parameter in the measurement of perforate impedance and it is necessary
to measure the perforates under conditions similar to those in which they are to be used.

The acoustic liners have millimetre-size perforated holes. These holes are too small
to simulate accurately in most of the computational codes, therefore their analysis is
restricted to theoretical modelling, measurement and high fidelity simulations. The ma-
jority of modelling work has been carried out in the frequency domain. Howe (1979)[114]

modelled the acoustic energy dissipated by periodic vortex shedding for a single orifice
in a high Reynolds number flow. Followed by experimental and numerical investigation
of Jing and Sun (1999)[139] and Jing and Sun (2000)[140] on the effect of the orifice thick-
ness and the bias flow rate, showing that an appropriate bias flow rate can significantly
increase damping and that the orifice thickness is important. Tam et al. (2001)[267] carried
out Direct Numerical Simulation (DNS) of a separate aperture and showed that vortex
shedding was the dominant damping mechanism for large-amplitude incident waves.
Mendez and Eldredge (2009)[189] performed compressible Large Eddy Simulation (LES)
to study the aeroacoustic characteristics of orifice. Burak et al. (2009)[40] also used LES

to solve linearised Navier-Stokes Equations (NSE) to study the damping performance of
an acoustic liner (without meshing the holes) in the presence of grazing flow. With the
DNS, Zhang and Bodony (2012)[302] investigated the acoustic behaviour of a honeycomb
liner and found that the orifice boundary layer played a critical role. Since it is easier to
measure near the tiny orifice, experimental investigations focus on measuring the liner
impedance or power absorption coefficient[303, 304]. Ingård and Labate (1950)[131] exper-
imentally visualised that the incident sound amplitude, frequency, the orifice diameter
and thickness affected the induced motion of the fluid near the orifice. Hughes and
Dowling (1990)[121] showed that the sound incident on a perforated liner with a bias flow
might be completely absorbed, if the flow speed and the liner geometry were chosen
properly. Experiment of Jing and Sun (1999)[139] confirmed that the orifice thickness and
the bias flow Mach number played dominant roles in affecting the liner’s damping per-
formance. Tam et al. (2014)[271] conducted experiments to study the grazing flow effect on
the damping performance of acoustic liners. They showed that the acoustic liner could
generate self-noise, which might result from a feedback resonance mechanism driven by
a Kelvin-Helmholtz instability wave of the free shear layer spanning the openings of the
liner cavity. Furthermore the drag was found to increase by about 4% for an acoustic liner
with a 10% open area ratio in comparison to the turbulent boundary layer drag over a
flat wall.

The key parameter in the liner optimisation process is the acoustic impedance. This is
comprised of a real part, the resistance, and an imaginary part, the reactance. The first
step in the liner design consists in estimating the values of the liner resistance and reac-
tance that ensure the maximum sound attenuation for a prescribed duct modal content,
over the frequency range of interest[46]. The second step consists in selecting a liner class

4



that matches as close as possible the optimal resistance and reactance values for each fre-
quency band of interest[45]. The acoustic liners used in turbofan engines consist of one or
two sandwich layers. A Single Degree Of Freedom (SDOF) panel is constituted of a porous
face-sheet, a honeycomb core, and a solid backplate. A Two Degree Of Freedom (2DOF)
panel is constituted of a porous face-sheet, two layers of honeycomb separated by a
porous septum, and a solid backplate. Both SDOF and 2DOF liners are effective over nar-
row frequency ranges and must be tuned on one or two fan tones, respectively. 2DOF

has larger band-width than SDOF. Typically, the acoustic properties of this class of treat-
ment shows linear behaviour at low Sound Pressure Level (SPL) and with no flow and
do not depend on the amplitude of the incident acoustic wave. For a high value of the
incident sound pressure level the liner resistance starts exhibiting non-linear behaviour
and dependence on the incident wave amplitude. Melling (1973)[188] first recognised this
behaviour and argued that, in the linear regime, the micro flow in the orifice is lami-
nar and the dissipative (resistive) losses maybe of Poiseuille type or Helmholtz type. In
both cases the losses are due to viscous dissipation in the shear layer. This hypothesis
have been partially confirmed by Tam et al. (2000)[272]. In the linear regime, a jet-like
flow close to the orifice openings and a strongly oscillatory boundary layer. In the non-
linear regime, Melling (1973)[188] argued that a turbulent jet takes place at the mouth
of the resonator and the primary dissipation mechanism is turbulence. This mechanism
was not confirmed by the numerical analysis by Tam et al. (2000)[272] who observed a
vortex-shedding mechanism taking place at certain acoustic frequency bands, which is
responsible for the conversion of acoustic energy into kinetic energy and further viscous
dissipation into heat.

In many practical situations, liners are subject to high speed flows and turbulence,
and much effort has been devoted for studying the effect of grazing flow on the liner
impedance. It is for example, well known that as a result of the interaction between the
acoustic and vortical modes in the holes of the perforated face-sheet liner properties can
be modified. Conversely, the liner may modify the flow and turbulence in its vicinity,
compared to a rigid wall. An effect of this is drag increase,[271, 294] especially for small
liner porosity. Another effect is the flow instability observed in the vicinity of a low re-
sistance acoustic liner[181]. Several numerical simulations in flow ducts with liners have
been performed in connection with this topic. The objective of many simulations has
been to study sound propagation in lined ducts with a known base flow using the lin-
earised Euler equations. A difficulty is then to impose a well-posed impedance boundary
condition, especially in the time-domain solvers[86, 169, 183, 212, 213, 230, 233, 264, 306]. These sim-
ulations neglect both the effect of the grazing flow on the impedance and the effect of the
impedance on the flow. Other simulations are based on the full non-linear NSE and the
flow is computed together with the acoustic field[211, 240, 267, 270, 301, 302]. Among these sim-
ulations, some include the liner back cavity and the face sheet perforations,[267, 270, 301, 302]

so as to include all possible flow-acoustics interactions. Others use an impedance bound-
ary condition with a given impedance,[211, 240] which means that the effect of the flow on
the impedance is not a part of the computation. Olivetti et al. (2015)[211] computed the
sound propagation in a lined pipe, a simple model for a nozzle, in order to suppress
resonant modes in the duct which have a strong impact on the noise produced by the jet
outside the nozzle. Scalo et al. (2015)[240] studied the turbulent flow in a compressible pe-
riodic channel with an impedance boundary condition and described how the structure
of turbulence gets modified as the resistance of the liner decreases. Scalo et al. (2015)[240]
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set the resonance frequency of the liner so that it corresponds to some typical time scale
of the flow. As a result the liner resonance frequency was rather high, and larger than
typical frequencies encountered in aeroacoustic applications. Apart from sound damp-
ing in ducts, there is a growing interest in passive methods for aeroacoustic and flow
control,[307], and a better knowledge of the behaviour of the turbulent flow in the vicinity
of non-rigid wall is interesting in general.

1.2 overview on wall turbulence

Wall-bounded turbulent flows have received continuous attention due to its immense
practical importance. Turbulence has remained one of the greatest unsolved problem of
classical physics since the pipe flow experiment of Reynolds. Many challenges are present
in physical understanding, theoretical interpretation, experimental techniques and nu-
merical simulations. In the past few decades, high Reynolds number wall-bounded tur-
bulent flows have become a very active area of research. The research on wall-turbulence
can be categorised into: (a) scaling and (b) coherent structures of wall-turbulence.

Initially, the scaling was mainly focussed on the mean velocity profile and the Tur-
bulent Boundary Layer (TBL) was categorised into two distinct regions: (a) near-wall
region and (b) outer-region. Viscosity is dominant in the near-wall region and not in
the outer-region[51, 103]. In the near-wall region, friction velocity and viscous length scale
are used as the inner-variables for scaling, and in the outer-region, friction velocity and
characteristics flow length scale are used. Recent advances in computational and exper-
imental capabilities have expanded the understanding about turbulence. For example,
the inability of the present scaling techniques to collapse the distribution of stream-wise
turbulence intensity. Stream-wise turbulence intensity near the wall in inner-variables
show a Reynolds number dependence. Moreover, the emergence of a secondary peak
in the outer-region distribution of turbulence intensity is also found at higher Reynolds
number.

An example of the law-of-the-wall with different regions of TBL is shown in figure 1.3.
Viscosity is dominant in the near-wall region up to y+ ≈ 5 (y+ is the wall-normal distance
scaled with friction length-scale), and this region is known as viscous sub-layer. Log-law
is valid from approximately y+ = 30 up to y = 0.2H. The region which blends the viscous
sub-layer and log-region is known as buffer layer. Generally, part of the TBL within the
log-region is called as inner-layer and above y = 0.2H is called as outer-layer. Definition of
y+ and u+ will be given in equation 2.51.

The second category of wall-turbulence research was inspired by the observation of
coherent structures in TBL. Theodorsen (1952)[275] identified the horse shoe vortices, fol-
lowed by the discovery of near-wall streaks and their role in the turbulence production
cycle by Hama et al. (1957)[104] and Kline et al. (1967)[151]. Townsend (1961)[280] intro-
duced the idea of active and inactive motion to distinguish the motions that contribute to
wall-normal velocity fluctuations and the momentum transport. Other works on coherent
structures in wall-turbulence can be found in Bradshaw (1967)[33], Townsend (1976)[281],
Head and Bandyopadhyay (1981)[107] and Perry and Chong (1982)[220], among others. Re-
view on this topic have been presented by Cantwell (1981)[44] and Robinson (1991)[234].
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Figure 1.3: Regions of turbulent boundary layer. (a) u+ = y+, (b) u+ = 1/κ ln(y+)+C.

The advancement in experimental and computational facilities have encouraged the re-
search on high Reynolds number flows. The findings revisited questions on the universal-
ity of turbulence and the influence of outer-region structures. A summary of the current
state-of-art research on scaling and coherent structures can be found in McKeon and
Sreenivasan (2007)[187].

Coherent structures are generally considered as organised motions that are continu-
ous in time and space and contribute significantly to the transport of heat, mass and
momentum[179]. The self-sustaining or regeneration mechanism of the near-wall turbu-
lence can be related to these structures[105, 137]. Panton (2001)[215] reviewed the ideas
“why wall-turbulence is self-sustaining?”, and the process can be classified into two cate-
gories, based on: (a) instability and transient growth mechanism and (b) vortex structure
regeneration mechanism[4, 248]. The main coherent structures can be categorised as: (1)
near-wall streaks associated with the near-wall cycle and scale on inner-variables; (2)
Least Square Method (LSM) which are related to outer-layer bulge and the vortex packets
as discussed by Head and Bandyopadhyay (1981)[107] and Adrian (2007)[4] which scale
in O(H) and (3) Very Large Scale Motion (VLSM) is the concatenated packets of vortices
and/or meandering superstructures with stream-wise length scale of O(10H), where H
is the characteristic flow length scale. While large stream-wise structures in wall turbu-
lence has been observed several decades ago[153, 281], the dynamical importance of the
these structures had not been acknowledged until recently. The measurements of spectra
revealed the presence of large-scale motions and found that these structures contribute
about half of the total energy to the spectra[12, 178]. These structures are not yet fully un-
derstood, but they are generally associated with a peak in the pre-multiplied spectra of
stream-wise velocity. Guala et al. (2006)[101], Adrian (2007)[4] and Balakumar and Adrian
(2007)[12] have reported that even though there is no evidence of extremely long scales in
the wall-normal velocity spectra due to the presence of wall, the superstructures must be
considered to be active in the sense that they carry a significant part of the shear stress.
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A popular example of external wall-bounded flow is a boundary layer flow, and chan-
nel and pipe for the internal flows. The main differences in these flows are the geo-
metrical confinement. The inner-region of the TBL is invariant for all these flow types,
but the outer-region large-scale structures will depend on the flow geometry. Monty et
al. (2009)[196] compared a channel, pipe and boundary layer flow at the same friction
Reynolds number and found VLSM energy in pipes and channels agrees well, but resides
in longer wave-length and further away from the wall than in boundary layers.

The main problem with the detection of large-scale structures is that their transverse
scale is of the order of the flow characteristic length-scale and their lateral arrangement
can lead to overestimation of width, if the neighbouring lateral structures are grouped
and considered as a single structure[242]. Currently, high Reynolds number simulations
(for investigating large-scale structures) can be performed with larger computational
domain up to certain extent, but there is still a long way to go. On the other hand large
amount of experimental data on the large-scale structures are gathered using the Taylor’s
hypothesis[274]. The validity of Taylor’s hypothesis to convert the temporal data to spatial
data remains a big concern. Taylor’s hypothesis becomes worse towards the wall because
convection velocity of the large-scale structure is of the order of centreline velocity rather
the local mean velocity[65].

taylor’s hypothesis : If turbulence level were low, the time variation in the velocity
u observed at a fixed point in the flow would be approximately the same as those
due to the convection of an unchanged spatial pattern past the point with a constant
convection velocity uconv.

u(x, t) = u(x−uconvt,0)
where x is the distance measures down-stream in the mean flow direction and t is
the time respectively.

The study of coherent structures also revealed that the turbulent motion in the near-
wall region interacts with the outer-region large-scale motions. The inner-outer interac-
tion was documented earlier by Rao et al. (1971)[227] and Wark and Nagib (1991)[289],
but their objective was investigating Reynolds number scaling and large-scale structures.
Due to the unavailability of experimental facilities and computational resources for high
Reynolds number flows in those periods, most of the research was primarily focussed on
low Reynolds number flows. Enough scale separation does not exist at lower Reynolds
number and different scales of turbulence overlap with the small-scales of near-wall
cycle[111]. An important consequence of this interaction between these structures is ob-
served via the Reynolds number dependent peak of the stream-wise intensity in the
buffer-layer. Computational studies by Spalart (1988)[262], Toh and Itano (1999)[278], Abe
et al. (2004)[1], Hoyas and Jiménez (2006)[117], among others tried to analyse the influence
of large-scale structures at the wall. Several studies including Jiménez et al. (1999)[135],
Del Álamo and Jiménez (2003)[64], Hutchins and Marusic (2007)[125] among others have
shown that outer-region large-scale influence on the near-wall region becomes increas-
ingly noticeable with the increasing Reynolds number. With high Reynolds number TBL

experiments Hutchins and Marusic (2007)[125, 126] showed the evidence of the influence
of large-scale structures or superstructures on the near-wall small-scales. They used in-
stantaneous time series which was converted to spatial data with the help of Taylor’s
hypothesis. By analysing the low-pass filtered time-series with the Hilbert transform of
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stream-wise velocity Tardu (2008)[273], Mathis et al. (2009)[186] found the inner-outer inter-
action was similar to the amplitude modulation of near-wall small-scale structures by the
outer-region large-scale structures. The influence of the outer-region large-scale structure
increases with the Reynolds number[125], however the near-wall streaks which are typical
coherent structures close to the wall remains unchanged even at higher Reynolds num-
ber. Mathis et al. (2009)[186] investigated the location of the outer-region spectral peak
and found that the geometric centre of the logarithmic region coincides with the reversal
of the phase relationship between large-scale and small-scale turbulent intensities.

1.3 overview on large eddy simulation

Currently numerical simulations are gaining importance and more companies are com-
ing forward for simulation driven engineering or product development. This is due to
the cost-effectiveness of the numerical simulations, and their ability to provide infor-
mation about the complete flow-field. It was mentioned in the previous section that
wall-turbulence involves different scales with non-linear energy cascade. Hence, the
Computational Fluid Dynamics (CFD) approaches for wall-turbulence can be classified
into three: (a) DNS, (b) LES and (c) Reynolds Averaged Navier Stokes (RANS) simulations
based on the quantity of flow scales that are discretised. In comparison with DNS, LES

is computationally cheap and applicable to high Reynolds number flow, whereas RANS

fails to reproduce the small-scale dynamics accurately (see figure 1.4). The idea of LES

Figure 1.4: Differences between DNS, LES and RANS.

is to reduce the number of degrees of freedom to save the computational resources. This
is done by introducing the low-pass filter to define the large-scales and the unresolved
part is known as Sub-Grid Scale (SGS). The equations for the resolved scales are solved
by introducing the SGS tensor within the framework of a closure problem. One restrictive
assumption in establishing the equations concerns the commutation between the filtering
operator and the spatial derivatives[59, 91–93, 239]. The commutation error is always ignored
and it is actually negligible if the distortion of computational grid is very weak, however
the contrary is not true.

Another widespread LES approach is to define modelling strategy. This involves de-
veloping SGS models purely based on theory and physics. The SGS model ensure the
dissipation for LES, but has considerable truncation error at the mesh cut-off as the ki-
netic energy is still significant at the cut-off wave-number. These numerical errors can
become superior compared to the SGS contribution even with the high-order scheme.
The errors from aliasing and differentiation can be comparable or even outweigh SGS

modelling terms in LES[48, 93]. The role of discretisation and modelling errors have also
been investigated directly by LES through a posteriori tests[190–192, 286].
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The restrictive formalism of LES combined with the numerical errors lead to the mis-
match between theory and practice. Therefore the motivation behind another approach
known as ILES was to overcome this mismatch using formulation based on numerical and
physical consideration[28, 73, 85, 152, 177, 277]. The source of regularisation was the discretisa-
tion of the governing equations and/or through an additional discrete operator to selec-
tively damp or filter the smallest scale[9, 14, 22, 25, 26, 133, 265]. This type of relaxation model
can be used alone[185, 243] or in conjunction with a deconvolution model[70, 71, 109, 110]. An
overview can be found in Grinstein et al. (2007)[100].

Dairay et al. (2014)[58] found dynamic Smagorinsky model[90, 259] or the WALE[209]

model were unable to prevent the production of small-scale oscillation. With artificial
dissipation significant improvement was found in the LES by damping the small-scale
oscillation. This led to smooth solution as expected in the formalism based on filtering
procedure. Example of mismatch between practice and theory was shown by Dairay et al.
(2014)[58], where a SGS model (based on filtering in practice) cannot ensure filtering effect,
and on the other hand the use of artificial dissipation free from rigorous formalism pro-
vides filtering effect that is favourable for the accuracy of the calculation. To overcome the
weakness of classical LES, a selective action is carried out on the small-scales. This selec-
tive action can be based on a numerical stabilisation procedure[149, 172, 216–218, 256, 284, 297]

that can be combined with SGS model particularly in the framework of Variational Multi-
scale method[99, 122–124]. The numerical parameter driving the regularisation depend on
the physical SGS model because the selective action on small scales and the SGS model are
combined together. Dairay et al. (2017)[59] presented a new way to calibrate the numerical
dissipation based on the explicit SGS modelling through a physical scaling. Due to this,
the numerical dissipation becomes a substitute for the SGS model, thus the difference
between artificial dissipation and SGS modelling becomes less worthwhile. The implicit
dissipation is controlled explicitly and Dairay et al. (2017)[59] introduces the notion con-
trolled ILES to describe this approach.

This is an alternative way to perform LES based on targeted numerical dissipation
introduced by the discretisation of the diffusion terms in NSE. Regularisation technique
is equivalent to the use of SVV. The flexibility of this method ensures high-order accuracy
while controlling the level and spectral features of excess artificial numerical viscosity.
Dairay et al. (2017)[59] used a Pao-like spectral closure based on physical arguments to
scale the numerical viscosity a priori, and found this approach more efficient and accurate.
The main benefit of this approach is the possibility to correctly calibrate the numerical
dissipation at the smallest scale. This model can be viewed as (a) ILES because numerical
error is the source of artificial dissipation and (b) as explicit SGS model because of the
equivalence with spectral viscosity prescribed on a physical basis.

1.4 motivations and objectives

In many practical situations, acoustic liners are subject to high speed flows and tur-
bulence. It is well known that the acoustic liner interacts with the flow and vice-versa.
Several experimental studies have been performed to understand the liner behaviour and
properties, but due to the limitations in the experimental diagnostics it is not yet fully
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understood. Hence, the main objective of this thesis is to understand the flow physics:
acoustic propagation in turbulent flow in the presence of acoustic liners with the help of
numerical simulation. This is a very broad topic which offers the possibility to dive into
many other directions. A brief outline of the thesis is presented in figure 1.5. Motivations
behind each objective will be presented in the following.

1. Compressible
NS solver

(Chapter 2)

2. Large Eddy
Simulation
(Chapter 3)

3. Turbulence
(Chapter 4&5)

4. Flow-liner
interaction
(Chapter 6)

5. Flow-noise
interaction
(Chapter 7)

6. Flow-noise-liner
interaction
(Chapter 8)

Objectives

Figure 1.5: Objectives of the thesis.

To accomplish the objectives the thesis, sound propagation at moderately higher sub-
sonic Mach numbers has to be simulated. This requires solving compressible NSE, and
this led to the development of parallel 3D compressible NSE solver “Compact3D”. The
solver bears many similarity with the incompressible solver “Incompact3D” (which was
developed with the collaboration between the Institut PPRIME and Imperial College,
London). The solver uses high-order compact Finite Difference Schemes (FDS) for the
spatial discretisation and 2D pencil domain decomposition. Compact3D was initially de-
veloped in early 2000 at the Institut PPRIME for the direct computation of sound[78, 79].
Initially the solver was sequential, which has then been constantly updated to simulate
different flow configuration. This is the first version of Compact3D which (a) allows for
parallel computation and (b) includes wall-bounded flow configuration. A more detailed
introduction about Compact3D is provided in Chapter 2 and Appendix A.1.
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Solving compressible NSE facilitates solving both sound generation and propagation.
For a turbulent flow the scale-separation increases with the Reynolds number. In direct
computation one has to discretise all scales of the flow which will lead to the usage of a
very large number of grid points. This will have a direct impact on the computational cost
of the numerical simulation. To circumvent this issue, LES is performed where only the
large-scales of the flow are resolved and the unresolved SGS are modelled. With proper
modelling, one can account for the unresolved small-scales and reproduce solution simi-
lar to the DNS. The advantage of LES is that, one can find accurate solution with a reduced
computational cost. There are several LES techniques for instance; low-pass filtering filter-
ing, SGS modelling, numerical dissipation and SGS modelling combined with numerical
dissipation. When the numerical dissipation is used it is called as Implicit Large Eddy
Simulation (ILES), but the challenge with this technique is that if the dissipation is not
calibrated properly then the model would not behave as expected. Hence, in the thesis
controlled ILES is performed where the information from the turbulence physics is used
to find the amount of excess dissipation that needs to be introduced with the discretisa-
tion scheme for ILES. The thesis mainly includes ILES of channel flows with different wall
boundary conditions. A detailed note on different LES techniques is given in Section 1.3.

As mentioned earlier, the primary objective of this thesis is to study the interaction
between three entities: turbulence, acoustic liner and sound propagation. These subjects
could be investigated standalone by themselves, but here they are considered to be inter-
acting with each other. This complicates the situation, thus first and foremost an attempt
is made to look into these entities separately, because it will give better insight into the
flow physics. First of all, large-scale motions of the wall-bounded turbulent flows were
investigated. The large-scale motions have gained huge interest in the past decade due
to the advancements in experimental and computational facilities. These structures were
identified long ago, but they were considered inactive. The recent research with the in-
compressible flow found that these structures are energy containing eddies and plays
a significant part in the high Reynolds number wall-bounded turbulent flows. A brief
review on wall-turbulence is given in Section 1.2. The effect of compressibility was not
explored in this direction, therefore the influence of large-scale motions in high Reynolds
number supersonic channel flows up to Mach 3 is investigated in this thesis.

It is well-known that the liner modifies the flow and turbulence in its vicinity compared
to a rigid wall. An effect of this is the drag increase, especially for small liner porosity.
Another effect is the flow instability in the vicinity of a low resistance liner. A brief
overview on acoustic liners is given in Section 1.1. In the numerical simulations acoustic
liners are generally modelled with the Impedance Boundary Condition (IBC) without
cavity meshing. In the past several researchers have worked in this direction. A difficulty
is then to impose a well-posed IBC, especially in the time domain. These simulations
neglect both the effect of grazing flow on the impedance and the effect of the impedance
on the flow. Another technique is to use the IBC with a given impedance, which means
the effect of the flow on the impedance is not part of the computation. In the current
case, non-linear NSE are solved with the latter technique for the IBC. The objective is to
study the behaviour of turbulent flow in the vicinity of non-rigid wall, to see how the
introduction of such boundary condition modifies the flow.

Flow-acoustic interaction in a duct is an extensively researched topic in the past with
the help of experiments. The major limitation with the experiments was the intrusive
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measurement techniques, therefore measurements were done only at the duct walls. Cur-
rently, with the numerical simulation one has access to all the points in space. This gives
an opportunity to accurately examine the interaction. In this thesis, plane and first-order
transverse waves were studied.

Without the mean flow the impedance of the liner can be easily educed, whereas with
the mean flow it is very difficult. Similarly, in the past with the help of experiments it
was found that the acoustic liner creates self-noise. Therefore, the final objective of the
thesis will be to understand the interaction between the flow, acoustic liner and sound
propagation.

1.5 organisation of thesis

The numerical method for simulating channel flow is presented in Chapter 2. The com-
pressible NSE are written in the characteristic form presented of Sesterhenn (2000)[255].
In the first part of the thesis (Chapter 2 – 6), stream-wise periodic channel flow will be
studied (the flow configuration is given in Section 2.2). A brief review of the compact
Finite Difference Scheme (FDS) was performed and the time-integration scheme was pre-
sented. Since this is the first parallel version of compressible NSE solver “Compact3D”,
the parallel implementation is presented. Finally, the numerical schemes and boundary
conditions are validated by performing a DNS of supersonic temporal channel flow.

In Chapter 3, first of all a parametric study of the “controlled ILES” technique used in
this thesis was performed. Since this technique was calibrated with physical arguments
of isotropic turbulence, it was very important to check the technique before using it for
simulating channel flows. Secondly, the grid requirement analysis for wall-resolved ILES

was studied on a moderately high Reynolds number channel flow. Various degree of grid
coarsening was tested to access the accuracy of the simulation technique.

At higher Mach number the compressibility effects will be manifested through the
mean property variations of density and temperature across the channel, moreover due
to the isothermal walls, heat transfer through the walls increase at higher Mach number.
Therefore, a review of the compressible scaling techniques was performed in Chapter 4.
Another interest in the compressible scaling techniques was to use it in the development
of an algorithm for detecting large-scale structures of wall-bounded turbulent flow in
Chapter 5.

In Chapter 5, first of all a grid requirement analysis for accurately reproducing the flow
physics of large-scale motions was performed. ILES of high Reynolds number channel
flow at subsonic and supersonic Mach numbers were performed. A feature extraction
algorithm was developed to detect the large-scale motions. Conditional averaging was
computed based on the detected structures to analyse the inner-outer scales-interaction.

The boundary condition for acoustic liner is presented in Chapter 6. Boundary condi-
tion is validated and the grid requirements for the channel with acoustic liners was in-
vestigated. Finally a series of simulations was performed by changing the parameters of
the boundary condition, to access the flow-liner interaction. Phase-averaging procedure

13



was introduced and the effect of the surface-wave due to acoustic liner was quantified.
LSA was also performed to complement the findings of the simulation.

In Chapter 7 spatial simulation of channel flow was performed and the attenuation of
the sound wave was studied. The boundary conditions for the subsonic inflow and out-
flow were discussed, and the wave extraction procedure was presented. In Chapter 7 and
8 periodic boundary condition in the stream-wise direction is not considered (flow con-
figuration is presented in Section 7.4.1). The boundary conditions were validated, before
simulating turbulent channel flow. Realistic inlet turbulence data for the spatial simu-
lation was generated using a simultaneous precursor simulation. Plane and transverse
acoustic waves were propagated to study their attenuation in a turbulent channel flow.

Results for the ILES of acoustic propagation in a turbulent flow tube with acoustic liner
is presented in Chapter 8. Effect of acoustic liner on the turbulent flow modification
was discussed by analysing the flow statistics in Section 8.2. Wall-transpiration on the
impedance surface was analysed in Section 8.3, and an attempt was made to connect
it to instability found with the periodic box simulation in Chapter 6. Turbulence-liner-
acoustic interaction was investigated in Section 8.4. Finally, the effect of the instability on
the sound attenuation was analysed in Section 8.5.

The conclusions of this thesis are summarised and recommendations for future work
are presented in Chapter 9. The dissertation also includes several appendix where one
can find additional or supplementary information to follow the thesis. In Appendix A,
a brief history of the code Compact3D is presented, and the coefficients of compact
FDS (useful to follow Chapter 2). Grid stretching functions are presented in Appendix B.
Comparison of channel flow results from different DNS and LES techniques is discussed in
Appendix C. Compressible relations required to find an approximate bulk Reynolds num-
ber for a given friction Reynolds number and Mach number is presented in Appendix D.
Bulk Reynolds number and Mach number is required to prescribe the operating point
for the simulation. Linearised 2D NSE used for the stability analysis of channel flow with
acoustic liner is given in Appendix E. The new technique to compute the target solution
for the sponge zone for the spatial simulations is presented in Appendix F.
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2
E Q U AT I O N S A N D S I M U L AT I O N T E C H N I Q U E S

This chapter presents the equations and the simulation techniques which are used in
this thesis. The objective was to prepare the numerical code "Compact3D" for parallel
computation of channel flow with different wall boundary conditions (rigid and acous-
tic liner) for studying wall turbulence and sound propagation in a channel. Compact3D
was initially developed as a sequential code for simulating sound radiation from free
shear flows. This is the first version of Compact3D which is capable of parallel computa-
tion and used for simulating wall-bounded flows. See Appendix A.1 for a brief history
of Compact3D. Compressible NSE which were solved is given in Section 2.1. The chan-
nel flow configuration is presented in Section 2.2, and boundary conditions in Section
2.3. The numerical method, which includes the spatial derivatives and time-integration
schemes are introduced in Section 2.5. The parallel implementation is presented in Sec-
tion 2.6. Finally in Section 2.7 the equations and numerical methods are validated by
performing a DNS of a supersonic channel flow with rigid walls.

2.1 equations

The primary interest of this thesis is to study the sound propagation in a turbulent
channel flow with acoustic liner. Which involves studying the interaction between sound
wave, turbulence and acoustic liner. Moderately higher subsonic Mach numbers will be
used for investigating such problems and the necessity to also include the acoustic wave
demands the usage of compressible NSE. This equations are solved in the characteristic-
like form presented by Sesterhenn (2000)[255]. There are two advantages for the character-
istic formulation (equation 2.1 – 2.5). Firstly, it makes it possible to use upwind schemes[3]

in the characteristic directions, which allows introducing some dissipation to stabilize the
computation (this technique was used in previous versions of Compact3D, see Appendix
A.1). Secondly, the form is ready-to-use for the implementation of boundary conditions,
such as non-reflecting boundary conditions. Equations were written for a Cartesian mesh
in the normalised form (the coordinates were denoted either by (x,y, z) or (x1,x2,x3) in
the following):

∂u

∂t
= −(1

2
(X+ −X−)+ Yu +Zu)+ 1

Re
1

ρ
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∂p

∂t
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where X±, Y±, Z± are the rate of change of the characteristics acoustic wave amplitudes;
Xs, Ys, Zs are the rate of change of the entropy waves; and Yu, Zu, Xv, Zv, Xw, Yw are
the rate of change of the vorticity waves. These characteristics waves are given by the
following relations:

X± = (u± c) ( 1
ρc

∂p

∂x
± ∂u
∂x

) Y± = (v± c) ( 1
ρc

∂p

∂y
± ∂v
∂y

) Z± = (w± c) ( 1
ρc

∂p

∂z
± ∂w
∂z

)(2.6)

Yu = v∂u
∂y

Zu = w∂u
∂z

Xv = u∂v
∂x

Zv = w∂v
∂z

Xw = u∂w
∂x

Yw = v∂w
∂y

(2.7)

Xs = u∂s
∂x

Ys = v ∂s
∂y

Zs = w∂s
∂z

(2.8)

The velocity components along x, y, and z directions were denoted by u, v, w (or u1,
u2, u3). p is the pressure, ρ is the density, s is the entropy, F is the dynamic forcing
term to ensure constant mass flux (when periodic boundary conditions were used in the
stream-wise direction) and c the sound speed given by:

c2 = γp
ρ

(2.9)

The viscous stress tensor is given by:

τij = µ(∂ui
∂xj

+ ∂uj
∂xi

)+ (µb − 2
3
µ)(∂uk

∂xk
)δij (2.10)

and the viscous dissipation is:

Φ = τij (∂ui
∂xj

) (2.11)

In addition the state equation reads:

p = (γ− 1)
γ

ρT (2.12)

and the thermodynamic relation is given by:

ρ = p1/γe−s (2.13)

where γ = 1.4 is the ratio of specific heats. The dependence of viscosity on temperature
is given by the power law:

µ = T0.7 (2.14)

These equations were normalized using the following reference scales for a channel
flow. In the following the tilde (̃ ) indicates a dimensional quantity: the viscosity µ̃w
and thermal conductivity K̃t,w at the walls of the channel (with isothermal boundary
conditions imposed), the speed of sound c̃w at wall temperature, the half-height of the
channel H̃ and the adiabatic specific heat c̃p. The bulk density ρ̃b, Prandtl number Pr
and Reynolds number Re to be defined in the following section.
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2.2 flow configuration

The compressible NSE introduced in the previous section are solved numerically to simu-
late channel flows, which is one of the geometrically simple flow configuration to study
wall-bounded flow. The length, height and breadth of the channel is denoted with L̃x,
L̃y and L̃z in the dimensional form. The isothermal walls of the channel were located at
y = −H̃ and +H̃, and the channel always has the height L̃y = 2H̃. The walls of the channel
can be rigid or non-rigid. An example of the flow configuration can be found in figure
2.1. Span-wise periodicity was considered for all the channel flow simulations in this the-
sis. Presently, the channel flow is considered to be periodic in the stream-wise direction
with constant mass flow rate. This is ensured by the dynamic forcing term F in equation
2.1 which preserves the stream-wise homogeneity. Unlike pressure-gradient, body-force
is not uniform along the wall-normal direction. With such condition in the stream-wise
direction, one will simulate a temporal channel flow, where basically the frame of refer-
ence moves along with the flow or one simulate the temporal evolution of turbulence in
a channel flow. Currently, the top and bottom walls are considered to be rigid (no-slip:

ỹ

x̃

z̃

L̃z

L̃x

L̃y

ỹ = +H̃
ỹ = −H̃Imposed mass flow rate

Top and bottom isothermal walls

Figure 2.1: Flow configuration for the temporal (stream-wise periodic) channel flow simulation.

u = v = w = 0) and isothermal (Tw = constant). The characteristic isothermal rigid wall
boundary condition will be presented in the following section. The initial conditions for
temporal channel flow simulations are: (a) Parabolic mean flow with random noise and
stream-wise rolls proposed by Waleffe (1997)[287], (b) constant pressure (p = 1/γ) and (c)
zero entropy (s = 0).

It is important to characterise the flow physics with non-dimensional numbers, because
they have a deeper physical significance and they are generally a ratio of two quantities.
Re and Pr are the two non-dimensional numbers used in the NSE in Section 2.1. The
thermal conductivity was related to the viscosity through the Prandtl number:

Pr = µ̃wc̃p
K̃t,w

(2.15)
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and Pr = 0.7. The Reynolds number resulting from the aforementioned normalization
was:

Re = H̃ρ̃bc̃w
µ̃w

(2.16)

The bulk density used for the normalization was defined by:

ρ̃b = 1

2H̃
∫ H̃

−H̃ ρ̃dỹ (2.17)

where ( ) is the average over time and stream- and span-wise directions. The bulk veloc-
ity is:

ũb = 1

2H̃ ∫ H̃−H̃ (ρ̃ ũ)dỹ
ρ̃b

(2.18)

In a channel flow with stream-wise periodicity, ρ̃b is constant since no mass escapes
the channel, and in normalised form ρb = 1. The velocity ub was also forced to keep
a constant value, which was ensured[52] by dynamically changing the uniform force F
appearing in equation 2.1. Note that due to normalisation, ub =M where:

M = ũb
c̃w

(2.19)

is the Mach number based on the bulk velocity and the sound speed at the wall. This is
another non-dimensional number which can be used to characterise the flow. The bulk
Reynolds number is defined by:

Reb = ρ̃bH̃ũb
µ̃w

(2.20)

It is commonly used to specify the operating point of a channel flow. Hence, in the
following Reb and M will be prescribed, from which the Reynolds appearing in the
equations can be derived using:

Re = RebM (2.21)

The following quantities are computed from the results of the simulation. Generally
for wall-bounded flows, friction velocity is used as the viscous velocity scale which is
defined by:

ũτ =
¿ÁÁÀ τ̃w

ρ̃w
(2.22)

where the shear-stress is:

τ̃w = µ̃w ∂ũ

∂ỹ
∣
w

(2.23)

and the viscous length-scale:

l̃ν = µ̃w

ρ̃wũτ
(2.24)
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Friction Reynolds number is another important non-dimensional number generally used
to characterize the wall-bounded turbulent flows, and it is defined as:

Reτ = ρ̃wH̃ũτ
µ̃w

(2.25)

non-dimensional heat-flux through the walls:

Bq = − K̃t,w

ρ̃wc̃pũτT̃w

∂T̃

∂ỹ

RRRRRRRRRRRRw (2.26)

and friction Mach number:

Mτ = ũτ
c̃w

(2.27)

In Section 5.3.1, results from the validation using DNS of temporal supersonic channel
flow with isothermal walls will be presented. In Chapter 3, 4 and 5 results for the tempo-
ral channel will be presented to address different aspects of compressible channel flows
with rigid walls. In Chapter 6 results for the channel flows with acoustic liner (non-rigid
wall) will be discussed. The lined non-rigid wall will be modelled with an impedance
wall boundary condition in Section 6.1. Later in Chapter 7, the periodicity in the stream-
wise direction will be discarded to perform the spatial evolution of turbulence in the
channel. The flow configuration and the necessary inlet/outlet boundary conditions for
such case will be addressed in Section 7.1.

2.3 boundary conditions

In the first part of the thesis, channel flow which is periodic in stream- and span-wise di-
rection will be simulated with the Compact3D. Since characteristics type formulation was
chosen, the boundary condition should also have the same form. Before, one begin it is al-
ways good to have a brief introduction about different characteristic waves. For simplicity,
lets consider 1D problem, X+,v,w,s are the characteristics which travels downstream. X+
travels with velocity (u + c), whereas others characteristics waves travel downstream at
velocity u. Characteristics X− travels at the velocity (u − c). For a subsonic(supersonic)
Mach number, X− travels upstream(downstream). Characteristics waves entering and
leaving the computational domain for a subsonic flow is shown in figure 2.2. Whereas
for a supersonic Mach number all characteristics travels downstream. In the first part of
the thesis (Chapter 1 – 5), only two boundary conditions are used: (a) periodic boundary
condition in the stream- ans span-wise direction and (b) isothermal no-slip condition at
the walls. These conditions are presented below.

2.3.1 Periodicity

With the periodic boundary condition, the information which leave the domain through
one face (or boundary surface) will enter the computational domain through the opposite

19



Figure 2.2: Characteristics waves entering and leaving the computational domain for a subsonic
flow.

face. This is one of the most simple and straightforward boundary conditions, because
one only has to fill the matrix with the right set of coefficients before matrix inversion.
This is not true while simulating a spatial channel flow. One will have to impose a well-
defined inflow and outflow section. This will be addressed for spatial channel flows later
in Section 7.1.

2.3.2 Isothermal rigid wall

For a rigid isothermal wall with u = v = w = 0 and Tw = constant, the boundary conditions
to apply have been given by Lechner et al. (2001)[164]. For the no-slip condition at the
bottom wall for example, Y− is the known characteristic flux coming from the interior of
the domain, and the reflected characteristic flux Y+ should be calculated. The situation is
reversed at the top wall (see figure 2.3).

known information

Y− unknown
characteristics

Y+

Y−

Y+ unknown
characteristics

Figure 2.3: Illustration of wall boundary treatment.
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Lechner et al. (2001)[164] gave (adapted to the present notation/normalisation):

Y+ = Y− + 2 1
Re
1

ρ

∂τ2j

∂xj
(bottom wall) Y− = Y+ − 2 1

Re
1

ρ

∂τ2j

∂xj
(top wall) (2.28)

The isothermal condition needs to be enforced using the thermodynamic relationship:

∂T̃

∂̃t
= ∂T̃

∂p̃
∣
s̃

∂p̃

∂̃t
+ ∂T̃
∂s̃

∣
p̃

∂s̃

∂̃t
(2.29)

by substituting ∂T̃
∂p̃

∣
s̃
= (γ−1)

γ
T̃
p̃

and ∂T̃
∂s̃

∣
p̃
= T̃
c̃p

one finds:

∂T̃

∂̃t
= (γ− 1)

γ

T̃

p̃

∂p̃

∂̃t
+ T̃

c̃p

∂s̃

∂̃t
(2.30)

after normalisation and rearrangement one will obtain:

∂s

∂t
= 1

T

∂T

∂t
− (γ− 1)

γ

1

p

∂p

∂t
(2.31)

For isothermal condition at the wall ∂T
∂t

= 0 (Tw = constant), which leaves one with:

∂s

∂t
= −(γ− 1)

γ

1

p

∂p

∂t
(2.32)

The isothermal boundary condition was obtained by replacing the pressure and entropy
equations at the wall with:

∂p

∂t
= − p
2c

(Y+ + Y−) (2.33)

∂s

∂t
= (γ− 1)

γ

1

2c
(Y+ + Y−) (2.34)

Equation 2.34 was obtained by substituting equation 2.33 in to equation 2.32. Later in
Chapter 6, the aforementioned isothermal rigid wall boundary conditions will be mod-
ified for an isothermal non-rigid wall which will be modelled as an impedance wall
boundary condition.

2.4 computational grid

The numerical code is based on the structured Cartesian grid, with collocated arrange-
ment of all flow variables. Moreover, for a rectangular channel geometry, it is rather
straightforward to generate a computational grid. For the temporal channel flow simula-
tion, uniform grid spacing is chosen in the stream- and span-wise direction. Since, there
is turbulent boundary layer in the wall-normal direction, stretched grid is used. The
stretching ensures that close to the wall more points are used to discretise the inner-layer
of the boundary layer where strong gradients exist and fewer grid points away from the
wall. The stretching functions are integrated to Compact3D, and the code generates the
required computational grid. The stretching functions are introduced in Appendix B. The
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code uses the compact FDS (see Section 2.5.1 and 2.5.2) with the traditional tri-diagonal
matrix inversion algorithm to compute the derivatives. The selection of 2D pencil de-
composition of the computational domain (see Section 2.6) with the structured grid and
the FDS for the derivatives were found to be a very reasonable choice. The use of simpli-
fied mesh offers the opportunity to implement high-order numerical schemes, addition-
ally the domain decomposition method is suited for the the compact FDS. In Chapter 7,
stretched grid will be used in the stream-wise direction for the spatial channel flow sim-
ulation.

2.5 numerics

DNS and LES need accurate numerical method, to produce result, which represents the
physics. For the spatial derivatives, spectral schemes are preferred for performing such
simulations due to their accuracy, but spectral schemes are restrictive to simple domains
and boundary conditions. Lele (1992)[167] proposed compact FDS with spectral-like reso-
lution, which represent small scales with less error and, are accurate up to 10th order for
first- and second-derivative, with both periodic and non-periodic boundary conditions.

In this section, compact schemes will be introduced, and numerical schemes used in
“Compact3D” for the spatial first- and second-derivative will be presented. Compact3D
is a parallel compressible NSE solver with high-order compact schemes for simulating 3D
flows. The time integration scheme and the stability criteria for explicit computation will
be addressed in the later part of the section.

2.5.1 Spatial first-derivative

Compact FDS are spectral-like, but still not free from discrepancy. In table A.1 (see Ap-
pendix A.2) high-order compact FDS and their coefficients for spatial first-derivative are
presented. Modified wave-number for the schemes listed in table A.1 is computed us-
ing equation 2.35, and presented in figure 2.4. The modified wave-number for the first-
derivative is given as follows:

k ′∆x = a sin(k∆x)+b/2 sin(2k∆x)+ c/3 sin(3k∆x)
1+ 2α cos(k∆x)+ 2β cos(2k∆x) (2.35)

The modified wave-number concept helps to clearly distinguish, between the well-
resolved scales (for which the modified wave-number is close to exact wave-number) and
the erroneous scales. k is the wave-number, and ∆x is the grid size. α, β, a, b and c are the
coefficients of the FDS (see table A.1). Currently, uniform grid is only considered. Figure
2.4 compares the resolution properties of different schemes for the spatial first-derivative.
Modified wave-number for the first-derivative spectral scheme is linear (k ′∆x = k∆x).
From the figure it is clear, that with increasing order of accuracy, compact FDS moves
close to exact differentiation, thus behaving like a spectral scheme. Compact3D uses 6th

order centered compact FDS (6TriD in table A.1) for computing the first-derivative. 6th

order centered FDS is accurate up to k/kc = 0.5, where kc is the cut-off wave-number.
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Figure 2.4: Modified wave-numbers for spatial first-derivative. k ′max is the maximum value of the
modified wave-number for a particular scheme. k ′max will be used in Section 2.5.4
while discussing stability criteria.

The numerical schemes used in Compact3D for computing the spatial first-derivatives
are summarised in the table 2.1. The schemes are taken from Lele (1992)[167], and refer-
ence for the schemes are also cited in the table. In the periodic direction 6th order compact
scheme was utilised. 3rd order upwind scheme was used at the non-periodic boundary,
4th order centred compact scheme at next point to the boundary and 6th order centred
compact scheme at the interior nodes. Figure 2.5 shows the order of usage of different
boundary schemes for computing the spatial first-derivative.

scheme coefficients

Non-periodic

boundary

idx=1
f ′1 +αf ′2= 1
∆x

(af1 +bf2 + cf3)
3rd order upwind

Lele (1992)[167] Eq. (4.1.3)

α = 2; a = −5
2

;b = 2; c = 1
2

idx=2

βf ′i−2 +αf ′i−1 + f ′i +αf ′i+1 +βf ′i+2
b 1
4∆x

(fi+2 − fi−2)+a 1
2∆x

(fi+1 − fi−1)

4th order centered compact

Lele (1992)[167] Eq. (2.1.6)

α = 1
4

;β = 0; a = 3
2

;b = 0
Interior

nodes
6th order centered compact

Lele (1992)[167] Eq. (2.1.7)

α = 1
3

;β = 0; a = 14
9

;b = 1
9

Periodic boundary

Table 2.1: Spatial discretisation for first-derivative.
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Non-periodic
boundary

at idx = 1 1 2 3

at idx = 2 1 2 3

interior nodes 1 2 3 4 5

Figure 2.5: Spatial discretisation for first-derivative in non-periodic boundary. idx = 1 is at the
non-periodic boundary. Values from grid points in yellow are used to compute the
first-derivative at grid point in orange.

2.5.2 Spatial second-derivative

Similarly, for the spatial second-derivative first of all a general introduction is given about
the compact FDS, followed by the introduction of modified FDS which will over-dissipate
at higher wave-numbers (Section 2.5.2.1 and 2.5.2.2). All the schemes used for computing
the second-derivative was summarised in table 2.2.

The popular compact FDS and their coefficients for computing the spatial second-
derivative is listed in table A.2 in Appendix A.2. The modified wave-number of the
compact FDS for the spatial second-derivative is given by:

k
′′
∆x
2 = 2a[1− cos(k∆x)]+ b/2[1− cos(2k∆x)]+ 2c/9[1− cos(3k∆x)]+d/8[1− cos(4k∆x)]

1+ 2α cos(k∆x)+ 2β cos(2k∆x) (2.36)

Modified wave-number for different schemes presented in table A.2 is computed using
equation 2.36, and the curves for different schemes are presented in figure 2.6. Resolution

k∆x
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∆
x
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Figure 2.6: Modified wave-numbers for spatial second-derivative. k"2max is the maximum value of
the modified wave-number for a particular scheme. k"2max will be used in Section 2.5.4
while discussing stability criteria.

properties of different schemes for the spatial second-derivative can be compared from
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the figure. Actual wave-number for the second-derivative is a parabola (k ′′∆x2 = (k∆x)2).
Similarly like figure 2.4, it was clear that for increasing order of numerical schemes,
compact FDS behaves like a spectral scheme.

Error at small scales (higher wave-numbers), due to numerical scheme and aliasing,
can lead to spurious oscillations. Refined meshes or some other numerical technique is
used to control such grid-to-grid oscillations or wiggles. Mesh refinement will increase
the computational cost, thus the most popular way is to use non-conservative meth-
ods such as upwind schemes, filters, etc[3, 24, 41, 42, 112, 268, 269]. The previous version of
Compact3D was using upwind schemes, but these have now been replaced by centred
schemes (see Appendix A.1 for a brief history of Compact3D). Since the centred scheme
is non-dissipative, the extra dissipation needed to stabilise the computations or serve for
LES is introduced through the diffusive terms in equation 2.1 – 2.5 with the second-order
spatial derivative (rather than with the convective terms using the first-order derivative),
as will be explained in Section 2.5.2.1 and 2.5.2.2[58, 59, 161].

In this thesis, the modified FDS is used for computing the spatial second-derivative. It
helps introducing targeted excess numerical dissipation selectively at different scales.
It acts as an implicit filter for the LES and removes grid-to-grid oscillations for the
DNS[58, 59, 161]. These schemes are centred and no extra upwinding is required. Excess
dissipation is included in the diffusion terms through the modified FDS for computing
second-derivative. Thus molecular and spectral viscosity are included in a single opera-
tor.

2.5.2.1 Modified second-derivative for DNS

High-order schemes are very attractive for DNS due to their ability to provide accurate
results using reasonable degrees of freedom. From figure 2.4 and 2.6 one can notice that
the 6th order compact FDS provides an erroneous estimation of spatial-derivatives (under-
dissipative) at the cut-off (k∆x = π). Hence for DNS, modified second-derivative scheme
was used to control the wiggles, by introducing artificial dissipation only at the small-
scales (higher wave-numbers) and leaving large-scales (lower wave-numbers) unaffected.
Lamballais et al. (2011)[161] presented the 6th order modified second-derivative scheme
which mimics the hyper-viscosity kernel. The scheme writes as follows:

αf ′′i−1 + f ′′i +αf ′′i+1 = c
1

9∆x2
(fi+3 − 2fi + fi−3)+b 1

4∆x2
(fi+2 − 2fi + fi−2)

+ a
1

∆x2
(fi+1 − 2fi + fi−1) (2.37)

The scheme is of 3 − 7 stencil form, and the modified wave-number can be found using
equation 2.36 with coefficients,

α = 272− 45k ′′c∆x2
416− 90k ′′c∆x2 , a = 48− 135k ′′c∆x2

164− 360k ′′c∆x2
b = 524− 81k ′′c∆x2

208− 45k ′′c∆x2 , c = − 432+ 63k ′′c∆x2
1664− 360k ′′c∆x2 (2.38)

This scheme ensures targeted numerical dissipation near the mesh cut-off. At the cut-off
the modified wave-number is, k ′′c∆x2 = nπ2, and n can be any value which determines
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Figure 2.7: Modified wave-numbers of spatial second-derivative scheme used for DNS. 6th order
scheme mimicking hyper-viscosity kernel with different level of dissipation at cut-off
wave-number (1 ≤ n ≤ 10). Blue curve is for n = 1, red is for n = 10, and dotted line is
the exact differentiation.

the level of dissipation required at the cut-off. This scheme overestimates the value of
k ′′∆x2, in the narrow high wave number range (see figure 2.7). With large values of n, the
numerical dissipation will be more concentrated around higher wave-numbers and it will
also cause strong constraint on explicit time-integration. Stability issues of the modified
scheme will be addressed in Section 2.5.4. Lamballais et al. (2011)[161] demonstrated the
application of this modified scheme by simulating sound radiation from the mixing layer.

2.5.2.2 Modified second-derivative for ILES

LES generally introduces a low-pass filter to remove small (sub-grid) scales and computes
only for resolved scale. Hence with LES, one can reduce several degrees of freedom and
save computational resources. But results of LES are always questionable; aliasing, dis-
cretisation and modelling errors are encountered. For sub-grid scale models based on
the eddy-viscosity, non-linearity in the equations creates extra aliasing errors. This er-
rors can be controlled by choosing a mesh size smaller than the LES filter. Thus, it will
significantly increase the computational cost. But usually, such practices are never fol-
lowed. Here a modified spatial second-derivative FDS more suitable for the ILES will be
presented.

Modified 6th order scheme for second-derivative which mimics the Spectral Vanishing
Viscosity (SVV) kernel writes as follows:

αf ′′i−1 + f ′′i +αf ′′i+1 = d
1

16∆x2
(fi+4 − 2fi + fi−4)+ c 1

9∆x2
(fi+3 − 2fi + fi−3)

+ b
1

4∆x2
(fi+2 − 2fi + fi−2)+a 1

∆x2
(fi+1 − 2fi + fi−1) (2.39)
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This scheme is of 3 − 9 stencil form, for which the modified wave-number can be found
using equation 2.36 with coefficients:

α = 1

2
− 320k ′′m∆x2 − 1296
405k ′′c∆x2 − 640k ′′m∆x2 + 144

a = −4329k ′′c∆x2/8− 32k ′′m∆x2 − 140k ′′c∆x2k ′′m∆x2 + 286
405k ′′c∆x2 − 640k ′′m∆x2 + 144

b = 2115k ′′c∆x2 − 1792k ′′m∆x2 − 280k ′′c∆x2k ′′m∆x2 + 1328
405k ′′c∆x2 − 640k ′′m∆x2 + 144

c = −7695k ′′c∆x2/8+ 288k ′′m∆x2 − 180k ′′c∆x2k ′′m∆x2 − 2524
405k ′′c∆x2 − 640k ′′m∆x2 + 144

d = −198k ′′c∆x2 + 128k ′′m∆x2 − 40k ′′c∆x2k ′′m∆x2 − 736
405k ′′c∆x2 − 640k ′′m∆x2 + 144 (2.40)

One needs to specify the dissipation at the mesh cut-off and at an intermediate wave-
number, such that:

k ′′(kc) = (1+ ν0
ν

)k2c
k ′′(2kc/3) = (1+ c1ν0

ν
) 4
9
k2c (2.41)

where ν0/ν is the excess spectral viscosity at the cut-off with:

c1 = 1

Nfac
e−((π−2π/3)/(0.3π−2π/3))2 (2.42)

which is the parameter which defines the value of modified wave-number of second-
derivative at k = 2π/3 or the width of the kernel (see figure 2.9b for different types of
SVV kernel). Shape of the hyper-viscosity kernel in Section 2.5.2.1 was defined using a
single parameter: target dissipation at the cut-off[161], whereas shape of the SVV kernel
is defined using two parameters: (a) target dissipation which increases with mesh coars-
ening and (b) the dissipation at an intermediate wave-number[58]. Or in other words, for
the hyper-viscosity kernel in Section 2.5.2.1, one just need to impose the value of dis-
sipation through n, whereas for the SVV kernels one has to specify the level of excess
dissipation and the distribution of dissipation across different wave-numbers through
parameters ν0/ν and Nfac. Here ν is the spectral viscosity, ν0 is the spectral viscosity at
the cut-off and kc is the cut-off wave-number. η is the Kolmogorov scale and kη = 1/η
is the wave-number of the Kolmogorov scale[59]. πkη/kc gives the ratio of ∆x/η, or the
measure of grid coarsening based on the Kolmogorov scale, where kc∆x = π. Dairay et al.
(2017)[59] computed the value of ν0/ν such that, it ensures that the same kinetic energy
will be found at kc with the LES as at πkη for the DNS of isotropic turbulence. Predicted
value of ν0/ν as a function of πkη/kc is presented in figure 2.9a. Figure 2.8 shows an
example of the filtering technique with the modified scheme for LES. Marker “a” in the
figure shows the level of dissipation at the cut-off and marker “b” shows the dissipation
at the intermediate wave-number. By adjusting these markers, using the predicted value
of ν0/ν and Nfac the distribution of excess dissipation can be controlled. One can find
the SVV-like kernel with Nfac = 1 and c1 = 0.44. The width of this kernel can be modified
by changing the value of Nfac, for Nfac > 1 the kernel width will decrease and the intro-
duced excess numerical dissipation will be concentrated in a narrow high-wave number
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Figure 2.8: Shape of SVV kernel. Parameters “a” and “b” are used to control the distribution of
excess dissipation.

range. For Nfac = 2,8 one will find, c1 = 0.22, 0.055 for steep SVV and sharp SVV kernels.
In Chapter 3, results from the parametric study of different types of SVV kernels will be
presented. For πkη/kc = 4 different SVV kernels were shown in figure 2.9b. Sharper the
kernels, stronger is the time-constraint for explicit time integration. It will be addressed
in Section 2.5.4.
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Figure 2.9: (a) ν0/ν as a function of πkη/kc and (b) Modified wave-numbers of spatial second-
derivative kernels used for ILES with πkη/kc = 4. Symbol ◯ is the value of ν0/ν for
πkη/kc = 4.

This scheme overestimates dissipation over a wide range of small-scales (higher wave-
numbers), without adding extra dissipation at large-scales (lower wave-numbers). The
usage of SVV-like kernel is similar to ILES, where the error is the source of artificial
dissipation, but also like sub-grid scale modelling due to the similarity between spectral
viscosity. With ILES, the truncation error of the discretisation scheme was used to model
the effects of unresolved scales instead an explicit computation of the sub-grid tensor.

Lamballais et al. (2011)[161] performed ILES of incompressible turbulent channel flow
using 4th order SVV-like kernel (previous version of the modified second-derivative op-
erator). Dairay et al. (2014)[58] compared the present numerical scheme with the eddy-
viscosity models, and found better regularization with SVV-like kernel for simulating
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turbulent jet impinging on a heated wall. ILES can fail to represent the effects of sub-grid
scale, unless the numerical scheme and discretisation parameters are calibrated properly.
The main benefit of this method is, they do not create spurious noise and this method
can be calibrated for producing right dissipation at small scales. With this method ILES

dissipation is controlled explicitly[59].

FDS used in Compact3D and their coefficients for computing the spatial second-derivative
are summarised in table 2.2. In the periodic direction, modified FDS mentioned in Section
2.5.2.1 or 2.5.2.2 were used depending on the requirement. At the non-periodic boundary,
3rd order upwind scheme was used, with 4th order centered compact scheme at the next
point to the boundary. For the 3rd and 4th point from the boundary, 6th order compact
scheme were used and for all the interior nodes modified schemes were used depending
whether one wants to perform DNS or ILES. Figure 2.10 presents the order of usage of
boundary schemes for computing the spatial second-derivative.

scheme coefficients

Non-periodic

boundary

idx=1
f ′′1 +αf ′′2 =
1
∆x2

(af1 +bf2 + cf3 +df4)
3rd order upwind

Lele (1992)[167] Eq. (4.3.6)

α = 11; a = 156
126

;b = −27; c = 15;d = −1
idx=2

βf ′′i−2 +αf ′′i−1 + f ′′i +αf ′′i+1 +βf ′′i+2= d 1
16∆x2

(fi+4 − 2fi + fi−4)+c 1
9∆x2

(fi+3 − 2fi + fi−3)+b 1
4∆x2

(fi+2 − 2fi + fi−2)+a 1
∆x2

(fi+1 − 2fi + fi−1)

4th order centered compact

Lele (1992)[167] Eq. (2.2.6)

α = 1
10

;β = 0; a = 6
5

;b = 0; c = 0;d = 0

idx=3-4

6th order centered compact

Lele (1992)[167] Eq. (2.2.7)

α = 2
11

;β = 0;
a = 12

11
;b = 3

11
; c = 0;d = 0

Interior

nodes

6th order modified centered for DNS

Lamballais et al. (2011)[161] Eq. (3)

α = 272−45k ′′c∆x2
416−90k ′′c∆x2 ;β = 0;

a = 48−135k ′′c∆x2
1664−360k ′′c∆x2 ;b = 528−81k ′′c∆x2

208−45k ′′c∆x2 ;

c = −432+63k ′′c∆x2
1664−360k ′′c∆x2 ;d = 0

Periodic boundary

6th order modified centered for ILES

Dairay et al. (2014)[58] Eq. (16)

α = 1
2
− 320k ′′m∆x2−1296
405k ′′c∆x2−640k ′′m∆x2+144 ;β = 0;

a = −4329k ′′c∆x2/8−32k ′′m∆x2−140k ′′c∆x2k ′′m∆x2+286
405k ′′c∆x2−640k ′′m∆x2+144 ;

b = 2115k ′′c∆x2−1792k ′′m∆x2−280k ′′c∆x2k ′′m∆x2+1328
405k ′′c∆x2−640k ′′m∆x2+144 ;

c = −7695k ′′c∆x2/8+288k ′′m∆x2−180k ′′c∆x2k ′′m∆x2−2524
405k ′′c∆x2−640k ′′m∆x2+144 ;

d = −198k ′′c∆x2+128k ′′m∆x2−40k ′′c∆x2k ′′m∆x2−736
405k ′′c∆x2−640k ′′m∆x2+144

Table 2.2: Spatial discretisation for second-derivative.
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Non-periodic
boundary

at idx = 1 1 2 3 4

at idx = 2 1 2 3

at idx = 3 1 2 3 4 5

at idx = 4 2 3 4 5 6

interior nodes 1 2 3 4 5 6 7 8 9

Figure 2.10: Spatial discretisation for the second-derivative in non-periodic boundary. idx = 1 is
at the non-periodic boundary. Values from grid points in yellow are used to compute
the second-derivative at grid point in orange.

2.5.3 Time integration

Time-integration of the compressible NSE (equation 2.1 – 2.5) was performed using 4th

order 4-step Runge-Kutta Algorithm[129, 193]. Lets assume ∆t is the time step and qn = [u
v w s p]t is the solution vector at time tn = n∆t. The 4 steps of the Runge-Kutta algorithm
are:

1. Euler predictor:

q ′ ← F(qn; tn)
q̃ ← qn + ∆t

2
q ′ (2.43)

q̂ ← qn + ∆t
6

q ′
q ′, q̃ and q̂ are the intermediate solution vectors of the Runge-Kutta Algorithm.

2. Euler corrector:

q ′ ← F(q̃; tn + ∆t
2

)
q̃ ← qn + ∆t

2
q ′ (2.44)

q̂ ← q̂+ ∆t
3

q ′

3. Leapfrog predictor:

q ′ ← F(q̃; tn + ∆t
2

)
q̃ ← qn +∆tq ′ (2.45)

q̂ ← q̂+ ∆t
3

q ′
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4. Milne corrector:

q ′ ← F(q̃; tn +∆t)
qn+1 ← q̂+ ∆t

6
q ′ (2.46)

2.5.4 Stability Criteria

A FDS is stable if the error at one time step of the computation do not cause the error
to be magnified as the computation continues. A neutrally stable scheme is the one in
which the error remains constant as the computation is carried forward. If the error de-
cay and eventually vanishes, then the numerical scheme is said to be stable. Whereas,
if the errors grow with time, the scheme is said to be unstable. The stability of numer-
ical schemes can be investigated by performing von-Neumann stability analysis. For a
time-dependent problem, the stability guarantees that the numerical method produces a
bounded solution whenever the solution of the exact differential equation is bounded.

Courant–Friedrichs–Lewy (CFL) condition or/and Fourier number decides the global
time-step required for explicit time-integration, while ensuring the stability of the sim-
ulation. The principle behind the condition is that, e.g., if a wave is moving across a
discrete spatial grid and one wants to compute its amplitude at discrete time steps of
equal duration, then this duration must be less than the time for the wave to travel to
adjacent grid point. As a result, when the grid point separation is reduced, the upper
limit for the time-step is also reduced. For the 1D convection equation, CFL condition is:

(1+M)∆t
∆x

< σi

k ′max
(2.47)

where σi is the footprint limit of the time-integration method, and k ′max is the maximum
of the modified wave-number of the spatial first-derivative scheme. For the Runge-Kutta
scheme, σi = 2.83, and for the compact 6th order first-derivative scheme k ′max = 1.989
(maximum value of k ′∆x in figure 2.4 for compact FDS 6TriD). For the 1D case σi/k ′max =
1.42, whereas for the 3D case with all the convective fluxes an empirical value was found:

(1+M)∆t
∆x

< 2.6 (2.48)

Similarly, 1D diffusion equation is stable when,

∆t

Re∆x2
< σr

k ′′2max
(2.49)

where σr is the footprint of the time-integration method and k ′′2max is the maximum value
of the modified wave-number of the spatial second-derivative. For Runge-Kutta scheme
σr = 2.785 and for the compact 6th order second-derivative k ′′2max = 6.857 (maximum value
of k ′′∆x2 in figure 2.6 for compact FDS 6TriD). For 1D case σr/k ′′2max = 0.406, whereas
in practice for the 3D case with both thermal and viscous diffusion terms, an empirical
value was found to be:

∆t

Re∆x2
< 0.02 (2.50)
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When the modified scheme was used for computing the spatial second-derivative (equa-
tion 2.37 or 2.39), then one should use the maximum value of the modified wave-number
computed from equation 2.36. Since the objective of the modified second-derivative FDS

is to introduce excess numerical dissipation, the maximum value of the modified wave-
number of the modified schemes is always higher than the compact 6th order FDS. Which
means, by using the modified scheme one will have more stringent condition on the
global time-step.

0.5 1 1.5

x 10
4

0.2

0.4

0.6

0.8

1

Reb

M

Figure 2.11: Constraint on explicit time stepping due to Reb andM with y+min = 1. Orange shade
for limitation due to CFL condition and black shade for limitation due to Fourier
number.

For a channel flow, equation 2.48 and 2.50 are evaluated for different pairs of Reb andM. Result is shown in figure 2.11. For all Reb at low M, constraint on global time-step
is due to the CFL condition, whereas at higher M, time-step is limited by the Fourier
number. Usually while simulating wall-bounded flows, one uses finer mesh close to the
wall to capture the wall dynamics accurately. The level of refinement increases with the
Reynolds number. Recalling that, for smaller mesh size one will also have to reduce the
time-step in order to have a stable computation. For a given Re and M number, the
dependence of global time stepping is shown in figure 2.12. With finer mesh close to the
wall (smaller values of y+), Fourier condition decides the time step, whereas with larger
mesh resolution CFL condition decides the time step.
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Figure 2.12: Time constraint due to CFL and Fourier constraint for Reb = 6900 andM = 0.1 with
different mesh size at the wall. (a) ◻ is for Fourier constraint and (b) ○ is for CFL
constraint.

2.6 parallel implementation and scalability

Compact3D is a parallel compressible NSE solver, which is written in FORTRAN 95
and uses Message Passing Interface (MPI) for inter-communication between the compu-
tational processes. FDS uses information from the neighboring grid points (see figure 2.5
and 2.10) to compute the derivatives. With the conventional domain decomposition tech-
nique, one will have to communicate the information about few grid points in order to
compute the derivatives. Compact3D performs efficient domain decomposition using

Figure 2.13: 2D pencil domain decomposition with 2DECOMP library. (a) x-pencil; (b) y-pencil
and (c) z-pencil (from Laizet and Li (2011)[160]).

the 2DECOMP library which performs 2D pencil decomposition of the computational
domain as in Laizet and Li (2011)[160]. Figure 2.13 shows an example of domain decom-
position using 12 computational processes. The 2D grid for the domain decomposition is
of size 4× 3. The benefit of 2D pencil decomposition is that, one can compute the deriva-
tives without communicating between processes. For example, with the data stored in
x-pencil each process will have all the information required to compute the derivative
in x-direction. Similarly, with the data stored in y-pencil and z-pencil, one can compute
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the derivatives in y- and z-direction respectively. The library also has the feature to con-
vert the data from one pencil type to another. In figure 2.13 (a) each coloured block is a
x-pencil which is handled by each of the 12 processors. With the transpose function of
the library, one can convert these x-pencils into the y-pencils, the colour of the pencil can
be used as the reference to know what information is transferred to each processes. MPI

communication occurs only while performing such pencil conversion, which makes the
code very efficient for parallel processing.

The thesis has received computational grants from GENCI-TGCC on supercomputer
Curie (Grant 2016-2a7582, 400000 hrs) and from GENCI-CINES on supercomputer Occi-
gen (Grant A0022A07582, 8.5×106 hrs). Additionally, SPIN Mesosentre was also available
at disposal throughout the duration of the thesis. The numerical code has been tested
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Figure 2.14: Scalability curves for Compact3D on supercomputer Curie.

up to 3000 computational cores with 134 million grid points (see figure 2.14). The code
has 85% – 90% parallel efficiency for strong scaling, thanks to the highly scalable 2D de-
composition library "2DECOMP". Generally, the number of computational cores depends
on the simulation size, but for a majority of the simulations 1000 – 2000 computational
cores were used for the simulation.

2.7 validation – dns of temporal supersonic channel
flow

Channel flow is one of the geometrically simple flow configuration to study wall-bounded
flows. It is also considered as a benchmark simulation for validating the numerical code.
Based on the M number, the flow regime is divided in to subsonic (M < 0.8), transonic
(0.8 <M < 1.2), supersonic (1 <M < 5) and hypersonic (M > 5). The flow physics varies
as one moves from one regime to another. For lower M numbers the compressibility
effects are negligible, and they start showing up at higher M numbers. Generally for
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low supersonic M number, the major compressibility effects are due to the mean prop-
erty variation of density and temperature, and some connections can be drawn with the
incompressible flow. Whereas at hypersonic M numbers, the flow physics is very dif-
ferent. This thesis will be focusing on non-hypersonic M number channel flows, hence
Compact3D is validated against the supersonic turbulent channel flow simulation of
Coleman et al. (1995)[52]. Temporal simulation or stream-wise periodic channel flow sim-
ulation is performed with isothermal rigid wall boundary conditions (equation 2.33 and
2.34) which behaves as a cold wall (see figure 2.1 for the flow configuration). Simulations
are performed for test-case A (at M = 1.5) and B (at M = 3) of Coleman et al. (1995)[52]

to validate Compact3D. Additional simulations for the same flow configuration with
different techniques is presented in Appendix C.

DNS of temporal channel flow at M = 1.5; Reb = 3000 and M = 3; Reb = 4880 was
performed using the modified second-derivative FDS mentioned in Section 2.5.2.1 with
n = 6. Simulation parameters are tabulated in Table 2.3. Coleman et al. (1995)[52] used

Case Reb M Lx × Ly × Lz Nx ×Ny ×Nz ∆y+min ∆y+max ∆x+ ∆z+
A

3000 1.5 4πH× 2H× 4π
3
H

170× 150× 100 0.99 8.88 16 9

Ref[52] (Case A spectral) 144× 119× 80 0.1 5.88 19 12

B
4880 3.0 4πH× 2H× 4π

3
H

220× 181× 120 0.99 25.07 26 16

Ref[52] (Case B spectral) 144× 119× 80 0.2 11.95 39 24

Table 2.3: Parameters of validation test-case for DNS of supersonic channel flows. Values taken
from Coleman et al. (1995)[52].

quasi-spectral code for simulating supersonic channel flows. Difference between spectral
and compact FDS was shown in figure 2.7. Hence some discrepancy is expected when the
results of Compact3D are compared to the results of Coleman et al. (1995)[52]. Statistics
were computed over 10 – 15 flow through time after the transition to steady state. Table
2.4 present the results for the mean flow variables, and there is a very good agreement
between the present simulation and the reference data.

M Reb Case Reτ uτ −Bq ρw ρc Tc

1.5 3000
A 222.93 0.0542 0.050 1.369 0.99 1.373

Ref[52] 222 0.0546 0.049 1.355 0.980 1.378

3 4880
B 456.04 0.0387 0.134 2.41 0.949 2.525

Ref[52] 451 0.0386 0.137 2.388 0.952 2.490

Table 2.4: Validation results. Values taken from Coleman et al. (1995)[52].

Mean velocity profile scaled using the friction velocity uτ is presented in figure 2.15.
Superscript ’+’ is used for quantities scaled with viscous velocity scale uτ and length
scale lν, such that:

u+ = ũ

ũτ
; y+ = ỹ

l̃ν
(2.51)
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Figure 2.15: Comparison of mean velocity profile for (a)M = 1.5 and (b)M = 3. Reference curves
taken from Coleman et al. (1995)[52]. Grey curves are for u+ = y+ and u+ = 1/κ ln y+ +
C.

Viscous sub-layer close to wall is very well captured (u+ = y+). Profile at the outer-layer
log-region also collapses very well on the reference curve, but they have a higher log-law
intercept value. Log-law for the incompressible flow can be written as u+ = 1/κ ln y+ +C,
where von Kármán constant κ = 0.41 and log-law intercept C = 5.2. For supersonic flows
with isothermal walls C increases with the M[282]. The compressibility effects will be
addressed later in Chapter 4.

(a)

y+

√ u
′2 i

+

◻
√
u ′2

◊
√
v ′2○ √
w ′2

Ref

100 101 102 103
0

1

2

3

4

5

(b)

y+

√ u
′2 i

+

100 101 102 103
0

1

2

3

4

5

Figure 2.16: Comparison of rms velocity profiles for (a)M = 1.5 and (b)M = 3. Reference curves
taken from Coleman et al. (1995)[52].

Root-mean-square velocities for both Mach numbers are plotted in figure 2.16. Rms of
the velocity is computed from the fluctuation. If "u" is the instantaneous velocity, then
the fluctuation is:

u ′ = u−u (2.52)
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Here ( ) is the mean over stream-wise and span-wise directions and time. Except a slight

over-prediction of
√
u ′2 peak at M = 3, all other curves collapse very well on the refer-

ence curves of Coleman et al. (1995)[52]. For M = 3, √u ′2 is larger in comparison to the
result atM = 1.5. This necessarily does not mean there is enhanced turbulence at higherM. uτ which is used for normalizing the result was defined using τw and ρw, and these
quantities at the wall changes with theM. With right scaling technique one can account
for this mean property variation at higherM. It will be discussed in detail in Chapter 4
dedicated to compressible scaling techniques.
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Figure 2.17: Comparison of mean profile of (top) temperature; (center) pressure and (bottom)
density for (a) M = 1.5 and (b) M = 3. Check figure 2.15 for legends. Reference
curves taken from Coleman et al. (1995)[52].

Profiles of mean pressure, temperature and density are plotted in figure 2.17. Good
agreement is found with respect to the results of Coleman et al. (1995)[52]. Channel
with isothermal walls behave differently compared to the ones with adiabatic walls, and
this can have direct impact on the flow physics. Isothermal wall promote heat transfer
through them in order to maintain constant wall temperature. From the figure it is clear
that the walls are colder than the bulk of the flow because excess heat generated due to
dissipation is transferred through the walls, whereas ρ behaves opposite to T . Maximum
gradients are found in the buffer layer. Mean flow is mostly isobaric; T reaches its maxi-
mum, and ρ its minimum in the core of the flow. When Mach number increases the rate
of heat transferred through walls and the near-wall density and temperature gradients
also become larger.

Curves for
√
T ′2 at bothM collapse very well on the reference data. AtM = 1.5, √p ′2

is slightly under-predicted.
√
ρ ′2 is slightly over-predicted across the channel for bothM. The real reason for this discrepancy is unknown, Coleman et al. (1995)[52] mentioned

about the presence of weak unrealistic acoustic waves in their simulation. Considering
the over-dissipative nature of the compact FDS with respect to the spectral scheme, minor

differences for the higher-order moments should be expected. AtM = 3, √ρ ′2max ≈ 0.11ρ,
which means that the major compressibility effects is due to the mean properties and not
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Figure 2.18: Comparison of rms profile of (top) temperature; (center) pressure and (bottom) den-
sity for (a) M = 1.5 and (b) M = 3. Check figure 2.15 for legends. Reference curves
taken from Coleman et al. (1995)[52].

their fluctuations. Larger rms values for density and temperature is close to the wall,
Coleman et al. (1995)[52] show that this is the result of solenoidal passive-mixing across
the mean gradient.
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Figure 2.19: Comparison of stress profiles for (a) M = 1.5 and (b) M = 3. Reference curves taken
from Coleman et al. (1995)[52].

Stress profiles for bothM are presented in figure 2.19. Satisfactory agreement is found
with Coleman et al. (1995)[52]. Close to the wall, a small kink in the stress profiles could
be observed. Foysi et al. (2004)[80] reported that anisotropy of Reynolds stress is due to
near-wall pressure-strain. At M = 3, larger stress is found when scaled with friction
velocity uτ.
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Figure 2.20: Comparison of stream-wise and span-wise correlations for M = 1.5 at the center of
the channel. Reference curves taken from Coleman et al. (1995)[52].

The two-point correlation computed in the stream-wise and span-wise direction forM = 1.5 is presented in figure 2.20. For Ruu in the stream-wise direction, the small kink
around ∆x ≈ 2.5 is not captured, except for that all correlation curves collapse very well
on the reference data.

In this chapter, parallel compressible NSE solver Compact3D was validated against the
reference simulation of Coleman et al. (1995)[52]. The code solves the characteristics NSE

with 6th order FDS for the spatial derivatives. In order to account for the under-dissipation
of the traditional compact scheme, a modified scheme which introduces excess dissipa-
tion at the mesh cut-off was utilised. The modified scheme was used for computing
the spatial second-derivative and it was tested by performing the DNS of supersonic
channel flow. The explicit time integration was performed using the 4th order Runge-
Kutta scheme. The code performs 2D pencil decomposition of the computational domain,
which is very efficient and suitable for the FDS. In the following chapter the modified FDS

for the spatial second-derivative will be tested for performing ILES of channel flows.
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3
M O D I F I E D F I N I T E D I F F E R E N C E S C H E M E F O R I M P L I C I T
L A R G E E D D Y S I M U L AT I O N

In this chapter, the capability of the numerical solver to perform ILES of channel flow will
be assessed. In channel flow, one encounters anisotropic turbulence and thus it is very
important to assess the modified scheme given in Section 2.5.2.2. Therefore the objective
was to first perform a parametric study to analyse the modified FDS by performing ILES

using different computational grids, Reynolds and Mach numbers. This scheme has been
extensively tested and used for simulating such flows in the incompressible regime. The
modified scheme has been tested for incompressible flows and other flow configuration,
some examples can be found in Dairay et al. (2014)[58] and Dairay et al. (2017)[59], among
others and for sound radiation in Lamballais et al. (2011)[161]. This is the first time that
this model is tested for 3D compressible flow and channel configuration. Presently, the
model has been tested for channel flows withM ≤ 3 and Reτ ≤ 1000.

Secondly, the grid requirement for wall resolved ILES was investigated. Since no wall
model is used, it is very important to know the limit of grid coarsening for ILES because
the numerical dissipation is added through the modified spatial second-derivative FDS

and not by modelling the physics. As mentioned earlier, the level of dissipation is depen-
dent on the level of grid coarsening. By coarsening beyond a certain limit, one will not
be able to discretise some small-scale physics which are very important to the turbulence
phenomenon. Various degrees of mesh coarsening was performed starting from a fine
to a very coarse grid. Turbulent statistics up to 4th order moments were computed and
compared against the reference DNS to find the critical grid requirement for performing
trustworthy ILES at a reduced computational cost.

3.1 parametric study of modified spatial 2nd-derivative
finite difference scheme

Extensive parametric study of the modified spatial second-derivative FDS was mainly
performed at a moderate Reynolds number Reτ ≈ 400 for a subsonic channel flow atM = 0.5. Two mesh resolutions, and a variety of SVV kernels were chosen for the analysis.
The critical test-cases for channel flow simulations at Reτ ≈ 400 and M = 0.5 were then
tested for supersonic channel flows at M = 1.5 and 3. SVV kernels were also tested for
channel flows at higher Reynolds number of up to Reτ ≈ 1000.
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3.1.1 Channel flow at Reτ ≈ 400 andM = 0.5
ILES was performed with fine (πkη/kc = 2) and coarse (πkη/kc = 4) grids. πkη/kc is
the measure of grid coarsening based on Kolmogorov scale η, and the model has been
calibrated to produce right level of dissipation based on the level of grid coarsening
(see Section 2.5.2.2 for detailed explanation). Fine(coarse) grid used for ILES is two(four)
times coarser in stream- and span-wise direction, when compared to the grid used for
the reference simulation by Moser et al. (1999)[203]. Reference DNS at Reb = 6882 (for
which Reτ ≈ 400) was performed using a spectral code. Moser et al. (1999)[203] used
computational domain of size Lx × Ly × Lz = 2πH × 2H ×πH, which was discretised with
Nx ×Ny ×Nz = 256×193×192 grid points. Here, low Mach number simulation atM = 0.5
was performed with Reb = 6882 using both computational grids. Compressibility effects
at thisM are expected to be negligible, hence the results can be directly compared with
the incompressible DNS. For the present simulations larger computational domains were
used, Lx × Ly × Lz = 12H× 2H× 6H. More details about the computational grids used for
the parametric study can be found in table 3.1.

Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max

Ref[203] 2πH× 2H×πH 256× 193× 128 10 6.5 0.0295 6.5

Fine ILES 12H× 2H× 6H 240× 157× 240 19.75 9.875 1 9.7

Coarse ILES 12H× 2H× 6H 120× 101× 120 39.50 19.75 2 14

Table 3.1: Computational grids used for the parametric study of modified spatial second-
derivative FDS at Reτ ≈ 400 andM = 0.5. Reference values from Moser et al. (1999)[203].

From Section 2.5.2.2, it is clear that the degree of grid coarsening determines the level of
dissipation and shape of the kernel determines the range of scales over which dissipation
is applied. In the present study three different types of SVV kernels namely SVV-like,
steep SVV and sharp SVV were tested. As mentioned earlier in Chapter 2, ν0/ν is used
to denote the excess spectral viscosity at the cut-off and πkη/kc = ∆x/η is the measure of
grid coarsening based on Kolmogorov scale η. Predicted value of ν0/ν (based on isotropic
turbulence) for the corresponding πkη/kc for each grid is taken from the figure 2.9a,
where ν0 is the spectral viscosity at the cut-off spatial wave-number. Kernels with 50%
and 200% of the predicted value of νo/ν for each kernel type were also tested. The idea
was to vary the excess spectral viscosity (or numerical dissipation) while maintaining
the SVV kernel type and check its effect. Kernels chosen and their coefficients for each
computational grid is presented in table 3.2.

Mean flow variables and errors in their prediction are presented in table 3.3. With
the fine grid, Reτ and uτ were predicted very well. Error on these quantities with the
fine grid was less than 1%, when compared against the reference DNS. Results were
independent of different percentage of ν0/ν and kernel types. For the coarse grid, least
error was obtained with 50% of the ν0/ν, and/or also for decreasing kernel width. Best
results were obtained with sharp SVV, but with 50% of ν0/ν the simulation blew up due
to the lack of numerical dissipation. SVV-like and steep SVV kernels that acts on wider
wave-number range, dissipates more than required but this ensured that the simulation
was stable and the errors were also within the acceptable range.
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fine iles (πkη/kc = 2) coarse iles (πkη/kc = 4)
SVV-like steep SVV sharp SVV SVV-like steep SVV sharp SVV

100% ν0
ν

3.06 4.15 7.41 14.61 19.75 35.81

k ′′(kc)/π2 4.06 5.15 8.41 15.61 20.75 36.81

k ′′(2kc/3)/π2 1.04 0.85 0.62 3.30 2.37 1.31

50% ν0
ν

1.53 2.07 3.70 7.30 9.87 17.90

k ′′(kc)/π2 2.53 3.07 4.70 8.30 10.87 18.90

k ′′(2kc/3)/π2 0.74 0.64 0.53 1.87 1.41 0.88

200% ν0
ν

6.12 8.30 14.82 29.22 39.5 71.62

k ′′(kc)/π2 7.12 9.3 15.82 30.22 40.5 72.62

k ′′(2kc/3)/π2 1.64 1.25 0.80 6.15 4.30 2.19

Table 3.2: SVV kernels used for the parametric study of modified spatial second-derivative FDS
for ILES of channel flow at Reτ ≈ 400 andM = 0.5.

fine grid (πkη/kc = 2) coarse grid (πkη/kc = 4)
Ref[203] SVV-like steep SVV sharp SVV SVV-like steep SVV sharp SVV

Reτ 395
100% νo

ν
397.8 398.0 400.0 382.3 387.7 397.1

50% νo
ν

397.4 397.7 392.1 388.1 392.5 –

200% νo
ν

395.8 394.9 397.4 377.4 382.6 390.3

εReτ(%) 100% νo
ν

0.72 0.77 1.26 -3.21 -1.83 0.54

50% νo
ν

0.61 0.70 -0.73 -1.72 -0.61 –

200% νo
ν

0.21 -0.01 0.62 -4.45 -3.13 -1.17

uτ
ub

0.056
100%νo

ν
0.0556 0.0557 0.0559 0.0536 0.0543 0.0555

50%νo
ν

0.0558 0.0558 0.0558 0.0544 0.0551 –

200%νo
ν

0.0557 0.0557 0.0559 0.0530 0.0537 0.0548

ε uτ
ub

(%) 100%νo
ν

-0.58 -0.42 -0.17 -4.24 -2.94 -0.769

50%νo
ν

-0.25 -0.26 -0.34 -2.84 -1.54 –

200%νo
ν

-0.41 -0.41 -0.03 -5.23 -3.96 -2.07

Table 3.3: Mean flow variables and errors in their prediction with different SVV kernels for ILES
of channel flow at Reτ ≈ 400 atM = 0.5. Reference values from Moser et al. (1999)[203].

Mean and turbulent statistics obtained for fine grid (πkη/kc = 2) is presented in figure
3.1. Fine grid is twice coarser in the stream- and span-wise direction compared to the ref-
erence DNS of Moser et al. (1999)[203]. Results with the SVV-like kernel is only presented
in the figure. For the mean velocity profile, both the near-wall viscous sub-layer and
outer-layer log-region were captured very well. Rms velocity profiles collapse perfectly
on the reference curves. Peak values and their location were predicted accurately. From
the figure, it was evident that there was no discrepancy for the mean and rms velocity
profiles with, 50%, 100% and 200% of ν0/νwith SVV-like kernels. Different percentage of
ν0/ν defines the target dissipation at cut-off. In figure 3.1 (c) the comparison of spectra is
presented. The dashed vertical line is located at kz = km = 2kc/3, generally for different
types of SVV kernels, the distribution of excess dissipation is controlled by tuning the
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amount of dissipation at this wave-number. In this particular case, the excess dissipation
is varied by maintaining the SVV kernel type. Minor effects of varying ν0/ν can be seen
in the spectra mainly in the region km ≤ kz ≤ kc, for lower wave-numbers the spectra
collapsed very well on the reference curve of Moser et al. (1999)[203]. Similar observations
were made with steep SVV and sharp SVV kernels (not presented here). This implies,
for a fine grid which discretise almost all the scales of the flow, the distribution of ex-
cess dissipation will not affect the results. Hence for a well refined grid, modified spatial
second-derivative FDS, mainly remove grid-to-grid oscillations by performing quasi DNS.
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Figure 3.1: (a) Mean velocity profile, (b) rms velocity profiles and (c) stream-wise velocity spectra
computed in span-wise direction, dashed vertical line is at km = kz = 2kc/3. Results
are for test-cases with SVV-like kernel with fine grid (πkη/kc = 2) at Reτ ≈ 400 andM = 0.5. Reference data from Moser et al. (1999)[203].

In figure 3.2 mean and rms velocity profiles obtained with the coarse grid (πkη/kc = 4)
are presented. With all the kernels, viscous sub-layer of the mean velocity was predicted
very well. With SVV-like and steep SVV kernels, the log-region of the mean velocity pro-
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Figure 3.2: (a, c, e) Mean and (b, d, f) rms velocity profiles computed from ILES of channel flow
with coarse grid (πkη/kc = 4) using (a, b) SVV-like, (c, d) steep SVV and (e, f) sharp
SVV kernel at Reτ ≈ 400 andM = 0.5. Reference data from Moser et al. (1999)[203].

file did not collapse very well on the reference curve. In the same fashion, for the rms
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velocity profiles, the peak of
√
u ′2 was over-predicted which is a characteristic feature

of mesh coarsening, but the peak location was predicted accurately. Discrepancy in the
mean and rms velocity were mainly observed with the SVV-like and steep SVV kernels,
whereas with the sharp SVV kernel, there was better collapse of the results on the refer-
ence data. Sharp SVV kernel acts only on the high wave-numbers unlike SVV-like and
steep SVV kernels. Similarly, increasing discrepancy for increasing percentage of the pre-
dicted value of ν0/νwas also observed with the SVV-like and steep SVV kernels, because
it added more than required dissipation. Better collapse of the results were obtained for
50% of ν0/ν for SVV-like and steep SVV kernel. Satisfactory agreement with small dis-
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Figure 3.3: Stream-wise velocity spectra in span-wise direction computed from ILES of channel
flow with coarse grid (πkη/kc = 4) using (a) SVV-like, (b) steep SVV and (c) sharp SVV
kernel at Reτ ≈ 400 andM = 0.5. Dashed vertical line is at km = kz = 2kc/3. Reference
data from Moser et al. (1999)[203]. Simulation blew up with 50% ν0/ν for sharp SVV
kernel.

crepancy close to cut-off wave-number was observed for the spectra presented in figure
3.3. For sharp SVV with 200% of the predicted value of ν0/ν, slight over-dissipation was
observed, whereas with 50% of predicted value lack of dissipation was observed. Lack of
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dissipation resulted in grid-to-grid oscillations, which eventually led to simulation blow-
up. The effect of the SVV kernel type can also be noticed with the help of the dashed
vertical line at km = kz = 2kc/3. With the sharp SVV kernel the spectra stays close to
the reference data of Moser et al. (1999)[203] until the vicinity of the intermediate wave-
number (km), whereas with the SVV-like kernel, the spectra departs from the reference
data.

For the coarse grid, kernel sharper than the sharp SVV was also tested, for which most
of the dissipation was concentrated in a narrow high wave-number band (Nfac = 8 and
c1 = 0.0275). Due to the highly concentrated dissipation restricted to only high wave-
numbers, some instabilities due to collocated grid[21, 207]) or due to non-conservative
formulation of compressible NSE[75, 154, 197] exists in the simulation which eventually leads
to simulation blow-up. For InCompact3D[158–160], (which solves incompressible NSE and
uses same modified spatial second-derivative FDS as Compact3D), such problem is not
encountered due to the conservation of kinetic energy even if the target dissipation is
insufficient.

Generally similar trend in the results were found with different kernels and with dif-
ferent percentage of predicted value of ν0/ν with fine grid (πkη/kc = 2). Hence with
increased grid resolution, one performs DNS (similar like using hyper-viscosity kernel
introduced in Section 2.5.2.1), regardless the kind of modified second-derivative scheme
used for extra dissipation. On the other hand, with coarser grid, the results were sensi-
tive to the kernels. Better statistics were obtained with sharp kernels, for which all the
excess dissipation was targeted only at the higher wave-number range. With the lack
of dissipation, the simulation blew-up, plus sharper the kernel stronger the constraint
on the time-step for explicit computation (see Section 2.5.4). As a practical approach,
SVV-like and steep SVV were the desired choice for ILES. These kernels might introduce
slightly more than required dissipation, but it also ensured that (a) the computation was
stable; (b) the errors were within acceptable limits (see table 3.3), and (c) the time-step
for explicit time-stepping remains reasonable.

3.1.2 High Reτ channel flows atM = 0.5
In this section, the modified spatial second-derivative FDS was used for the ILES of high
Reτ channel flows. Simulation parameters and results for Reτ = 640 and 1000 are pre-
sented in table 3.4. Results for Reb = 12214 was compared against Abe et al. (2004)[1],
and Reb = 20000 was compared against Lee and Moser (2015)[166]. Incompressible NSE

were solved for both the reference test-cases. Present ILES were performed at M = 0.5,
for which the compressibility effects are expected to be negligible, hence allows for di-
rect comparison with the results from incompressible NSE solvers. Computational grid
chosen for the ILES was about 4 times coarser (πkη/kc = 4) than the reference DNS[1, 166].
32 times less grid points was used for the ILES at Reb = 12214, and 18 times less grid
points for Reb = 20000. For both Reynolds number steep SVV kernel with 100% of ν0/ν
was used. From Section 3.1.1 it was clear that SVV-like and steep SVV kernels were the
reasonable choice, because they produce results with errors within the acceptable limits.
Moreover in Section 2.5.4 it was shown that sharper kernels can have stringent constraint
on global time-step.
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Reb Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max Reτ uτ/ub
12214

Ref[1] 4πH× 2H× 2πH 1024× 256× 1024 8 4 0.15 8.02 640 0.0522

ILES 4πH× 2H× 4πH 200× 205× 400 40 20 2 14 650 0.0516

20000
Ref[166] 8πH× 2H× 3πH 2304× 512× 2048 10.9 4.6 0.019 6.2 1000 0.0500

ILES 8πH× 2H× 3πH 628× 235× 943 40 10 2 14 1000 0.0494

Table 3.4: Simulation parameters and results for the parametric study of modified spatial second-
derivative FDS for high Reτ channel flows. Reference values from Abe et al. (2004)[1]

for Reb = 12214 and from Lee and Moser (2015)[166] for Reb = 20000.
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Figure 3.4: (a, c) Mean and (b, d) rms velocity profiles computed from ILES of channel flow atM = 0.5 for (a, b) Reb = 12214 and (c, d) Reb = 20000. Reference data from Abe et al.
(2004)[1] for Reb = 12214 and from Lee and Moser (2015)[166] for Reb = 20000.

The error on the global mean flow variables were around 1%, which was within the ac-
ceptable limits. Mean and rms velocity profiles for both Reynolds number are presented
in figure 3.4. Satisfactory collapse of the curves was obtained for both Reynolds numbers.
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For the mean velocity profile, both the near-wall and outer-region of the boundary layer
were captured very well. For the rms velocity profiles, except for a slight overestimation

of the
√
u ′2 peak for Reτ = 1000, excellent collapse was found with the reference curves.

ILES high Reynolds number channel flow was performed using the modified FDS. Ex-
cellent agreement was found for the mean flow variables and first- and second-order
statistics. Errors were within 1%, compared to the reference DNS at both Reynolds num-
ber. The present approach gives the opportunity to perform high-order and accurate large
Reynolds number simulation with a huge reduction in the computational cost. More to
be discussed about high Reynolds number channel flows in Section 3.2 and Chapter 5.

3.1.3 Supersonic channel flows

The ability of the modified spatial second-derivative FDS to perform ILES of supersonic
channel flows is evaluated in the following section. SVV-like, steep SVV and sharp SVV
kernels with 100% of the predicted value of ν0/νwere used to introduce excess numerical
dissipation. Channel flow at Reb = 3000;M = 1.5 and Reb = 4880;M = 3 were simulated
and the results were compared against Coleman et al. (1995)[52]. Computational domain
of size Lx ×Ly ×Lz = 4πH× 2H× 4π

3
H was used for all the simulations. Only coarse mesh

is tested because from Section 3.1.1 it was clear that, DNS like results were obtained with
the refined grid . Details of the computational grids used for the analysis are presented
in table 3.5. In the present ILES, 6.6 times less grid points were used than the reference
DNS.

Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max

M = 1.5 71× 57× 51 40 20 2 14

Ref[52] 144× 119× 80 19 12 0.1 5.88

M = 3 71× 57× 51 80 40 4 28

Ref[52] 144× 119× 80 39 24 0.2 11.95

Table 3.5: Computational grids used for the parametric study of modified spatial second-
derivative FDS for supersonic channel flows. Reference values from Coleman et al.
(1995)[52].

Mean and rms velocities for the supersonic channel flow at Reb = 3000 at M = 1.5
are presented in figure 3.5. Similar trends in the results were observed as in figure 3.2.
Slight discrepancy was observed with the SVV-like kernel, whereas perfect collapse of
curves on the reference data was observed with the sharp SVV kernel. Compressibility
effects were visible in the plots, such as higher log-law intercept for the mean velocity
profile. Law-of-the-wall is not valid for supersonic wall-bounded flows unless they are
scaled properly to compensate the compressibility effects. The compressibility effects and
scaling techniques will be discussed in details in Chapter 4.

Mean and rms velocity statistics for the channel flow simulation at Reb = 4880 andM = 3 is presented in figure 3.6. Stronger compressibility effects were visible at M = 3,
with huge increase in the log-law intercept for the mean velocity profile in figure 3.6 (a)
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Figure 3.5: (a) Mean and (b) rms velocity profiles computed from ILES of channel flow atM = 1.5
and Reb = 3000 with 100% of ν0/ν. Reference data from Coleman et al. (1995)[52].
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Figure 3.6: (a) Mean and (b) rms velocity profiles computed from ILES of channel flow atM = 3
and Reb = 4880 with 100% of ν0/ν. Reference data from Coleman et al. (1995)[52].

and enhanced rms velocity in figure 3.6 (b). Mean flow variables and their errors for
both Mach numbers are presented in table 3.6. In the table, the friction Reynolds number
and the friction Mach number obtained with different SVV kernels are listed. Friction
Reynolds number is defined in equation 2.25, and the friction Mach number in equation
2.27. Results in the table shows the same trend as in table 3.3. Errors on the mean flow
variables decrease as the kernel becomes sharper.

Overall satisfactory agreement was observed with the modified spatial second-derivative
FDS for performing ILES. The ILES technique was tested for channel flows M ≤ 3 and
Reτ ≤ 1000. Hence, the possibility to perform high-order and accurate ILES with a huge
reduction in the computational cost using coarser grid for subsonic and supersonic chan-
nel flows using the modified spatial second-derivative FDS (introduced in Section 2.5.2.2)
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Ref[52] SVV-like steep SVV sharp SVV

M = 1.5
Reτ 222.00 212.35 212.81 217.26

Mτ 0.0820 0.0804 0.0802 0.0814

εReτ(%) -4.34 -4.13 -2.13

εMτ(%) -1.83 -2.01 -0.54

M = 3
Reτ 451.00 429.94 439.13 448.14

uτ 0.1160 0.1140 0.1155 0.1164

εReτ(%) -4.66 -2.63 -0.63

εMτ(%) -1.29 -0.25 -0.51

Table 3.6: Mean flow variables and their errors with different SVV kernels for ILES of channel
flow at Reb = 3000; M = 1.5 and Reb = 4880; M = 3. Reference values from Coleman
et al. (1995)[52].

was successfully demonstrated. In the following section, the modified scheme will be
used to find the grid requirements for ILES of channel flows.
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3.2 grid requirement for wall-resolved iles

Generally, the turbulent boundary layer of a wall-bounded flow can be subdivided into
two regions, namely near-wall and outer region. The typical features in the near-wall
region are the elongated streaks which are approximately 1000 viscous units long and
100 viscous units wide, and the stream-wise vortices which are about 200 viscous units
long and 50 viscous units wide. These two features are the necessary ingredients to the
self regeneration of turbulence mechanism close to the wall[105, 234]. In the outer region,
the typical feature is the large-scale structure of turbulence which scales in outer length-
scale (H). Mostly, these large-scale structures can be found only for sufficiently high
Reynolds number flow.

In the previous section, results from the parametric study of the modified spatial
second-derivative FDS were presented and discussed for Reτ ≤ 1000 and M ≤ 3. Since
no wall-models were used for the ILES, here the objective is to check the grid require-
ments for the wall-resolved ILES. Hence it is expected that if one fails to discretise any
part of the physics then the outcome of the simulation will be erroneous. Various de-
gree of coarsened mesh were tested for simulating a moderately high Reynolds number
channel flow. Turbulent statistics up to 4th order moment were evaluated to understand
the grid requirements for performing high-order and trustworthy ILES with reasonable
computational cost.

3.2.1 Simulation parameters

Channel flow simulation for Reτ ≈ 640 was performed at M = 0.5 for studying the
grid requirements for wall-resolved ILES. Simulation was performed in a computational
domain of size Lx × Ly × Lz = 4πH × 2H × 4πH with Reb = 12214. Simulation details
can be found in table 3.7. Six grids were chosen for the simulation, starting from fine
to very coarse grid. Results from the ILES were compared against the DNS of incom-
pressible channel flow by Abe et al. (2001)[2]. Grid resolution in the table are scaled
with the viscous length-scale of the reference DNS. For all the test-cases ∆y+min = 2 and
∆y+max = 14. Modified spatial second-derivative kernels were adjusted according to the
computational grid. Abe et al. (2001)[2] used computational domain, which has dimen-
sions Lx × Ly × Lz = 4πH × 2H × 2πH. Presently, computational domain which was twice
wider than the reference simulation of Abe et al. (2004)[1] was chosen, in order to cap-
ture more information about the large-scale features and the scales interaction between
the inner- and outer-regions of the turbulent boundary layer. Large-scale features and
scales-interaction will be discussed in detail in Chapter 5.

Test-cases in table 3.7 were named after the grid resolution, such as ∆x+ ×∆z+. For
example test-case 20x10 means ∆x+ = 20 and ∆z+ = 10 with respect to the reference Reτ.
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Category
Case Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max Reτ uτ/ub
Ref[2] 1024× 256× 1024 8 4 0.15 8.02 640 0.0522

fine grid

test-cases

20x10 399× 205× 801 20 10

2 14

650 0.0519

40x20 200× 205× 400 40 20 650 0.0516

50x20 161× 205× 400 50 20 659 0.0523

50x30 161× 205× 267 50 30 629 0.0501

coarse grid

test-cases

70x20 115× 205× 400 70 20 982 0.0765

100x100 81× 205× 81 100 100 454 0.0362

Table 3.7: Test-cases for analysing grid requirement for ILES of channel flows. Reference values
from Abe et al. (2004)[1].

3.2.2 Results

The mean flow variables are also presented in table table 3.7. Except for test-cases 70x20
and 100x100 mean flow variables were predicted with error less than 2%. For test-case
70x20(100x100) large over-(under-) prediction of the mean flow variables was observed.
Test-cases 70x20 and 100x100 were grouped as coarse grid test-cases, because they shared
many similar observations. The rest of the test-cases were grouped as fine grid test-cases.
The term ”fine grid” was chosen just to differentiate the results from the coarse grid test-
cases. In the following the mean, rms, skewness and kurtosis statistics and correlations
and spectra will be used to access the grid requirements for wall-resolved ILES.

3.2.2.1 Mean velocity

Mean velocity profiles computed from the ILES using six different computational grids
are presented in figure 3.7 (a). In the viscous sub-layer all the test-cases collapsed on
the reference data[2]. In the buffer-layer and the log-layer except for the coarse grid test-
cases, satisfactory collapse of the results on the reference data was found for the fine
grid test-cases. The fine grid test-cases reproduced the law-of-the-wall with the first point
from the wall being located at y+ = 2. Mean velocity profiles of test-case 70x20 and
100x100 departed from the law-of-the-wall, and had higher values for the log-law intercept.
Comparison of rms velocity profiles is presented in figure 3.7 (b, c, d). Similar trend as

the mean velocity profile in figure 3.7 (a) was found. Over-prediction of the
√
u ′2 peak in

the buffer-layer, which is a typical characteristic of the coarsened grid was found for the

coarse grid test-cases. For the
√
u ′2, emergence of a weak secondary peak around y+ ≈ 200

can be found. This peak is in the log-region of the turbulent boundary layer and the
contribution is coming from the outer-layer large-scale structure[125, 126, 179]. The large-
scale contributions and the scales-interaction between the inner- and outer-layer will be
discussed in detail in Chapter 5. For the fine grid test-cases, overall satisfactory agreement

was obtained for
√
u ′2,

√
v ′2 and

√
w ′2 with the reference data of Abe et al. (2004)[1].
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Figure 3.7: Comparison of (a) u+ , (b)
√
u+ ′2, (c)

√
v+ ′2 and (d)

√
w+ ′2 profiles obtained with

different computational grids. Reference data from Abe et al. (2004)[1].

3.2.2.2 Reynolds stress and rms of vorticity

Figure 3.8 presents the Reynolds stress plotted against wall-normal coordinates scaled
with H. Except for the coarse grid test-cases, the results collapsed on the reference curve
by Abe et al. (2004)[1]. Test-case 70x20 was slightly over-predicted, probably because
information related to the near-wall small-scale features were not captured entirely and
this disturbed the near-wall turbulence regeneration mechanism. This will be shown later
with the help of other turbulent quantities. Test-case 100x100 was too coarse to discretise
scales smaller than 100 viscous units in the stream- and span-wise direction. Recalling
that the stream-wise streaks are 1000 viscous units long and 100 viscous units wide; and
the stream-wise vortices are about 200 viscous units long and 50 viscous units wide.
Therefore these near-wall features were not well discretised with the test-case 100x100.
This resulted in the under-prediction of Reynolds stress.
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Figure 3.8: Comparison of Reynolds stress with wall-normal coordinate scaled with H obtained
with different computational grids. Reference data from Abe et al. (2004)[1].
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Figure 3.9 present the rms of vorticity, for the
√
ω ′2
x all the fine grid test-cases were

slightly under-predicted in the buffer-layer, but they all collapse on each other across the

whole boundary layer. Test-cases 70x20 and 100x100 were more erroneous. For
√
ω ′2
y ,

increasing under-prediction with mesh coarsening was observed, which was because
relevant information close to the wall were not captured by the simulations. Which
also means, by coarsening the grid, somehow the near-wall turbulence regeneration
mechanism[136, 234] and also the inner-outer layer interaction[125, 186, 299] was disturbed (by

not creating enough vortices).
√
ω ′2
z and

√
ω ′2

tot collapsed on the reference curve for all
the test-cases except for test-case 100x100. From figure 3.7, 3.8 and table 3.7 it was clear
that test-case 70x20 could not discretise all the flow physics, especially small-scale fea-

tures close to the wall. Nevertheless,
√
ω ′2
z and

√
ω ′2

tot computed from test-case 70x20
collapsed on the reference data.

3.2.2.3 Velocity correlation and spectra

Velocity correlation at y+ = 10 in the stream- and span-wise directions are presented
in figure 3.10. For the u component in the stream-wise direction, enhanced correlation
was observed for the coarse grid test-cases. For the fine grid test-cases, stream-wise streaks
has length λ+x ≈ 2000, and in the span-wise direction the streak spacing was λ+z ≈ 120.
These observations are in line with the literature. For the test-case 70x20 streak spacing
was λ+z ≈ 190. Even though the streaks were well discretised in stream- and span-wise
direction for test-case 70x20, erroneous results were obtained, because as mentioned ear-
lier some relevant near-wall information were not reproduced correctly. Test-case 100x100
was not capable of discretising a near-wall streak. These results are in line with the figure

3.9, where under-prediction of
√
ω ′2 was observed for the coarse grid test-cases. From the

stream-wise correlation of v component, except for coarse grid test-cases, excellent agree-
ment was found for the fine grid test-cases, and they collapsed very well on the reference
data. From the span-wise correlation of v component the diameter of the stream-wise
vortices was found to be λ+z = 60− 80. Whereas for test-case 50x30 wider correlation were
observed, with λ+z = 120. Once again test-case 70x20 was resolved enough in the span-
wise direction to discretise a stream-wise vortex, but it fails to provide better results. In
the span-wise correlation of w component minimum was found at λ+z ≈ 60 except for the
coarse grid test-cases. For test-cases 70x20 and 100x100, the minimum were observed for
higher values of λ+z . The minimum denotes the presence of counter-rotating vortex pair.
This can be verified by plotting the correlation of ω, which is shown in figure 3.12.
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Figure 3.10: Comparison of correlation of (a, b) u-component, (c, d) v-component, (e, f) w-
component in the (a, c, e) stream-wise and (b, d, f) span-wise direction at y+ = 10
obtained with different computational grids. Reference data from Abe et al. (2004)[1].
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Figure 3.11: Comparison of (a, b) energy spectra and (c, d) pre-multiplied energy spectra of
stream-wise velocity at y = 0.5H in the (a, c) stream-wise and (b, d) span-wise di-
rection obtained with different computational grids. Reference data from Abe et al.
(2004)[1].

In figure 3.11 the comparison of spectra for the stream-wise velocity at y = 0.5H is
presented. Satisfactory collapse of result was observed for all the cases when the en-
ergy spectra was plotted against wave-numbers in the stream- and span-wise directions
(figure 3.11 (a and b)). For the pre-multiplied spectra in stream-wise direction results col-
lapsed excellently for the test-case 20x10. Pre-multiplied spectra allows to identify the en-
ergy content on a specific wave number range. Slight over-prediction for the intermediate
scales was observed for the test-cases 40x20, 50x20 and 50x30. The pre-multiplied spectra
for the test-cases 70x20 and 100x100 were erroneous. Peak value of the pre-multiplied en-
ergy spectra in stream-wise direction was at λx = 3− 4H. The wave-length corresponding
to the maxima of the pre-multiplied spectra is the average size of the structure which car-
ries most of the energy. The location of maxima of the pre-multiplied spectra scales with
the outer length-scale H. The peak at the higher values of λ is the proof for the presence
of large-scale structures away from the wall. All test-cases except the coarse grid test-cases,
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predicted the peak value of pre-multiplied stream-wise spectra and the corresponding
scale accurately. For the pre-multiplied spectra in span-wise direction excellent agree-
ment was observed for the test-cases 20x10 and 40x20. Slight over-(under-) prediction
was found for the test-case 50x20 (50x30). Location of the peak value was at λz = 1.3H,
and the test-cases except 70x20 predicted the location accurately, with discrepancy in the
peak value. For the reference simulation, Abe et al. (2004)[1] also found the peak at same
value of λz. Erroneous span-wise pre-multiplied spectra was found for test-cases 70x20
and 100x100.

3.2.2.4 Vorticity correlation

In figure 3.12 correlation of ωx, ωy and ωz at y+ ≈ 10 in the stream- and span-wise direc-
tions are presented. From all the previous figures it was clear that test-cases 20x10 and
40x20 were very accurate (had excellent comparison with the reference DNS of [1]) and
since no reference data was available for the following quantities test-case 20x10 was con-
sidered as the reference. In the stream-wise direction ωx correlation goes to zero around
∆x+ ≈ 100, except for the coarse grid test-cases, which is the typical size of the stream-wise
vortices. For the test-case 70x20, stream-wise correlation of ωx goes to zero by around
∆x+ ≈ 1000 (not shown here), which means the stream-wise vortices were not discretised.
Instead test-case 70x20 generated some ambiguous flow physics (near-wall turbulence
regeneration) which was not representative of the real wall-turbulence. Similarly, the
correlation of ωx in the span-wise direction was increasingly erroneous with mesh coars-
ening. For the correlation ofωy, increasing discrepancy with mesh coarsening was found
in the span-wise direction, whereas in the stream-wise direction correlation goes to zero
by around ∆x+ ≈ 700. Span-wise vortices has the size λ+x ≈ 400 and λ+z ≈ 80− 120 (distance
between zero-crossing on either side of the ordinate). In the stream-wise direction ωz
was correlated up to ∆x+ ≈ 2000 for the coarse grid test-cases.
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Figure 3.12: Comparison of (a, b) ωx, (c, d) ωy, (e, f) ωz correlation in the (a, c, e) stream-wise
and (b, d, f) in span-wise direction at y+ = 10 obtained from different computational
grids. Test-case 20x10 is the reference.
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3.2.2.5 Velocity skewness and kurtosis

In figure 3.13 the skewness and kurtosis for velocity components are presented. Skewness
is the measure of lack of symmetry in a probability distribution, whereas kurtosis is the
measure of tailedness of a probability distribution or chances for extreme events. For any
quantity ′′a ′′ skewness and kurtosis can be defined as:

Sa = a ′3√
a ′23

(3.1)

Fa = a ′4√
a ′24

(3.2)

These quantities help to understand the shape of the probability distribution. For a nor-
mal distribution skewness S = 0 and kurtosis F = 3. Skewness is the third moment so it
can be either positive or negative, whereas kurtosis is always positive. Negative skewness
means the left tail of the probability distribution is longer, and vice-versa for the positive
skewness. F > 3 means the distribution produces more extreme events than the normal
distribution, and vice-versa for F < 3.

Usually kurtosis is presented as F −3 in order to compare with the normal distribution.
Since there is no reference curve from the DNS of Abe et al. (2004)[1], test-case 20x10 was
taken as the reference. Skewness of u velocity component for all the test-cases collapsed
on each other except test-case 100x100. In the inner-layer S > 0, and above buffer-layerS < 0. Skewness for test-cases 40x20, 50x20, 50x30 were slightly over predicted compared
to test-case 20x10 across the boundary layer. For the kurtosis of u component, the coarse
grid test-cases were slightly under-predicted close to the wall, and completely erroneous
for the test-case 100x100. Skewness of the v component had similar trend as the u com-
ponent. Test-cases 40x20, 50x20, 50x30 collapsed on each other across the boundary layer,
with slight discrepancy in the log region when compared to test-case 20x10. Skewness of
v component computed from coarse grid test-cases, were over-predicted compared to the
fine grid test-cases. For kurtosis of v increasing discrepancy was found close to the wall
with increasing mesh coarsening except for the coarse grid test-cases. Xu et al. (1996)[296] re-
ported higher kurtosis for wall-normal velocity component is due to events that are very
rare in space and time. Hence, with coarsened mesh one can expect to have decreased
kurtosis close to the wall, but test-cases 70x20 and 100x100 produced better kurtosis for
the v component, it is erroneous and the reason for such better estimates are unknown.
For the kurtosis of w component slight under-prediction with mesh coarsening was ob-
served close to the wall. Test-cases 70x20 and 100x100 were erroneous.
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Figure 3.13: Comparison of (a, c, e) skewness and (b, d, f) kurtosis for (a, b) stream-wise, (c, d)
wall-normal and (e, f) span-wise velocity component obtained from different compu-
tational grids. Test-case 20x10 is the reference.
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3.2.3 Conclusion

Hence by analysing the correlation of velocity components and vorticity, it was clear
that the coarse grid test-cases, 70x20 and 100x100 produced erroneous results. Since wall-
resolved ILES was performed here, these coarse grids failed to capture the near-wall
dynamics (streaks and vortices), which has important role in the near-wall turbulence
regeneration cycle and also in the inner-outer layer interaction. From the analysis, it
was found that test-case 50x30 was the limiting resolution for performing ILES, such
that one can capture the near-wall turbulence and its dynamics sufficiently well with
reduced computational cost. For a fast computation one could choose a coarser mesh to
approximately compute the first- and second-order moments. For a clean ILES, which can
be compared against DNS, it is recommended to use grid resolution as good as test-case
40x20. The capability of the modified spatial second-derivative FDS to perform ILES (of
a channel flow with Mach number up to 3 and friction Reynolds number up to 1000),
which was accurate up to 4th order moments with extremely reduced computational cost
was successfully demonstrated.
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4
S C A L I N G T E C H N I Q U E S F O R C O M P R E S S I B L E T U R B U L E N T
C H A N N E L F L O W AT M A C H N U M B E R U P T O 3

In Chapter 2 and 3 examples of channel flow at Mach numbers up to 3 with isothermal
walls were presented. The turbulent mean and rms velocity profiles for these channel
flows were different from the traditional (incompressible) profiles (Section 5.3.1 and 3.1.3).
The difference in the turbulent statistics arises mainly due to the flow Mach number
and heat-transfer through the isothermal walls. Isothermal or cooled walls modify the
wall-normal gradients of mean density and temperature, unlike the incompressible flows
where density is considered to be constant.

In this chapter, scaling techniques for compressible channel flows (for M ≤ 3) with
isothermal walls will be discussed and analysed. Compressible scaling techniques are
very important because it helps non-dimensionalise and compare results for different
conditions which can be used for making crucial connections between the incompressible
and compressible wall-bounded turbulent flows. The objective was first to test and verify
the scaling techniques in-order to use it later in the algorithm for detecting the large-
scale structures of the wall-bounded turbulent flow in Chapter 5. Literature review of
the popular and the most recent advancement of the scaling technique is presented and
discussed in detail. ILES of channel flows with isothermal walls at different M number
were performed for checking the adequacy of scaling techniques. Results from the ILES

were compared against the DNS of incompressible channel flow by Moser et al. (1999)[203]

at Reτ ≈ 390.

4.1 review of scaling techniques

In the following, different scaling or non-dimensionalisation techniques will be presented.
First of all, the conventional technique used for incompressible flows will be presented.
It will serve as the basis for the scaling techniques for compressible flows. Following the
incompressible scaling, compressibility effects for non-hypersonic flows will be discussed
before presenting different scaling techniques for compressible flows.

4.1.1 Incompressible transformation

The important feature of the wall-bounded flow is the universality of the inner-layer of
velocity profile when scaled with inner variables. This leads to the existence of law-of-the-
wall for the velocity profile[225, 226, 285]. Law-of-the-wall is well-established in the inner-layer
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with small uncertainties[11, 179]. For an incompressible, constant property flow, law-of-the-
wall is:

ũ

ũτ
= f( ỹ

l̃ν
)

u+ = f (y+) (4.1)

Like Chapter 2, accent (̃⋅) is used for the dimensional quantities. In the above relation f
is the universal function, y is the wall-normal coordinate, l̃ν = µ̃w/ρ̃wũτ is the viscous
length scale, u is the mean velocity and ũτ = √

τ̃w/ρ̃w is the friction velocity. ρw is the
wall density, µw is the wall viscosity. uτ and lν are the traditional inner variables used
for scaling the statistics of incompressible turbulent wall-bounded flows. Quantities scaled
with the inner variables are denoted with a “+” superscript.

Similarly, for an incompressible constant property flow, in a given geometry, it is known
that there is no universal scaling for Reynolds stresses[11, 117, 179, 200]. The peak amplitude
of the stream- and span-wise velocity fluctuations increases logarithmically with Reτ,
while the wall-normal velocity fluctuations increases sub-logarithmically[16], thus one
can write:

ũ ′iũ ′j
ũ2τ

= f( ỹ
l̃ν

, Reτ)
u ′iu ′j+ = f (y+, Reτ) (4.2)

4.1.2 Compressibility effects

Compressible channel with isothermal wall gives rise to a flow which is strongly influ-
enced by the wall-normal gradients of ρ and T compared to the incompressible flow.
Non-uniform mean density and temperature are due to the viscous heating. Therefore,
the scaling laws (equation 4.1 and 4.2) mentioned above are no longer valid. Morkovin’s
hypothesis is valid up to M = 5, and statistical properties of turbulence are unaffected

by compressibility if
√
ρ ′2/ρ < O(1/10)[34, 52, 168].

morkovin’s hypothesis : In non-hypersonic boundary layers, the acoustic mode is
negligible and the entropic mode is small. The large-scale motion should be statisti-
cally coupled to the thermal field almost exclusively through the mean values of ρ,
µ, λ, and generalized law of the wall so that with a variable lateral stretching factor,
it may resemble the incompressible motion[199].

The straightforward solution to this problem is to extend the law-of-the-wall to compress-
ible flows[38, 53, 77, 81, 237, 260, 282, 283, 293, 300], with most of the research dedicated to trans-
form the profiles of compressible flows to equivalent profiles of incompressible flows. Trans-
formed mean velocity profile should satisfy law-of-the-wall, which generally involves scal-
ing the velocity and wall-normal coordinates in equation 4.1.

For compressible flows with isothermal walls due to the heat transfer through the
walls, the law-of-the-wall becomes[34]:

u∗ = f (ỹ,Bq,Mτ) (4.3)
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where u∗ is the transformed mean velocity, Mτ = ũτ/c̃w is the friction Mach number
and Bq is the dimensionless heat flux at the isothermal or cold wall (see equation 2.26 in
Chapter 2). Generally the Bq andMτ increases with the Mach number. From the physical
point of view the above relation is valid, but it is not straightforward to formulate a
compressible transformation using this relation. Thus, equation 4.1 can be modified for
the compressible flows together with considering the Morkovin’s hypothesis as:

u∗ = f( ỹ
l̃ν

, ρ̃(y), µ̃(y))
= f (y∗) (4.4)

where superscript "*" is used for the transformed mean velocity profile, for which the
law-of-the-wall is valid. Equations 4.3 and 4.4 are both valid for compressible flows with
isothermal wall. But the later is more suitable from the compressible transformation
point of view. The transformed mean velocity profile is written as a function of wall-
normal coordinate, viscous length-scale, mean density and viscosity (or temperature).
The r.h.s. of the above relation is then finally written using a the modified wall-normal
coordinates. With such way of writing, equations 4.1 and 4.4 have the same structure,
where the former is for incompressible and the latter is for compressible flows. Similarly,
for turbulent quantities one can write:

ũ ′iũ ′j∗ = f( ỹ
l̃ν

, Reτ, ρ̃, µ̃)
= f (y∗, Re∗τ) (4.5)

here Re∗τ is the modified or equivalent friction Reynolds number. For the two above men-
tioned relations to work as expected, the wall-normal coordinate, mean and turbulent
statistics have to be scaled appropriately. In the following sections different scaling tech-
niques will be introduced, and finally in Section 4.2 the variables used for scaling the
results of the compressible channel flows will be summarised.

4.1.3 Van Driest transformation

The classical way of transforming the mean velocity profile of a compressible wall-
bounded flow is to replace the scaled velocity in equation 4.1 with Van Driest trans-
formed velocity. But the original transformation proposed by Van Driest (1951)[283] is an
analytic trigonometric relation and it writes as follows (see equation 6.35 in Gatski and
Bonnet (2013)[89]):

u∗VD = √
b

⎡⎢⎢⎢⎢⎣sin
−1 ⎛⎝ aw +u√

a2w +b
⎞⎠− sin−1 ⎛⎝ aw√

a2w +b
⎞⎠
⎤⎥⎥⎥⎥⎦

aw = Prtqw/τw;b = 2hw/Prt (4.6)

The above mean velocity transformation is in line with equation 4.3, but the popular
form of Van Driest transformation is in the integral form. From the similarity argument
for inner-layer the integral form of the Van Driest transformation can be found as:

u∗VD = ∫ u+
0

¿ÁÁÀ ρ̃

ρ̃w
du+ (4.7)
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Hence, the transformation involves correcting the velocity gradient by the factor
√
ρ/ρw

(to account for the compressibility effect) to obtain the Van Driest transformed mean
velocity. Equation 4.7 partially has the form similar to equation 4.4, in the r.h.s. y+ is
used instead of y∗. The transformed velocity is used with the wall-normal coordinate
scaled with viscous length-scale. The exact origin of the integral form of the Van Driest
transformation is unknown, but it can be traced back to Dorrance (1962)[72] and Danberg
(1964)[60].

Derivation for the integral form of Van Driest transformation can be put down as fol-
lows. In the equilibrium part of the inner layer, where the turbulent motion concerned
with turbulent energy production and dissipation is determined by the shear stress
within that region, and independent of conditions outside, one can relate the velocity
gradient and the Reynolds stress as[280]:

ρ̃ũ ′ṽ ′ = τ̃w = µ̃t∂ũ∂ỹ (4.8)

where µt is the turbulent eddy viscosity, Reynolds stress is assumed constant and equal
to τw (see Gatski and Bonnet (2013)[89]). With the Boussinesq assumption[29–31, 246], using
mixing-length hypothesis[225], turbulent eddy viscosity can be defined as:

µ̃t = ρ̃ l̃2∂ũ∂ỹ (4.9)

where mixing-length is inferred as a function of the position in the flow, and is defined
as l̃ = κỹ, and κ is a constant. Substituting µt into equation 4.8 and further developing,
one finds: ¿ÁÁÀ ρ̃

ρ̃w

∂ũ

∂ỹ
= ũτ
κỹ

Ô⇒ u∗VD = 1
κ

ln y+ +C (4.10)

integrating the above equation yields the Van Driest transformed velocity in the inte-
gral form as in equation 4.7. Van Driest transformed velocity is so successful due to its
accuracy in turbulent boundary layers over adiabatic walls, up toM = 20[74, 76, 222].

For compressible flows with adiabatic walls, one obtains approximately the univer-
sal log-law, which implies the von Kármán constant κ and the log-law intercept C are
constant. Whereas for the Van Driest transformed mean velocity profile of compressible
flows with isothermal walls, an upward shift in the log-law intercept C, outward shift of
the wall-normal coordinate and drop in the viscous sub-layer slope S are observed[282].
Thus for the compressible flows with isothermal walls, κ and C depends on the heat-
transfer through the walls. Disagreement of Van Driest transformed velocity profiles
increases as the wall becomes increasingly non-adiabatic (or for increasing flow Mach
number). Figure 4.1 presents the comparison between the Van Driest transformed veloc-
ity profile atM = 3 for a channel with cold walls (test-case M3.0*, Reτ = 1085 in table 4.2)
and the incompressible channel flow of Lee and Moser (2015)[166] at Reτ ≈ 1000. Above
mentioned differences in the mean velocity profile can be found with the Van Driest
transformation.
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Figure 4.1: Mean velocity profiles for incompressible and compressible channel with cold walls.
Gray solid lines used to represent u+ = y+ and u+ = 1/κ ln y+ +C. Arrows are used to
show the changes for compressible channel flows with cold walls. Reference data is
for Reτ = 1000 taken from Lee and Moser (2015)[166].

4.1.4 Semi-local transformation

For the turbulent quantities, Huang et al. (1995)[120] proposed the semi-local scaling
(which has the form of equation 4.5), where basically the turbulent quantities and the
wall-normal coordinate were scaled using the local viscous velocity and length-scale.
These local scales were defined using the local density and viscosity. The local viscous
velocity and length-scale are:

ũ∗τ(ỹ) =
¿ÁÁÀ τ̃w

ρ̃(ỹ) (4.11)

l̃∗ν(ỹ) = µ̃(ỹ)
ρ̃(ỹ)ũ∗τ(ỹ) (4.12)

The semi-local scaling technique works very well for the turbulent quantities (such as
rms of velocity and vorticity), and one can collapse the compressible curves over the
incompressible data. Examples can be found in Huang et al. (1995)[120], Coleman et al.
(1995)[52], Morinishi et al. (2004)[198] and Modesti and Pirozzoli (2016)[194], among others.
The semi-local transformation has also been successfully used for variable density flows
in Patel et al. (2015)[219].

An example for dependence of l∗ν on wall-normal distance is shown in figure 4.2. Local
friction length-scale is for test-case at M = 3 from table 5.1. At higher M, conventional
friction Reynolds number Reτ increases because l∗ν at the wall decreases. For example in
the figure, l∗ν at the wall is twice smaller than the value at the channel centre.
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Figure 4.2: Local friction length scale as a function of wall-distance.

4.1.5 Trettel’s transformation

As mentioned in Section 4.1.3, Van Driest transformation only scales the mean veloc-
ity profile and leaves the wall-normal coordinate (y+) untouched. Trettel and Larsson
(2016)[282] proposed a very efficient transformation technique for the mean velocity pro-
file. This scaling was used in the present work, because it overcomes the drawbacks of
Van Driest transformation (violation of stress balance between the initial and transformed
data).

Scaling proposed by Trettel and Larsson (2016)[282] uses a differential approach like
most of the other scaling techniques, but it tries to relate the transformation through ve-
locity transformation kernel, coordinate transformation kernel and raw velocity gradient.
Unlike other techniques, coordinate transformation is left unknown, and is derived in a
later stage together with velocity and Reynolds stress transformation using log-law and
stress-balance condition. With this transformation, one will recover the semi-local scaling.
Hence, with this technique an unified coordinate transformation can collapse both the
mean and turbulent quantities.

Their transformation assumes τw, ρw and µw stays constant for the raw and trans-
formed states. Therefore, uτ and lν are also same for both states. Transformed velocity
gradient is multiplied and divided by both du and dy, upon rearrangement one will
find:

dũ
∗

dỹ∗ = dũ∗
dũ

dỹ

dỹ∗
dũ

dỹ
(4.13)

The transformed velocity gradient is written as a function of velocity transformation ker-
nel, coordinate transformation kernel and raw velocity gradient. Superscript "*" is used
for the transformed quantities. As a first step, log-law condition is derived in the form of
a velocity gradient for raw and transformed states from the dimensional analysis[35] and
upon simplification one will find:

dũ
∗

dỹ∗ = ỹ

ỹ∗
¿ÁÁÀ ρ̃

ρ̃w

∂ũ

∂ỹ
(4.14)
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Secondly, unlike the Van Driest transformation a stress balance condition between the
raw and transformed states is derived (assuming τw is same for both states).

µ̃w
dũ

∗
dỹ∗ − ρ̃wũ ′iũ ′j∗ = µ̃∂ũ∂ỹ − ρ̃ ũ ′iũ ′j (4.15)

By assuming Morkovin’s scaling[199] is true, the turbulent shear stress is constant. In non-
dimensional form one will find the semi-local scaling of Huang et al. (1995)[120] for the
Reynolds stress:

u ′iu ′j∗ = ρ̃ ũ
′
iũ

′
j

ρ̃wũ
2
τ

The dimensional version of the above relation (ρ̃wũ ′iũ ′j∗ = ρ̃ ũ ′iũ ′j) can be used to simplify
equation 4.15, such that:

µ̃w
dũ

∗
dỹ∗ = µ̃∂ũ

∂ỹ
Ô⇒ dũ

∗
dỹ∗ = µ̃

µ̃w

∂ũ

∂ỹ
(4.16)

By equating the log-law condition and stress-balance condition (equation 4.14 and 4.16),
one can derive the transformed wall-normal coordinate in dimensional form:

ỹ∗ = ỹ µ̃w
µ̃

¿ÁÁÀ ρ̃

ρ̃w
(4.17)

In non-dimensional form the wall-normal coordinate will be:

y∗ = ỹ ρ̃(y)
√
τ̃w/ρ̃(y)

µ̃(y)
By differentiating equation 4.17 with respect to ỹ, and substituting in equation 4.14 or
4.16 and then integrating the resulting relation, the transformed velocity proposed by
Trettel and Larsson (2016)[282] can be derived:

u∗ = ∫ u+

0

¿ÁÁÀ ρ̃

ρ̃w
[1+ 0.51

ρ̃

dρ̃

dỹ
ỹ− 1

µ̃

dµ̃

dỹ
ỹ]du+

Scaling techniques relevant to this work were only discussed, but there are also other
transformation techniques which were not presented here. A comparative study of the
different scaling techniques can be found in Modesti and Pirozzoli (2016)[194].

4.2 numerical test

In this section, numerical simulation of channel flows at different Mach numbers will be
performed to test the scaling techniques. In summary, the semi-locally scaled wall-normal
coordinate works for all quantities unlike other transformation techniques, where each
quantity works well with some specific coordinate transformation. For example, Van Dri-
est transformed velocity should be used with wall-normal coordinate scaled with viscous
length-scale, whereas Reynolds stress should be used with wall-normal coordinate scaled
with semi-local variables to collapse the curves on the incompressible data. The complete
transformation which will be tested in this section is summarised below:
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• At the centre of the channel, the modified or equivalent friction Reynolds number
(in equation 4.5) is defined as:

Re∗τ = H̃ρ̃c
√
τ̃w/ρ̃c
µ̃c

(4.18)

subscript c is used for quantities at the centre of the channel, y = H.

• Transformed coordinate (used in equation 4.4 and 4.5) can be defined as follows:

y∗ = ỹ ρ̃(y)
√
τ̃w/ρ̃(y)

µ̃(y) (4.19)

• transformed mean velocity (in equation 4.4):

u∗ = ∫ u+

0

¿ÁÁÀ ρ̃

ρ̃w
[1+ 0.51

ρ̃

dρ̃

dỹ
ỹ− 1

µ̃

dµ̃

dỹ
ỹ]du+ (4.20)

• transformed Reynolds stress (in equation 4.5):

u ′iu ′j∗ = ρ̃ ũ
′
iũ

′
j

τ̃w
(4.21)

4.2.1 Simulation parameters

Nine test-cases which were analysed in the present study (0.1 ≤ M ≤ 3) are listed in
table 4.1. Simulations were performed in a computational domain of size Lx × Ly × Lz =
2πH × 2H ×πH, except for test-case M0.5 which uses larger domain, 12H × 2H × 6H. One
test-case (M0.1DNS) was a DNS and others were ILES. For all the test-cases 1 ≤ ∆y∗ ≤
10. Simulations were performed with constant Reb = 6882 (test-cases M0.1DNS, M0.1,
M0.3, M0.5, M0.7, M1.5 and M3.0) for which Reτ ≈ 390 in the incompressible regime.
For a given Reb at supersonic M number, the equivalent friction Reynolds number Re∗τ
decreases (see table 4.2). Hence, two additional simulations were performed at M = 1.5
and 3 with higher Reb. One test-case each at M = 1.5 (M1.5*) and M = 3 (M3.0*) were
performed such that Re∗τ ≈ 390 for test-cases M0.1DNS, M0.1, M0.3, M0.5, M0.7, M1.5*
and M3.0*. The receipe to find the higher Reb for Re∗τ = constant is detailed in Appendix
D. The objective here is to verify the scaling techniques for compressible flows up toM = 3. Turbulent statistics up to 4th order moment were computed and compared for
different M number. Results for the present test-cases were compared with the DNS of
Moser et al. (1999)[203] for Reτ ≈ 390.

The non-dimensional skin-friction coefficient is also tabulated in the table, and it is
defined as:

cf = 2τ̃w

ρ̃bũ
2
b

(4.22)
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Case M Reb Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+min ∆y+max ∆z+
Ref[203] -

6882

2πH× 2H×πH
256× 193× 192 10 0.029 6.5 6.5

M0.1DNS 0.1 251× 157× 251 10 1 10 5

M0.1 0.1 125× 157× 125 20 1 10 10

M0.3 0.3 101× 251× 125 24 1 10 10

M0.5 0.5 12H× 2H× 6H 276× 201× 276 17 1 15 8.5

M0.7 0.7

2πH× 2H×πH
85× 201× 123 30 1 15 10

M1.5 1.5 125× 157× 125 20 1 10 10

M3.0 3.0 125× 157× 125 20 1 10 10

M1.5* 1.5 8339 125× 157× 125 20 1 10 10

M3.0* 3.0 13748 125× 157× 125 20 1 10 10

Table 4.1: Simulation test-cases for analysing the scaling techniques. Reference data taken from
Moser et al. (1999)[203]. Grid resolution mentioned in the table are based on the reference
Reτ = 390.

Case Reτ Re∗τ uτ/ub ρw/ρb Mτ −Bq cf×10−3
Ref[203] 395 - 0.056 - - - 6.27

M0.1DNS 388 388 0.0563 1.0012 0.00563 0.000196 6.36

M0.1 387 387 0.0561 1.0011 0.00561 0.000194 6.31

M0.3 389 385 0.0560 1.0093 0.01680 0.001725 6.33

M0.5 393 384 0.0560 1.0206 0.02800 0.004147 6.40

M0.7 392 381 0.0555 1.0271 0.03885 0.007154 6.32

M1.5 455 313 0.0487 1.3585 0.07310 0.042282 6.45

M3.0 628 208 0.0368 2.4763 0.11065 0.130130 6.73

M1.5* 495 383 0.0479 1.2439 0.07187 0.035159 5.71

M3.0* 1085 384 0.0341 2.3463 0.10250 0.113110 5.47

Table 4.2: Mean flow variables computed for simulation test-cases for analysing the scaling tech-
niques. Reference data taken from Moser et al. (1999)[203].

4.2.2 Results

The Reτ and uτ predicted from the present DNS (test-case M0.1DNS) in table 4.2, have
error less than 2% in comparison with the reference data of Moser et al. (1999)[203]. For
a constant Reb, uτ/ub decreases whereas friction Mach number Mτ and normalised
heat flux Bq increases with theM number. For a constant Reb, cf increased with theM
number, whereas for the case with constant Re∗τ, cf decreased for higher Reb.
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4.2.2.1 Mean velocity

Mean velocity profiles scaled with traditional inner variables ũτ and l̃ν (equation 4.1)
and transformed scaling (equation 4.19 and 4.20) are presented in figure 4.3. Results for
Re∗τ ≈ const are shown in the figure. With classical scaling, when theM number increases,
velocity profiles departs from the incompressible profile (see figure 4.3 (a)). After velocity
transformation using equation 4.20, better collapse was observed for the velocity profiles
in figure 4.3 (b). The discrepancy observed with the Van Driest transformation (see figure
4.1) were not observed with the scaling technique of Trettel and Larsson (2016)[282]. Both
in the inner- and outer-layer, the curves collapsed on the reference curve of Moser et al.
(1999)[203] for incompressible channel flow at Reτ ≈ 390.
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Figure 4.3: Mean velocity profiles with (a) conventional scaling and (b) Trettel’s scaling. Reference
data taken from Moser et al. (1999)[203].

4.2.2.2 Rms profiles of velocity and vorticity

In figure 4.4 rms velocity profiles for different M number are presented. Since there is
no universal scaling for Reynolds stresses and/or rms velocity[11, 16, 117, 179, 200], cases at
constant Re∗τ are presented in the figure (see equation 4.5). With classical scaling, outward
shift of the wall-normal coordinates indicating wider buffer layer and enhancement of
rms velocity for all the velocity components were observed for higher M number. The
widening of the buffer layer or enhancement of the rms of velocity is not due to enhanced
turbulence, rather it is just the limitation of scaling with traditional inner variables. With
transformed scaling (semi-local scaling equation 4.19 and 4.21) the results collapsed on

the reference data, except for slightly increasing over-prediction of
√
u ′2 peak value, for

increasing M number. The slight over-prediction of
√
u ′2 peak was also observed by

Modesti and Pirozzoli (2016)[194] with their DNS (see figure 11 in Modesti and Pirozzoli
(2016)[194]). They checked the transformation for up to Re∗τ ≤ 670 and M ≤ 3. Which
suggests that this could be a limitation of the semi-local scaling, nevertheless excellent
agreement was found for other velocity components.
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Figure 4.4: Rms velocity profiles scaled in (a, c, e) traditional inner variables and, (b, d, f) semi-

local variables. (a, b)
√
u ′2; (c, d)

√
v ′2 and (e, f)

√
w ′2. Reference data taken from

Moser et al. (1999)[203].
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At higherM numbers, Reτ increases significantly due to enhanced heat-transfer through
cold wall. Which is indirectly related to the variation of density across the channel height.
Similarly uτ/ub(Reτ) decrease(increase) because ρw/ρb increases with the M number.
With the scaling technique presented in Section 4.1.2, all the quantities are transformed
to their equivalent values in the incompressible regime. As mentioned earlier, in equation
4.5, Reynolds stress is Reynolds number dependent[16, 179]. In figure 4.5 results obtained
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Figure 4.5: Rms velocity profiles scaled in (a) traditional inner variables and (b) semi-local vari-
ables. Reference data taken from Moser et al. (1999)[203].

from simulations at constant Reb (test-cases M1.5 and M3.0) and constant Re∗τ (test-cases
M1.5* and M3.0*) atM = 1.5 andM = 3 are compared against the incompressible reference
data. For instance, case M3.0 has Reτ = 628 and Re∗τ = 207, here Re∗τ is almost half of the
reference friction Reynolds number, Reτ ≈ 390, and it exhibits the low Reτ effect (under-
prediction of the outer-layer stream-wise internsity after transformation in figure 4.5(b)).

At low Reτ, there is no enough scale separation and
√
u ′2 has a single clear peak in the

buffer-layer, whereas for higher Reτ a emergence of secondary peak can be observed in
the log-region of the turbulent boundary layer due to the large-scale motions[125, 179]. For
Re∗τ ≈ 390, this secondary peak cannot be clearly witnessed due to the lack of sufficient

scale separation. Nevertheless in figure 4.5 (b),
√
u ′2 for test-case M3.0 is under-predicted

in the log-region compared to the
√
u ′2 for test-case M3.0*. For test-case M1.5, Re∗τ = 313,

for which a minor difference can be noticed away from the wall. Results for test-cases
M1.5* and M3.0* collapse very well on the reference data since their Re∗τ is equivalent to
the reference incompressible Reτ.√

ω ′2 profiles are presented in figure 4.6. When scaled with inner variables, weaken-

ing of
√
ω ′2 in the buffer-layer was observed for increasing M number. When scaled

with semi-local variables, better collapse was observed, except for the small difference

in
√
ω ′2
x and

√
ω ′2
y close to the wall for test-case M3.0*. Under-prediction for the rms

of stream-wise and wall-normal components of vorticity was observed, which could be
because results from the ILES were compared against the DNS. Nevertheless satisfactory

agreement was found between the transformed and reference
√
ω ′2.
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Figure 4.6: Rms vorticity profiles scaled in (a, c, e) traditional inner variables and, (b, d, f) semi-

local variables. (a, b)
√
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x ; (c, d)

√
ω ′2
y ; and (e, f)

√
ω ′2
z . Reference data taken from

Moser et al. (1999)[203].
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4.2.2.3 Velcity correlation
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Figure 4.7: Near-wall span-wise correlation scaled in (a, c, e) traditional inner variables at y+ =
10 and, (b, d,f ) semi-local variables at y∗ = 10. (a, b) stream-wise velocity; (c, d)
wall-normal velocity; (e, f) span-wise velocity. Reference data taken from Moser et al.
(1999)[203].
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Figure 4.8: Near-wall stream-wise correlation scaled in semi-local variables at y∗ = 10. (a) stream-
wise velocity; (b) wall-normal velocity and (b) span-wise velocity. Reference data taken
from Moser et al. (1999)[203].

Auto-correlation in the span-wise direction close to the wall (y+ = 10 and y∗ = 10)
is presented in figure 4.7. For all the velocity component, location of the minimum of
correlation increases with the M number when scaled with inner variables[52, 290]. From
Ruu and Rvv it implies, increased streak spacing and vortex diameter[146]. Coleman et al.
(1995)[52] used Van Driest transformation for the mean velocity and semi-local scaling
for the turbulent statistics to collapse the curves of their supersonic channel. But they
argued that the near-wall streaks becomes more coherent with the increase inM number.
Widening of the streak and vortex in the span-wise direction and enhancement of streaks
in the stream-wise direction[52] (not shown here) is not due to strong modification in
turbulence, rather it is due to the poor choice of scaling variables[198]. When scaled with
right quantities (semi-local variables), the results at differentM number collapsed on the
reference data of Moser et al. (1999)[203]. Constant streak-spacing of λ∗z ≈ 114 and constant
vortex diameter λ∗z ≈ 38 were observed from the correlations.
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Near-wall auto-correlation in the stream-wise direction is presented in figure 4.8. Re-
sults for semi-locally scaled distance is only presented. Length of the near-wall stream-
wise streaks is around 2000 wall-units, and all the correlation curves collapse very well
on the reference data.

4.2.2.4 Velocity skewness and kurtosis
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Figure 4.9: Skewness profiles for (a, b) stream-wise and (c, d) wall-normal velocity plotted against
wall-normal coordinate scaled with (a, c) traditional viscous length-scale and (b, d)
semi-local viscous length-scale. Reference data taken from Moser et al. (1999)[203].

Skewness of the velocity component is presented in figure 4.9. Third moment used to
compute the skewness is non-dimensionalised using the cubic powered rms. Therefore
the results are plotted against wall-normal coordinate scaled in traditional viscous length-
scale (lν) and local viscous length-scale (l∗ν(y)). Outward stretching of the wall-normal
coordinate scaled with traditional viscous length-scale at higher M number is evident
here like the previous figures. At M = 0.1, results of DNS were also plotted to check the
effect of mesh coarsening on higher-order statistics. From the figure it was clear that,
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skewness was not affected by mesh coarsening. For the stream-wise velocity component,
close to the center of the channel slight discrepancy was observed among all the cases.
In the log-region, all the transformed profiles collapse very well on each other, with
slight under-prediction compared to the reference data. For the transformed wall-normal
velocity component, slight under-prediction of the minima was observed for increasingM number. Skewness of the span-wise velocity component is almost zero, hence not
presented here.
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Figure 4.10: Velocity flatness profiles plotted against semi-local wall-normal coordinates. (a)
Stream-wise and (b) wall-normal and (c) span-wise velocity component. Reference
data taken from Moser et al. (1999)[203].

Kurtosis of velocity component plotted against the semi-locally scaled wall-normal
coordinate is presented in figure 4.10. Away from the wall, the present results for the
kurtosis collapsed on the reference curve. Slight under-prediction of kurtosis close to
wall was noticed for all the velocity components, except for wall-normal component, for
which huge difference was found. For the test-case M0.1DNS, discrepancy in the kurtosis
was less compared to the ILES (test-case M0.1) which was at same Reb and M number.
Xu et al. (1996)[296] reported higher kurtosis for wall-normal velocity component is due to
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events that are very rare in space and time. Since ILES solves only for the resolved scales,
these rare events were not captured very well. For the stream-wise velocity component
slight discrepancy was found close to the centre of the channel. In general, it can be
concluded that, especially close to the wall grid coarsening has some minor effects on
the kurtosis.

4.3 conclusion

Scaling techniques for compressible channel flows for M ≤ 3 were discussed and those
scaling transformations were verified for channel flows up toM ≤ 3. Mean velocity trans-
formation proposed by Trettel and Larsson (2016)[282] was found to be very effective, since
it overcomes the drawbacks of the Van Driest transformation for compressible channel
flow with cold walls. Additionally, scaling proposed by Trettel and Larsson (2016)[282]

finds semi-local viscous length scale and friction velocity as the scaling variables. This al-
lows to use a single coordinate transformation for mean and turbulent quantities. Turbu-
lent quantities collapse very well with semi-local variables. Simulations were performed
for constant Reb and Re∗τ at differentM numbers. Due to heat-transfer through the cold
walls, an equivalent friction Reynolds number Re∗τ was defined and results were com-
pared for Re∗τ = const. Scaling techniques were tested for up to 4th order moments and
correlations, and better agreement was found with the reference incompressible DNS of
Moser et al. (1999)[203]. Analysis was also performed for a moderately higher Reynolds
number Re∗τ ≈ 590, and similar observations were made (not shown here). These scaling
techniques will be used in Chapter 5 to develop an algorithm to detect the large-scale
structures of turbulence in wall-bounded compressible flows.
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5
I N N E R - O U T E R L AY E R S C A L E S - I N T E R A C T I O N

The objective of the present chapter is to investigate the influence of the large-scales on
turbulence at different Mach numbers, in a range in which the effect of compressibility
is to create density/temperature gradients (Morkovin’s hypothesis satisfied). These gra-
dients can be accounted for by using the scalings discussed in Chapter 4. Firstly, a short
introduction on large-scale structures is given in Section 5.1. Secondly, the grid require-
ments for studying the large-scale structures with ILES will be addressed in Section 5.2,
followed by the investigation on large-scale’s influence in Section 5.3.

Numerical simulations of channel flow at Mach numbers 0.5 and 3.0 for Re∗τ ≈ 950
were performed using ILES technique presented in Section 2.5.2.2. The data for both
Mach numbers have comparable turbulent statistics after a suitable scaling is applied
that compensates for the effect of compressibility. The question is then to know whether
the large scale structures have the same characteristics at different Mach numbers. To
answer this question, conditional analysis for the high- and low- momentum large scale
structures are performed and the results are compared for both Mach numbers. The
threshold for conditional analysis is based on the local friction velocity. A straightforward
detection algorithm to detect the large scale structures and study their effect at both Mach
numbers is also presented.

5.1 overview on large-scale structures in wall-bounded
turbulent flow

In wall-bounded flows there exists a near-wall turbulence regeneration mechanism, which
involves stream-wise vortices and near-wall streaks[234]. They are associated with ejec-
tions and sweeps, which transports momentum to and away from the wall[37]. Research
has also revealed the existence of large scales in the form of long meandering struc-
tures for wall-bounded turbulent flows[98, 279]. These structures consist of alternating
low- and high speed regions away from the wall[1, 88, 125]. Such large scale structures
are characteristics of high Reynolds number flows, characterized by a sufficient scale
separation between the largest and the smallest scales of turbulence. Large scale struc-
tures scale with outer length scale (H) of the flow. Structures that are 2H – 3H long
are termed LSM[147], and structures that are up to 10H – 20H long are called VLSM or
superstructures[101, 125, 147, 261]). The typical span-wise width of these structures is H – 2H
(see Abe et al. (2004)[1], and Del Álamo and Jiménez (2003)[64], among others). Near-wall
turbulence in different wall bounded flows such as boundary layer, pipe and channel are
similar, and the differences arise from the core region[195, 196], mainly due to geometric
constraints.
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It is well known that close to wall sweep motions due to strong stream-wise vortices
create high skin friction[47, 155]. Similarly, for turbulence away from the wall Adrian et
al. (2000)[5] proposed a model suggesting that hairpin vortices in the outer layer are re-
gions of low speed fluid, with ejections between their legs and sweeps outside. Similar
observations were also made by Ganapathisubramani et al. (2003)[87] who found that
groups of hairpin structures contribute 25% to the Reynolds stress while they occupy
only 4% of the area in a boundary layer experiment. Lee and Sung (2011)[165] showed
that large scale structures greater than 3δ – 4δ (where δ is the boundary layer thickness)
occupy 40% of the area and contribute 45% to the total Reynolds shear stress in a tur-
bulent boundary layer simulation. There is a top-down effect of outer-layer large scale
structures on wall structures in high Reynolds number wall-bounded flows. Del Álamo
and Jiménez (2003)[64] plotted low pass filtered spectra to show that large scale struc-
tures span almost the entire channel height and penetrate into the buffer layer. Mathis
et al. (2009)[186] reported that large-scale structures away from the wall modulate the
small-scales amplitude close to the wall. Recently Lee and Moser (2015)[166] compared
the large scale motions in turbulent pipe and channel flows at friction Reynolds number
Reτ ≈ 930. They found that close to the wall high speed large scale motions have greater
contributions to the turbulent intensities and Reynolds stress, whereas away from the
wall low speed large-scale motions have a dominant effect. Dekou et al. (2016)[63] char-
acterize the size, intensity, and life-time of the large scale motions for an experimental
turbulent boundary layer. Yoon et al. (2016)[299] uses the FIK identity of Fukagata et al.
(2002)[84] to quantify the influence of large scale motions on drag reduction, and they
report low(high) speed large scale motions contribute approximately 25%(20%) to the
skin friction.

Most of the studies devoted to large-scale structures were performed for incompress-
ible flows, but compressible wall-bounded flows are equally important in engineering
applications. The first compressible channel flow simulation was performed by Coleman
et al. (1995)[52] for a low friction Reynolds number and Mach number up to 3. At these
Mach numbers, Coleman et al. (1995)[52] find that Morkovin’s hypothesis is satisfied (that
is, the rms of turbulent pressure is less than 10% of the mean pressure) and in such a
case compressibility manifests itself mainly through gradients of temperature, density,
or viscosity. At M = 3, Coleman et al. (1995)[52] find an increased coherence of the near-
wall streaks (see Section 1.2 for more information on different coherent structures) in the
stream-wise and span-wise directions compared to the incompressible case. However, it
is found that when scaled properly, near-wall streaks of the compressible wall-bounded
flow have approximately the same characteristics as the incompressible wall-bounded
flows (see for example figures 4.7 and figure 4.8 in Chapter 4, Morinishi et al. (2004)[198],
Patel et al. (2015)[219], and appendix in Sebastian et al. (2017)[249] among others). This
shows the importance of scaling the compressible data to have a one-to-one comparison
with the incompressible counter part (see Chapter 4 for detailed information on com-
pressible scaling).
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5.2 grid requirement

One of the reasons for neglecting the large-scale structure originates from the Townsend’s
attached eddy hypothesis, which describes the large-scale structure as inactive, in the sense
that they do not contain Reynolds stress. Del Álamo and Jiménez (2003)[64] show that the
large-scale structures are stream-wise elongated anisotropic motions similar to near-wall
streaks, but of a size comparable to or even larger than the channel height. The practical
difficulty with these structures lies in the fact that a large experimental set-up or a compu-
tational domain at sufficiently high Reynolds number conditions is necessary to properly
capture their entire motions. This requirement has been the stumbling block to both ex-
periments and DNS for large-scale studies. One-point measurements have fundamental
difficulty in describing the spatial characteristics of large-scale structures. The validity of
a spectrum converted from frequency to wave-number using Taylor’s hypothesis for use
in large-scale analysis should be considered with caution.

Considering the fact that the size of the large-scales in the outer layer is at least com-
parable to the channel half-height and assuming that their outer motions are detached
from the wall and self-organized, it is expected that relatively coarse grids will be suffi-
cient to resolve their motions. On the other hand if they originate from the small-scale
organised structures close to the wall as proposed in the physical model of Adrian et al.
(2000)[5], then fine grid which discretise the near-wall turbulence is required to reproduce
the large-scale structures in the outer-layer. Large-scale structure penetrates deep into the
buffer-layer, and appear only in the stream-wise velocity.

Therefore grid requirement to reproduce the large-scale structures was analysed. Test-
case in table 3.7 in Chapter 3 is used here. Reτ ≈ 640 and this it the lower limit of the
Reynolds number to observe such structures. The findings on Del Álamo and Jiménez
(2003)[64] suggest that the structures in stream-wise velocity can be decomposed into
two components. One which has maximum intensity close to the wall, and consists of
anisotropic structures which scales in inner-variables. This structures widens, length-
ens and becomes more isotropic in the outer-layer. The other structure is present in the
outer-layer which has size λx ≤ 5H and λz ≤ 2H and penetrates into the buffer-layer. 2D
spatial pre-multiplied spectra (kxkzEu ′u ′/u2τ) of the stream-wise velocity component in
the near-wall and outer-layer region are presented in figures 5.1 and 5.2. The energy
spectrum multiplied by the wave-number in the logarithmic plot is the measure of the
stream-wise energy in the wave-length interval centred at λx, λz, and the total area over
the entire wave-number is equivalent to the turbulent energy of the stream-wise velocity
component. In both figures, spectra computed from the fine grid test-cases have satisfac-
tory collapse, whereas spectra computed from the coarse grid test-cases do not collapse.
The near-wall structures widen as they elongate because they progressively separate
from the 2D isotropy close to the wall (λx = λz). The outer-layer structure has two modes.
The first one is a quasi-isotropic structure with λx = 2λz, and the other one is a long
anisotropic structure whose size scale in H. Del Álamo and Jiménez (2003)[64] showed
that this anisotropic mode penetrates very deep in the wall-normal direction.

Del Álamo and Jiménez (2003)[64] also showed that the large-scale structures in the
wall-bounded turbulent flow originates from the wall and/or they penetrate deep into
the buffer-layer and have some kind of non-linear interaction with the near-wall small-
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Figure 5.1: Iso-contours of 2D pre-multiplied stream-wise velocity spectra (kxkzEu ′u ′/u2τ) at y+ ≈
15. Solid line - λx = λz, dash line - λ+x ≈ (λ+z)3.
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Figure 5.2: Iso-contours of 2D pre-multiplied stream-wise velocity spectra (kxkzEu ′u ′/u2τ) at
y/H = 0.5. Solid line - λx = λz, dash line - λx = 2λz and λz = 1.25H.

scale structures. Therefore, using a coarse mesh to investigate the large-scale features
will under-resolve the near-wall small-scale structures. This will hinder the reproduction
of large-scale flow features through simulation. Hence, the conclusions on the grid re-
quirement is similar as in Chapter 3. Well-resolved computational grid which discretise
the near-wall features must be used to correctly reproduce the outer-layer large-scale
physics.
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5.3 simulation at high reynolds & mach number

5.3.1 Validation of the simulations

In this section, compressible channel flow simulations atM = 0.5 and 3.0 are performed
using ILES. These simulations are compared to the incompressible reference DNS of Del
Alamo et al. (2004)[66] at Reτ ≈ 950 after a scaling transformation is used. The simulation
details are summarised in table 5.1. The values of Reb were chosen to obtain an effective

M Reb Lx × Ly × Lz Nx ×Ny ×Nz Reτ Re∗τ Mτ ufi/ub

0.5 20000
8πH× 2H× 3πH 628× 235× 943 1000 985 0.0247 0.0494

3.0
30000

2059 870 0.0993 0.0331

3.0refined 628× 300× 943 2108 850 0.0993 0.0331

Table 5.1: Simulation test-cases for studying inner-outer scales interaction at different M num-
bers.

Re∗τ close to 950, see Appendix D to find an approximate Reb for a given Re∗τ andM. The
obtained Re∗τ is 985 forM = 0.5 and Re∗τ = 870 forM = 3 (this latter value corresponds to
Reτ = 2059). Both simulations are performed using a large computational domain of size
Lx ×Ly ×Lz = 8πH× 2H× 3πH discretized with Nx ×Ny ×Nz = 628× 235× 943 grid points.
The grid resolution is such that ∆x∗ ≈ 40, ∆z∗ ≈ 10, ∆y∗min ≈ 2, and ∆y∗max ≈ 14, where the
* superscript here indicates that mesh sizes are scaled with the local viscous length scale
l̃∗ν(H̃) at the centre of the channel. Note that since the mesh size is kept constant in * units,
the mesh size increases in traditional wall units as the Mach number is increased, due to a
decrease in lν. Indeed, one has for example ∆y∗ = ∆yRe∗τ and ∆y+ = ∆yReτ, which gives
∆y+ = ∆y∗Reτ/Re∗τ. According to table 5.1, Reτ is multiplied by a factor of about 2 asM
increases from 0.5 to 3.0, while Re∗τ and ∆y∗ are kept constant by construction, and as a
result ∆y+ increases by a factor of 2. The first point off the wall is at y∗ = 2 for both Mach
numbers, which corresponds to y+ = 2 forM = 0.5, and y+ = 4 forM = 3.0. Also, the mesh
is such that there are 10 points for y∗ < 20, which means 10 points for y+ < 20 atM = 0.5,
but only 5 points for y+ < 20 at M = 3.0. Compared to typical grid resolutions for well
resolved LES in incompressible flows (requiring about 10 points within y+ = 20), it would
appear that the present resolution atM = 3.0 is insufficient to describe this region of the
flow, in which turbulence is produced and where large temperature gradients take place.
However, quantities such as turbulent intensities, correlations, or buffer layer size scale
in * units (see for example figure 5.3 below), which indicates that it is the discretisation
in * units (10 points for y∗ = 20) that should be maintained, as is the case here. To make
sure the grid is not too coarse at M = 3.0, another simulation with a refined grid in
the wall-normal direction (called M = 3.0refined in table 5.1) has been performed. The
refined grid has 300 points in the wall-normal direction, including 18 points to discretise
y+ < 20 with a first point at y+ ≈ 2, meaning the grid in the buffer layer now matches
the one at M = 0.5 in + units rather than in * units. This refinement changes the Reτ
by only about 2%, and the Reynolds stresses (in particular

√
u ′2) are unchanged. This is

important because most of the processing to follow is based on u ′.
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For a DNS at Reτ ≈ 950, one would require approximately 2.7 × 109 grid points[66].
For the present ILES approximately 0.14 × 109 grid points is used, which represents a
reduction factor of 19. In the x and z directions, the resolution is about 3-4 times coarser
than for the DNS, which determines the coefficient of the scheme according to the recipe
given in section 2.5.2.2. To save some computing time, the simulation at M = 3.0 was
initiated from a converged field atM = 0.5 rescaled in the following way:

• the mean stream-wise velocity profile atM = 0.5 was stretched toM = 3;
• the stream-wise velocity fluctuations atM = 0.5were added to the newly computed

mean velocity profile;

• random noise was added to the turbulent wall-normal and span-wise velocities.
No modification of the mean temperature profile was done but a rescaling would
probably have made the simulation converge faster.

The mean and rms stream-wise velocity profiles computed from our two simulations
are presented in figure 5.3. The two different normalizations introduced earlier (tradi-
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Figure 5.3: (a) Mean and (b) rms stream-wise velocity profiles atM = 0.5 and 3. Reference curves
are taken from Del Alamo et al. (2004)[66].

tional wall units indicated with +, or compressible scaling indicated with *) are used in
this figure. Specifically, on the x-axis, y∗ = y/l∗ν(y) is used as introduced in Chapter 4.
For scaling the mean flow in figure 5.3(a), the transformation proposed by Trettel and
Larsson (2016)[282] is used (see equation 4.20), it is well suited for isothermal walls. For

scaling the rms velocity
√
u ′2 in Fig. 5.3(b) the semi-local scaling technique introduced

by Coleman et al. (1995)[52] is used (see equation 4.21).

For the incompressible reference, and also at M = 0.5 for which there is almost no
compressible effect, there is no difference between the + and * scalings, and these cases
correspond to a single curve in the figures. AtM = 3, there is a large difference, and the
curve labelled M3.0 corresponds to + units while the curve labelled M3.0* corresponds
to the * units.
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At M = 0.5, there is an excellent agreement for the mean and rms velocity with the

reference data in figure 5.3, except for the slight over prediction of the
√
u ′2 peak. This

can be attributed to the coarse mesh used in the ILES. As expected, profiles at M = 3.0
(in + units) do not match the incompressible reference curves: the mean velocity pro-
file has a higher log-law intercept value and a steeper slope close to the wall compared
to the incompressible result, whereas the rms of stream-wise velocity is extremely over-
predicted. The scaled curve M3.0* is in much better agreement with the incompressible

reference even if the buffer layer peak of
√
u ′2 is slightly over-predicted compared to the

reference incompressible curve. As explained above, a grid refinement study has shown

that this overshoot does not result from poor discretisation, the statistics of
√
u ′2∗ be-

ing unchanged by a grid refinement in the buffer layer region. Modesti and Pirozzoli
(2016)[194] compared different compressible scaling techniques with DNS on a finer grid

and observed similar over-prediction of the
√
u ′2∗ peak with semi-local scaling transfor-

mation (see Fig. 11 in Modesti and Pirozzoli (2016)[194]). Hence, the over-prediction of√
u ′2∗ peak can be attributed to the unperfect semi-local scaling. Overall, a satisfactory

agreement is obtained with the ILES using scaling transformations.

5.3.2 Evidence of Large Scale Structures and their effect on near-wall scales

In this section large-scales are evidenced in the simulations performed in the previous
section, and their effect on the near-wall scales is also shown. An example of near-wall
streaks is presented in figure 5.4 together with the contours of the projection of filtered
large-scale structures. The procedure used to obtain these contours will be presented in
detail in Section 5.3.3. Near wall streaks are approximately few 1000 semi-local wall units
in length, with streak spacing of approximately 120 semi-local wall-units in span-wise
direction. For test-case at M = 0.5 (in figure 5.4), 1000lν ≈ H which means streaks are
1H long. Within the contour of High Momentum Large Scale Structure (HMLSS) we find
higher density of high-speed streaks (red structures), whereas within the contour of Low
Momentum Large Scale Structure (LMLSS) we find higher density of low-speed streaks
(blue structures). This is a visual expression of the amplitude modulation of near-wall
structures by large scale structures away from the wall mentioned in Section 5.1. In the

Figure 5.4: Colour map of u ′∗ at y∗ = 15 for an instantaneous velocity field at M = 0.5. This
shows near-wall streaks (in blue(red) for low(high)-speed streaks). The contours of
the High Momentum Large-Scale Structures (thick) and Low Momentum Large-Scale
Structures (thin) are also indicated.

remaining of this section we study this modulation with methods similar to those initially
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introduced by Mathis et al. (2009)[186] and also use semi-local scaling of the coordinates
in all the plots.

First, we need to separate the large scales from the small scales. Scale separation is tra-
ditionally seen in pre-multiplied spectra of turbulent velocity fluctuations. At the moder-
ately high Reynolds number used here, scale separation is more obvious in the span-wise
direction. The pre-multiplied spectrum of the stream-wise velocity in the span-wise di-
rection, kzEu ′u ′(kz,y), is given in figure 5.5(a) for both Mach numbers. In this particular

plot kzEu ′u ′(kz,y) has been normalised by the rms of the velocity
√
u ′2 for each y (this

tends to strengthen the separation between scales and is also used for example by Abe
et al. (2004)[1]). Here kz = 2π/λz is the wave-number in the span-wise direction, and λz

Figure 5.5: Pre-multiplied spectra, kzEu ′u ′(λz,y) obtained at several wall-normal distance y and
λ∗z = λ̃z

l̃ν(H̃) . The color map corresponds to M = 0.5 and and the contours to M =
3.0 (contour lines value: 0.3 - dashed, and 0.4 - solid black). The vertical black solid
line indicates the filter cut-off scale (λz,cut−off = 0.5H). Symbol x in (a) indicate the
inner- and outer-layer peak in the pre-multiplied spectra. Spatial u’ in the stream-wise
direction from the location of (b) outer-layer and (c) inner-layer spectral peak, and (d)
is the comparison of the low-pass filtered signal in (b) and (c).

the corresponding wavelength. Upon using semi-locally scaled wall-normal distance and
wave-length, the pre-multiplied spectra obtained at M = 0.5 and M = 3 compare well.
The inner-layer peak around y∗ ≈ 10− 15 and λ∗z ≈ 120 is due to the near-wall streaks, and
the peak around y ≈ 0.3H and λz ≈ H is due to the outer-layer large-scale structures. There
is an obvious scale separation between the inner- and outer-layer, and the scale λz,cut−off
separating the two regions is: λz,cut−off = 0.5H (indicated by a solid vertical line in fig-
ure 5.5(a)). Therefore, to obtain the large-scales, a low-pass Fourier filter is applied with
cut-off at λz,cut−off. Unless specified otherwise, in the following the filtering operation to
obtain large-scales is applied in the span-wise direction to the stream-wise velocity, for all
stream-wise and wall-normal locations. We will denote by u ′L(x,y, z, t) the large scale ve-
locity obtained from u ′(x,y, z, t) by applying the filter. By applying a high-pass filter with
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cut-off scale λz,cut−off instead of a low-pass one, we can of course obtain the small scales,
which are denoted by u ′s(x,y, z, t) (and we have u ′(x,y, z, t) = u ′L(x,y, z, t)+u ′s(x,y, z, t)).
An example of input and output of the low-pass filter is shown in Fig. 5.5(b-d), where a
sample of stream-wise velocity along the stream-wise direction is shown. Figure 5.5(b)
and (c) show the unfiltered velocity at a wall distance corresponding to the outer-layer
and inner-layer, respectively. The corresponding filtered data are shown in the same plot
in figure 5.5(d). Some correlation can be found between the two signals, which demon-
strates that the outer-layer large-scale are felt close to the wall. The large scale structures
are tilted in the forward direction, and the tilting angle will be needed below when we
address the modulation of the small scales by the large scales. To compute this tilting an-
gle the stream-wise correlation is computed between the low-pass filtered velocity away
from the wall and the low-pass filtered velocity at a reference point in the inner-layer.

Ru ′∗
Lrefu

′∗
L
(δx,y) = F−1 [conj (F[u ′∗Lref(x,yref)])F[u ′∗L (x,y)]]√

u ′2∗
Lref

√
u ′2∗L

(5.1)

where F is the Fourier transform and conj(⋅) is the complex conjugate. The cross-correlation
is obtained from the inverse Fourier transform of the cross-spectrum which is statistically
averaged in the span-wise direction and time. From the lag for maximal correlation as a
function of wall distance, we can calculate that the inclination angle.

θ = arctan(y−yref

δx
) (5.2)

The average inclination angle is between 13○ and 14○ for both Mach numbers. This result
is consistent with the values reported in Marusic and Heuer (2007)[180].
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Figure 5.6: Tilting angle of the large-scale structures computed from the lag of the maximum
cross-correlation and wall-normal displacement between two locations used for cross-
correlation. ◯ is the reference location which corresponds to the inner-layer spectral
peak.

Second, in order to show the modulation of the amplitude of the small-scales by the
large-scales, a manifestation of which has been shown in figure 5.4, we can apply the
method of Mathis et al. (2009)[186], who proposed to compute the correlation coefficient
between the large-scale velocity and the envelop of small-scale to quantify the scales
interaction. Schlatter and Örlü (2010)[241] cautioned the use of the correlation coefficient
introduced by Mathis et al. (2009)[186] because the correlation coefficient is actually mainly
determined by the skewness. To avoid being possibly misled by this problem Bernardini
and Pirozzoli (2011)[15] proposed to compute amplitude modulation effects using two-
point covariance, which is what is done here.

The covariance is computed from the following procedure (see figure 5.7):
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Raw u ′∗(x,y, z, t) field
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)]]

Figure 5.7: Decoupling procedure for quantifying inner-outer scales interaction.

1. the raw u ′∗(x,y, z, t) is low- and high-pass filtered in the spanwise direction (with
cut-off at λz,cut−off = 0.5H) to obtain u ′∗L (x,y, z, t) and u ′∗s (x,y, z, t), the large- and
small-scale velocity fluctuations;

2. the Hilbert transform of the small-scale fluctuation field from step 1 is computed
in the span-wise direction for all stream-wise and wall-normal locations to find the
envelop of the small-scale fluctuation, denoted by u ′∗se(x,y, z, t);

3. the envelop of the small-scale fluctuations is again low-pass filtered (with cut-off
at λz,cut−off = 0.5H), which provides the large-scale envelope of the small scales,
denoted u ′∗seL(x,y, z, t);

4. the two-point amplitude modulation covariance is finally computed between the
large-scale velocity fluctuation at position y∗L and the large-scale envelop of small-
scale velocity fluctuation at position y∗seL. It is given by:

C (y∗L,y∗seL,δx) = F−1 [conj (F [u ′∗L (x,y∗L)])F [u ′∗seL(x,y∗seL)]] (5.3)

where F is the Fourier transform and conj(⋅) represents the complex conjugate. The
covariance C is obtained by inverse Fourier transform of the cross-spectrum (with
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statistical averaging on z and t). It depends on the axial shift δx between the two
locations y∗L and y∗seL, and in the following the shift is such that the correlated posi-
tions correspond to the inclination angle of 14○ of the large scale structure obtained
above. However, we have verified that the covariance map is not extremely sensi-
tive to the stream-wise shift and taking δx = 0 (correlated positions on a vertical,
wall-normal, line) would not change the result.

Figure 5.8 presents the two-point amplitude modulation covariance for both Mach num-
bers. The wall distance in these plots is the semi-local scaled wall-normal coordinate.
For y∗L ≈ 100 − 150 and y∗seL ≈ 10 we have a peak which is the evidence of top-down
mechanism in the form of amplitude modulation of near-wall small scales (at y∗seL ≈ 10)
due to outer layer large scale structures (from y∗L ≈ 100 − 150) from the lower part of
the log-layer. With the scaling used the covariance maps at both Mach numbers are very
similar, showing that the top-down mechanism is not dependent on the Mach number.
These results indicate that we have similar base-line test cases for a near incompressible
and supersonic channel flow to study large scale effects.

Figure 5.8: Two-point amplitude modulation covariance map C(y∗L,y∗seL,δx) forM = 0.5 (colour
map) and M = 3.0 (contour lines at value (a) -0.1 - white, (b) 0.1 - solid black and
(c) 0.25 - dashed black). δx is such that the two points being correlated are along a
inclination angle of the large-scale structures (14○).

5.3.3 Procedure to extract large-scale structures

In this section a feature extraction technique is proposed which can be used for detecting
HMLSS and LMLSS. We have seen in Section 5.1 that depending on the Reynolds number
the stream-wise length of the large scales is reported to be between 2H and 20H. For
the channel flows considered presently, the average extent of the large scale structure
computed from the spectra is found to be H in the span-wise direction, and about 4-
6H in the stream-wise direction, although there are a variety of large-scale structures in
the flow field. These observations are consistent with Abe et al. (2004)[1], Lee and Sung
(2011)[165] and Lee and Moser (2015)[166], among others. The feature extraction procedure
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used for the detection and projection of HMLSS and LMLSS for conditional averaging is
based on the following steps:

1. a) The velocity fluctuation u ′(x,y, z, t) is low-pass filtered in the span-wise direc-
tion using the same Fourier filter as in Section 5.3.2 to obtain the large scale
fluctuation u ′L(x,y, z, t). The filter cut-off scale is λz,cut−off = 0.5H as before.

b) The resulting field u ′L(x,y, z, t) is filtered with a Fourier low-pass filter in the
stream-wise direction to obtain the large scale fluctuation u ′LL(x,y, z, t). Sev-
eral cut-off scales λx,cut−off are used: H, 3H, 6H, and 12H and results obtained
with each of them will be compared below.

c) The small scales are obtained by applying high-pass filters instead of low-pass
ones. The result of the high-pass filter in the span-wise direction is denoted
u ′s(x,y, z, t) as in Section 5.3.2, and a further application of the filter in the
stream-wise direction provides the small scale fluctuation u ′ss(x,y, z, t).

2. The filtered field is thresholded to differentiate the large-scale structures into HMLSS

and LMLSS for conditional averaging:

• u ′LL < −uthreshold is a LMLSS

• u ′LL > uthreshold is a HMLSS

In incompressible flows the threshold value uthreshold is commonly chosen to be a
few times uτ (see for example Yoon et al. (2016)[299]). However, for the present in-
vestigation where the flow is compressible with a large Mach number, the threshold
value uthreshold is computed relatively to u∗τ(y). Results obtained for uthreshold = uτ
and uthreshold = u∗τ(y) will be presented below and it will be shown that the latter
choice warrants that the effect of the large scales on the wall remains the same for
both Mach numbers.

Moreover, a precise choice for uthreshold can be made by considering how energy
is distributed between the small-scales and the large-scales. Semi-locally scaled

values of
√
u ′2∗ for the large- and small-scale velocity fluctuations are computed

separately: that is, the quantities
√
u ′2LL

∗
and

√
u ′2ss

∗
are computed, and they are

presented in figure 5.9 for both Mach numbers. The curves for the large- and
small-scale collapse reasonably well on their respective counterpart for both Mach
numbers (which we knew already from figure 5.3 for the total fluctuation, curves

M0.5 and M3.0*).
√
u ′2ss

∗
for the small-scale velocity (curves M0.5S and M3.0S*) is

dominant close to the wall and from the figure it is clear that the buffer layer peak

is due to the small-scales. On the other hand
√
u ′2LL

∗
for the large-scale (curves

M0.5L and M3.0L*) is dominant away from the wall. The Reynolds number is not
high enough to have a distinct outer-layer peak, nevertheless the emergence of this

peak is witnessed. Semi-local wall variables scales total
√
u ′2 and rms of small

and large-scale separately. The horizontal dashed line at
√
u ′2∗ = 1 is the threshold

chosen for the structure extraction. uthreshold = u∗τ(y) is a reasonable choice since
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Figure 5.9: Filtered
√
u ′2∗ for the large- and small-scale stream-wise velocity. M0.5 and M3.0* is

the global
√
u ′2∗; M0.5s, M3.0s* are the

√
u ′2ss

∗
of small-scales; and M0.5L, M3.0L* are

the
√
u ′2LL

∗
of large-scale. The horizontal dashed line

√
u ′2∗ = 1 indicates the chosen

threshold uthreshold for the feature extraction.

√
u ′2LL

∗
for the large-scale is greater than 1 from the buffer layer to the outer-layer

of the flow.

3. Large-scale structures have vertical limits (will be shown later in Section 5.3.4) there-
fore, 2D images of the large-scale structures were produced by projecting all the de-
tected structures above y∗ = 20 onto a plane P(x, z) parallel to the flow. P(x, z) is an
auxiliary plane which is used to define where the large-scale structures are present,
and of which type they are. Projection is computed according to the following rule:

P(x, z) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+1 for HMLSS

−1 for LMLSS

0 otherwise

If the detected structures overlap each other in the wall-normal direction then the
projection will be P(x, z) = 0. It ensures that the HMLSS and the LMLSS are perfectly
differentiated from each other. The current choice of projecting a large-scale struc-
ture is very simple and straightforward approach since it captures the main body
of the structure, while ensuring that the detected structure do not overlap. The con-
tour lines in figures 5.4 and 5.10(b) are the edges of the regions having P(x, z) = ±1.

4. Finally, conditional averaging is performed: the original unfiltered flow fields u ′(x,y, z, t)
are averaged in regions P(x, z) = +1 and P(x, z) = −1 to study the effect of HMLSS

and LMLSS on the turbulence.

Figure 5.10 presents an example of flow-field before step 1 and after step 4 of the detec-
tion procedure. Before step 1 of the detection procedure, in figure 5.10(a), both HMLSS

and LMLSS of various scales are found in the flow-field. In figure 5.10(b) contours of the
projection of the filtered large-scale motions after step 4 of the detection procedure are
presented. In this example, a low-pass filter with λx,cut−off = 6H was used. Thin(thick)
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Figure 5.10: (a) Iso-contour of the HMLSS (u ′∗ = 3) in orange and LMLSS (u ′∗ = −3) in blue
and (b) Contour of the projection of the filtered HMLSS(thick) and LMLSS(thin) after
the detection procedure and slice of stream-wise vorticity at y∗ = 15 (blue: negative,
orange: positive) close to wall. Snapshot taken from test-case atM = 0.5

contour lines enclose LMLSS(HMLSS). A colormap of the stream-wise vorticity ωx close to
wall is also presented in figure 5.10(b). High density of stream-wise vorticity is associ-
ated with the HMLSS, indicating a more active bursting process beneath these structures.
Evidence of this can also be seen in figure 5.4, with more instabilities associated with the
HMLSS, involving streak breakdown and enhanced regenerative cycle.

5.3.4 Organisation of large-scale structures

The objective in this section is to (a) educe the shape of the large-scale structures by
conditional averaging and (b) see the effect of scaling on the educed structure. The idea
is to check the robustness of the feature extraction technique and choice of scaling. The
conditional averaging is performed as soon as a large-scale structure is detected, i.e.,
when the large-scale velocity fluctuation exceeds some threshold at a chosen reference
wall-normal location yref.

2D and 3D conditional analysis will be performed in this section to understand the
large-scale structures. Firstly, the 2D conditional average is defined as:

⟨u ′+(y,δz)∣LMLSS⟩ = ⟨u ′+(x,y, z+ δz) ∣ (u ′L+(x,yref, z) < −1)⟩ (5.4)

⟨u ′∗(y,δz)∣LMLSS⟩ = ⟨u ′∗(x,y, z+ δz) ∣ (u ′L∗(x,yref, z) < −1)⟩ (5.5)
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Figure 5.11: Conditionally averaged LMLSS (a, b, c, d) ⟨u ′∗(y,δz)∣LMLSS⟩ and (e, f)⟨u ′+(y,δz)∣LMLSS⟩ for (a, b) M = 0.5 and (c, d, e, f) M = 3.0. Result plotted against
distance scaled with (a, c, e) characteristics flow length-scale H, (b, d) semi-local

scaled viscous length-scale (a∗ = ã

l̃ν(ỹ) and (f) conventional viscous length-scale

(a+ = ã

l̃ν
). Arrows show vector due to the conditional average of v ′ and w ′ based

on respective conditional event for each figure. Symbol + in white is each figure is
the location of the conditional event. Solid contour line is for ⟨u ′∗(y,δz)∣LMLSS⟩ = 0.3
or ⟨u ′+(y,δz)∣LMLSS⟩ = 0.3 and dashed contour line for ⟨u ′∗(y,δz)∣LMLSS⟩ = −0.2 or⟨u ′+(y,δz)∣LMLSS⟩ = −0.2.
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Equation 5.4 is used when conventional wall-units are used for the threshold and
equation 5.5 when semi-local scaling is used. ⟨ ⟩ is the average of all conditional event
detected in the stream- and span-wise directions and time. Results are plotted with the
conventional scaling and semi-local scaling. Conditional event is from the location (yref)
of the outer-layer spectral peak in figure 5.5(a). Results of the 2D conditional average is
presented in figure 5.11 and, one can find that the LMLSS is flanked by HMLSS. Similar ob-
servation was also made in Fig. 7 of Hutchins and Marusic (2007)[126]. In the wall-normal
direction contour of the averaged structure is mostly parallel. Therefore the choice of pro-
jecting the detected structure in the wall-normal direction as presented in Section 5.3.3
will not affect the results. Currently, conditional analysis for LMLSS is only presented, for
HMLSS similar results were obtained (not shown here).

When conditional event was detected and scaled with semi-local friction velocity and
the coordinates scaled in semi-local viscous length-scale (equation 5.5), atM = 0.5 and 3
similar results are obtained in figure 5.11(a – d): averaged structures at differentM have
similar dimensions in the y–z plane (figures 5.11(b) and 5.11(d)). The structure width is
about 500l∗ν. In Figures 5.11(b) and 5.11(d), both wall-normal and span-wise coordinates
was scaled with the semi-local length scale, and skewed contour map was found (see
figure 5.11(d)). Figure 4.2 shows the wall-normal dependence of semi-local length-scale
l∗ν at M = 3. At the wall l∗ν is twice smaller compared the channel centre. At M = 3
conventional scaling and thresholding (equation 5.4) approach was also tested. With con-
ventional scaling wider structure (figure 5.11(f)) was found (approximately twice wider
in the span-wise direction, 500 wall-units wide at M = 0.5 and 1000 wall-units wide atM = 3). Regardless of the choice of scaling for the conditional event the size of the struc-
ture in outer-variables was constant. However this does not mean scaling is not required
for the feature extraction. The need for proper scaling is justified in the following.

Example for the thresholding based on different criteria is shown in figure 5.12. Raw
stream-wise velocity at M = 3 in the x − z plane at y/H = 0.3 (location of outer-layer
spectral peak in figure 5.5(a)) is shown in the figure. Contour of the detected high- and
low-momentum regions is shown after thresholding u ′LL based on uτ and u∗τ(y). Thresh-
olding based on uτ leads to more detection, due to improper scaling. For instance, in
figure 5.9, rms of both large- and small-scale velocity fluctuations at differentM number
collapse satisfactorily after proper scaling. However, if similar results were computed
with conventional scaling, then rms of both large- and small-scale velocity will be over-
predicted at higher M (see for example figure 5.3(b)). The need for scaling will be dis-
cussed further in the following section.

Another interesting feature which can be noticed in figure 5.12 is the size and organi-
sation of large-scale structures. For example, within the yellow rectangle in the figure a
long meandering low- and high-momentum regions of length approximately 20H can be
found. In the same region after thresholding, multiple low- and high-momentum regions
of length 2H− 3H was detected. This poses a question, whether the outer-layer structures
are really very large, or are they group of multiple large-scale structures? Another inter-
esting question is the organisation of these structures. These questions will be answered
below.
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Figure 5.12: Example of detected large-scale structures after different thresholding criteria atM = 3. Data is taken at the location of the outer-layer spectral peak in figure 5.5(a)
y/H = 0.3. Gray scale contour map is used for the raw stream-wise velocity field,
black(white) colour is for low-(high-)momentum regions. Green colour for the criteria
based on (a) u ′LL < −uτ and (b) u ′LL > uτ and Magenta for criteria based on
semi-local threshold (c) u ′LL < −u∗τ(y = 0.3H) and (d) u ′LL > u∗τ(y = 0.3H).
Yellow rectangle is used to discuss the length and organisation of the large-scale
structures.

The conditional averaging is now performed in 3D, and it is computed as:

⟨u ′+(δx,y,δz)∣HMLSS⟩ = ⟨u ′+LL(x+ δx,y, z+ δz) ∣ u ′+LL(x,yref, z) > 1⟩ (5.6)

⟨u ′∗(δx,y,δz)∣HMLSS⟩ = ⟨u ′∗LL(x+ δx,y, z+ δz) ∣ u ′∗LL(x,yref, z) > 1⟩ (5.7)

The conditional event was looked in the filtered field u ′LL at y/H = 0.3, and ⟨ ⟩ is the av-
erage of all conditional event detected in the stream- and span-wise direction and time.
Conditionally averaged 3D HMLSS is presented in figure 5.13. Slice from the figure 5.13 at
δx = 0 and δz = 0 will give similar result as in figure 5.11. A large-scale structure will be
flanked by a pair of large-scale structures of opposite sign (in figure 5.13 neighbouring
LMLSS is not shown). Another example will be provided in figure 5.16. In figure 5.13,
results obtained after averaging the filtered field is shown, similar results were obtained
when the raw-field was averaged based on the conditional event from the filtered field
(see figure 5.16). In figure 5.13(a, b) results from M = 0.5 and 3 with semi-locally scaled
threshold are presented. The dimensions of the averaged structures are more or less
equal. Additionally in figure 5.13(b, c) conditional average based on uτ and u∗τ is pre-
sented atM = 3. The dimension of the averaged structure is almost equal with different
threshold criteria.

Footprint of the averaged structure in figure 5.13 is presented in figures 5.14 and 5.15.
Footprint is estimated by projecting the averaged structure in the wall-normal direction
on to an auxiliary plane (similar to the detection procedure in Section 5.3.3). Structure
above y+ > 20 or y∗ > 20 only is used for the projection. In figure 5.14, the structure
detection is based on uτ, and the footprint is scaled with lν and H respectively. A clear
difference can be seen in figure 5.14(a), when the footprint is scaled with lν. AtM = 3, lν
is approximately half compared to the M = 0.5. When the same footprint is scaled with
outer flow unit H, satisfactory agreement is observed.
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Figure 5.13: Conditionally averaged 3D HMLSS between size 3H − 6H for (a) M = 0.5 and (b, c)M = 3. Conditional event is from the location of the outer-layer spectral peak in figure
5.5(a). Condition for (a, b) u ′LL(x,yref, z) > u∗τ(y = 0.3H), and (c) u ′LL(x,yref, z) > uτ.
Isosurface of (a, b) ⟨u ′∗(δx,y,δz)∣HMLSS⟩ = 0.5 and (c) ⟨u ′+(δx,y,δz)∣HMLSS⟩ = 0.5.

In figure 5.15, the threshold was based on u∗τ(y). The estimated footprint of the large-
scale structure is scaled with semi-local length scale in figures 5.15(a) and H in figure
5.15(b). For figure 5.15(a), size of the structure was scaled with l∗ν(y). Since l∗ν(y) varies
for M = 3 (twice lower at the walls compared to the channel centre, see figure 4.2), the
structure is stretched near the wall (see figure 5.11(d) for similar example). Nevertheless,
reasonable agreement was found between the footprint at differentM with both scaling
techniques.

It can be concluded that, footprint of the large-scale structure has similar size when
scaled in H regardless the thresholding criteria for different M (figures 5.14(b) and
5.15(b)). But more structures are detected when scaled with lν (see figure 5.12). Foot-
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Figure 5.14: Comparison of large-scale footprint at different M with detection based on conven-
tional wall-units. Size of the foot-print scaled in (a) conventional wall-units and (b)
H. Solid curve forM = 0.5 and dashed line forM = 3.
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Figure 5.15: Comparison of large-scale footprint at different M with detection based on semi-
local units. Size of the foot-print scaled in (a) semi-local units and (b) H. Solid curve
forM = 0.5 and dashed line forM = 3.

prints have similar size when the threshold was based on u∗τ(y) at differentM numbers,
and larger size at higherM with threshold based on uτ.

Conditional average of HMLSS from the raw field based on the event at y/H = 0.3 is
defined as follows:

⟨u ′∗raw(δx,y,δz)∣HMLSS⟩ = ⟨u ′∗(x+ δx,y, z+ δz) ∣ u ′∗LL(x,yref, z) > 1⟩ (5.8)

The result is presented in figure 5.16. Conditionally averaged HMLSS is surrounded by the
LMLSS on all four sides. Similar results was obtained for conditional average of LMLSS (not
shown here). By connecting figure 5.16 to figure 5.12, one can find that away from the
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Figure 5.16: Conditionally averaged 3D HMLSS between size 3H − 6H for M = 3. Conditional
event is from the location of the outer-layer spectral peak in figure 5.5(a). Conditional
event is u ′LL(x,yref, z) > u∗τ(y = 0.3H). Isosurface (a) orange - ⟨u ′∗raw(δx,y,δz)∣HMLSS⟩ =
0.45 and (b) blue - ⟨u ′∗raw(δx,y,δz)∣HMLSS⟩ = −0.3. Dashed curves indicate the merging
of large-scale structures away from the wall.

wall large-scale structures of the same type group together to form a long meandering
structure (dashed curves in figure 5.16). This answers the above question about the length
and organisation of the large-scale structures. These results in figures 5.11 – 5.16 justifies
the choice of (a) semi-local scaling, (b) projection of detected large-scale structure in the
wall-normal direction and (c) outer-variable H to scale the large-scale structure size.

5.3.5 Quantification of large-scale influence

The detection procedure detailed in Section 5.3.3 is used to perform conditional analysis
based on the projection of HMLSS and LMLSS. Conditional analysis was performed for
different cut-off scales in the stream-wise direction and the resulting percentage of area
occupied by the projection of large-scale motions is presented in table 5.2. The percentage
of change in the skin-friction coefficient compared to the overall skin-friction coefficient
and the percentage of contribution to the drag coefficient, for both HMLSS and LMLSS,
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are presented in tables 5.3 and 5.4, respectively. The change in the drag coefficient is
computed as

∆cf% = (ccond
f − cref

f )
cref
f

× 100% (5.9)

where the drag coefficient is defined by:

cf = 2τw

ρbu
2
b

(5.10)

In these equations, creff is the global skin friction coefficient computed from all the
unfiltered original flow fields of the considered configuration. For the HMLSS, ccond

f is
computed from equation 5.10 in which τw is computed from the conditional average
uHMLSS(y) corresponding to this type of region. For the LMLSS, the same is done with τw
computed from the conditional average uLMLSS(y). The conditional ccond

f is then used to
compute the change in drag coefficient with respect to the global drag coefficient creff .

The results in tables 5.2 – 5.4, all depend on the detection procedure detailed in Section
5.3.3, and thus depend on the threshold value uthreshold in step 2 of this procedure. ForM = 3.0, two types of thresholding were tested: (a) thresholding based on conventional
wall-variables uthreshold = uτ, and (b) thresholding based on semi-local scaling uthreshold =
u∗τ(y). Results obtained with conventional scaling are tabulated under column M3.0 and
those obtained with semi-local thresholding are under column M3.0* in tables 5.2, 5.3 and
5.4. As mentioned in previous section, span-wise cut-off for the low-pass Fourier filter
was λz,cut−off = 0.5H. Conditional analysis was performed with different λx,cut−off = H, 3H,
6H and 12H in the stream-wise direction to understand the features of different large-
scale structures.

M0.5 M3.0 M3.0*

λx,cut−off HMLSS LMLSS HMLSS LMLSS HMLSS LMLSS

H 27 28 35 38 28 30

3H 22 23 34 37 23 25

6H 16 17 32 35 19 20

12H 9 11 28 29 14 14

Table 5.2: Percentage of area occupied by the projection of HMLSS and LMLSS at M=0.5 and 3.0

From table 5.2 it is found that both HMLSS and LMLSS occupy equivalent area. With
traditional scaling, reported under column M3.0, 20%– 30% increase in the combined
area (HMLSS + LMLSS) is found compared to the results obtained for M = 0.5, whereas
with semi-local thresholding similar percentage of the area are found at M = 0.5 andM = 3.0 (columns M0.5 and M3.0* in table 5.2). Hence by properly scaling the data at
higher Mach number, we find that the large-scale structures are Mach independent except
maybe at 12H. As expected, with increasing λx,cut−off, the number of structures detected
is decreased: approximately 55% – 60% of the area is occupied by structures greater
than H including HMLSS and LMLSS, whereas approximately 20% – 28% of the area is
occupied by structures greater than 12H. Earlier in figure 5.12, it was shown that with
thresholding based on conventional friction velocity more high- and low-momentum
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large-scale regions were detected. From the results in the table it is now clear that this is
an over-estimation due to poor scaling technique.

M0.5 M3.0 M3.0*

λx,cut−off HMLSS LMLSS HMLSS LMLSS HMLSS LMLSS

H 4.5 -5.3 3.7 -3.7 3.7 -3.9

3H 5.1 -5.6 3.8 -3.8 4.0 -4.4

6H 6.2 -6.3 4.0 -4.0 4.6 -5.1

12H 6.8 -7.5 4.3 -4.6 5.6 -6.4

Table 5.3: Percentage of ∆cf for HMLSS and LMLSS at M=0.5 and 3.0 with respect to global cref
f .

∆cf% for HMLSS and LMLSS at M = 0.5 and M = 3 is presented in table 5.3. As for the
results reported in table 5.2, values obtained for M = 0.5 and M = 3.0 are closer when
a thresholding based on semi-local u∗τ is used. A trend observable in the table is that
the larger structures have higher influence on the skin friction coefficient. HMLSS greater
than 12H has about 7% higher skin friction, whereas LMLSS has 7% lower skin friction
compared to the global value.

M0.5 M3.0 M3.0*

λx,cut−off HMLSS LMLSS HMLSS LMLSS HMLSS LMLSS

H 28.2 26.5 36.6 36.6 29.6 29.2

3H 23.1 21.7 36.1 36.3 24.8 23.9

6H 16.9 15.9 33.6 33.9 20.3 18.7

12H 9.6 10.1 28.7 27.7 14.8 13.1

Table 5.4: Percentage of contribution to cf for HMLSS and LMLSS at M=0.5 and 3.

Percentage of contribution to cf is presented in table 5.4 (this table merely results
from a combination of tables 5.2 and table 5.3). Again a thresholding based on semi-local
scaling provides a better agreement between M = 0.5 and M = 3.0 compared with the
thresholding based on uτ, although results do not match perfectly well for larger values
of λx,cut−off (see columns M0.5 and M3.0*, for λx,cut−off = 12H, in table 5.4). At Reτ = 577,
Yoon et al. (2016)[299] found that the large scale structures having sizes greater than H
contribute 45% to the skin friction coefficient, with 25% coming from low-momentum
structures and 20% coming from high-momentum structures. In the present work, we
find that HMLSS and LMLSS have equivalent contributions. Structures greater than H con-
tribute approximately 55% – 60% (HMLSS + LMLSS) to the skin-friction, whereas structures
grater than 12H contribute 20% – 25% to the skin friction (HMLSS + LMLSS). These result
show the importance of large-scale structures for drag reduction.

Statistics computed from the conditional analysis are presented in figure 5.17 where√
u ′2, u ′v ′ and

√
ω ′2
x are plotted against wall-normal distance scaled with inner and

outer units, where inner units are computed from the whole flow field. For M = 3.0,
the inner units are based on semi-local (compressible) scaling in figure 5.17(d-f) (thus
the label M3.0* for these figures) and on traditional wall scaling in figure 5.17(g-i) (label
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M3.0). Accordingly, the thresholding in step 2 of the large scale detection procedure is
based on u∗τ for figure 5.17(d-f) and on uτ for figure 5.17(g-i). Results for M = 0.5 are
presented in figure 5.17(a-c) where inner units are based on semi-local scaling, but at
such a low Mach number the difference between semi-local scaling and traditional wall
scaling is insignificant. In the legend in figure 5.17, HS01 and LS01 refer respectively to
HMLSS and LMLSS obtained with a stream-wise Fourier filter cut-off scale λx,cut−off = H,
while HS12 and LS12 refer to HMLSS and LMLSS obtained with λx,cut−off = 12H.

With traditional wall scaling at M = 3, √
u ′2 and u ′v ′ have higher peak values com-

pared toM = 0.5 (compare figure 5.17(a) vs 5.17(g) and figure 5.17(b) vs 5.17(h)) whereas√
ω ′2
x is weaker compared toM = 0.5 (figure 5.17(c) vs 5.17(i)). Similarly, peaks of

√
u ′2

and u ′v ′ are found at y+ ≈ 30 and 160 respectively with traditional wall scaling, values
larger from those atM = 0.5, which results from coordinate stretching (because of higher
Reτ at M = 3). On the contrary, semi-local scaled results at M = 3.0 (M3.0*) are very
similar to the results obtained atM = 0.5. This shows that gross properties of large-scale
structures do not depend too much on the Mach number (in the range investigated, that
is, non hypersonic) as long as the proper scaling transformation is used to compensate for
the compressibility effects (figure 5.17(a) vs 5.17(d); figure 5.17(b) vs 5.17(e); and figure
5.17(c) vs 5.17(f)).

Away from the wall in the outer part of the log-layer LMLSS have higher contribution

to
√
u ′2 and u ′v ′ compared to the global curve (see figure 5.17(a-f)), whereas near the

wall and lower-part of the log-layer HMLSS have a dominant effect. For high Reynolds

number flow, it is well known that the near-wall
√
u ′2 peak and the secondary peak

away from the wall do no scale in wall units. From figure 5.9, it is already clear that the
near-wall peak is due to the small-scales and the secondary peak is due to the large-scale
contribution. From the conditional analysis it is clear that the LMLSS contributes more to

the outer peak of the
√
u ′2 at higher Reynolds number and the HMLSS to the inner peak.

A similar trend was observed for other velocity component as-well. This trend in the
results is consistent with the findings of Lee and Moser (2015)[166] at similar Re∗τ = 930.
They disagree with the findings of Yoon et al. (2016)[299] with no-slip wall simulations,
who found increased turbulence for LMLSS across entire channel height. Close to wall

increased Reynolds stress and enhanced
√
ω ′2
x is found for HMLSS, which supports the

observations found in figures 5.4 and 5.10(b), which both present enhanced turbulence
activity associated with HMLSS due to bursting process leading to streak breakdown and
strong vorticity which results in increased momentum transfer and higher turbulence
intensity close to the wall. Kravchenko et al. (1993)[155] have shown that the skin friction
correlates with the stream-wise vortices near the wall, which explains the increased drag

associated with HMLSS from the outer layer. For
√
u ′2 and u ′v ′ the curves of HMLSS and

LMLSS cross at around y∗ = 250. Away from the wall, LMLSS become more dominant, they
carry more energy and enhanced Reynolds stress.

In figure 5.18, conditionally averaged results are scaled with their respective uτ (one
value of uτ for HMLSS, and a different value of uτ for LMLSS). Traditional wall units are
sufficient at low Mach number,M = 0.5). Data in figure 5.18 are the same as data in figure
5.17(a), scaled differently. Close to wall we find excellent collapse for the HMLSS and
LMLSS on the global result. Near the wall even though both HMLSS and LMLSS have slightly
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Figure 5.17: Represented in inner and outer scalings are: (a, d, g) rms stream-wise velocity; (b, e,
h) Reynolds stress; and (c, f, i) rms stream-wise vorticity. The Mach number is: (a-c)
M0.5; (d-f) M3.0* ; (g-i) M3.0. In (a, b, c, d, e, f) inner units are based on semi-local
scaling; in (g-i) inner units are based on conventional wall-units, where inner units
(either traditional or semi-locally scaled) are computed from the whole flow field. In
the legend, "Global" represents overall statistics for the whole flow field. Other labels
correspond to conditional averaging: HS01 and LS01 stand for HMLSS and LMLSS
with λx,cut−off = H; HS12 and LS12 stand for HMLSS and LMLSS with λx,cut−off = 12H.

differentiable near-wall regeneration cycle, once they are scaled with their respective
wall-friction they exhibit an equilibrium state which is similar to the global near-wall
turbulence. Away from the wall, they do not collapse any more and LMLSS have a larger

secondary peak value. This again suggests that the outer peak of
√
u ′2 traditionally
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observed at high Reynolds numbers (see figure 5.9) is especially a manifestation of LMLSS

away from the wall.

y+

√ u
′2+

Global
HS01
LS01

100 101 102 103
0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.18: Conditional average of
√
u ′2 for HMLSS and LMLSS atM = 0.5. Results for HMLSS

and LMLSS are scaled using their respective uτ.

In the results presented above, we found similar trends as in Lee and Moser (2015)[166]

at an equivalent Reynolds number and domain size, but some differences on the results
for HMLSS and LMLSS compared with Yoon et al. (2016)[299] whose DNS at Re∗τ = 577 was
performed in a larger domain of size Lx × Ly × Lz = 10πH × 2H × 3πH. Hence, to check
the validity of (a) large scale influence, (b) Reynolds number effect and (c) domain size,
the conditional analysis was repeated for Re∗τ = 590 and 640 at M = 0.1 and 0.5. The
simulation at Re∗τ = 590 was performed in a very small domain of size 2πH × 2H × πH,
whereas the simulation at Re∗τ = 640 was performed in a domain of size 4πH× 2H× 4πH.
Similar mesh resolutions as reported in table 5.1 were used for the new simulations. For
Re∗τ = 590, λx,cut−off = 3H and for Re∗τ = 640, λx,cut−off = 6H were chosen. The results
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Figure 5.19: Conditional average of
√
u ′2 for Re∗τ = 590 atM = 0.1 and Re∗τ = 640 atM = 0.5

in figure 5.19 show that, compared to values of the global
√
u ′2 for the whole flow

field, higher values of
√
u ′2 are obtained close to the wall for HMLSS, and smaller values
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are obtained away from the wall. The situation reverses for the LMLSS. The trends are
thus similar to those reported above in figure 5.17 and the conclusions given above are
expected to be valid at least in the range Re∗τ = 590− 950 for Mach numbers up to 3.

5.4 conclusion

An ILES of a nearly incompressible channel flow at M = 0.5 and of a compressible chan-
nel at M = 3 were performed in order to study the effect of the large-scales together
with the effect of compressibility. Both simulations were performed for the same effec-
tive Reynolds number Re∗τ = 950 so that similar turbulence statistics are obtained for
the two Mach numbers. It has been verified that the outer-layer large scales modulate
the amplitude of the near-wall small scales by straightforward flow visualization and
by using the two-point covariance between the amplitude of the large scales and that of
the low-pass filtered envelop of the small scales. To gain more insight into this effect, a
simple large-scale detection procedure is proposed which involves obtaining a footprint
on the wall of the 2D filtered large-scale motions. Putting apart undetermined regions,
this allows to segregate wall positions either into regions sitting below high-momentum
large-scale structures or into regions sitting below low-momentum large-scale structures.
Conditional averaging can then be performed for each of these regions. Semi-local thresh-
olding was used in order to compensate the compressibility effects at high Mach number.
In practice it means that thresholding in the large-scale detection procedure has to use a
threshold based on a semi-local scale and not a threshold based on the traditional friction
velocity. If this is done, gross quantities and statistics characterising large-scale structures
have comparable values at both Mach numbers. Both high- and low momentum large-
scale structures occupy similar area. Below high-momentum large-scale structures and
close to the wall there is an increased turbulent activity with momentum transfer, vor-
ticity, and skin-friction larger than average. For low-momentum large-scale structures, it
is in the outer-layer region that the turbulent activity is larger than average. The low-
momentum large-scale structures may thus contribute to the peak in turbulent energy
arising in the outer layer at high Reynolds numbers. The large-scale structures have
an important effect on the drag, since structures greater than 3H contribute approxi-
mately 50% to the skin-friction. High(low)-momentum large-scale structures larger than
12H have approximately 7% more (less) drag compared to the global drag. This sup-
ports the argument of controlling large-scale events in the outer-layer for efficient drag
reduction[43, 67, 247].

At the Mach numbers up to 3 investigated here, compressibility changes mainly the
mean temperature and density gradients of the flow, while turbulent fluctuations are
nearly incompressible. Thresholding the velocity based on the local friction velocity is
only valid in these conditions. It would be interesting to study how this can be carried
over to compressible fluctuations at much higher Mach numbers.
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6
T E M P O R A L S I M U L AT I O N O F C H A N N E L F L O W W I T H
A C O U S T I C L I N E R

The objective of this chapter is to investigate the turbulent channel flow in the presence
of an acoustic liner, and observe what changes in the flow may result from such material
(acoustic liner) compared to a channel with rigid walls. In many practical situations,
liners are subject to high speed flows and turbulence, and much effort has been devoted
for studying the effect of grazing flow on the liner impedance. It is for example, well
known that as a result of the interaction between the acoustic and vortical modes in
the holes of the perforated face sheet, the resistance increases linearly with the grazing
flow speed, whereas the reactance tends to decrease[96, 102, 138]. Conversely, the liner may
modify the flow and turbulence in its vicinity, compared to a rigid wall. An effect of
this is drag increase,[294] especially for small liner porosity. Another effect is the flow
instability observed in the vicinity of a low resistance acoustic liner[181].

First of all, the boundary condition used to model the acoustic liner will be presented
in Section 6.1. In Section 6.2 grid requirements with the new wall boundary condition
will be addressed. Later in Section 6.3 the flow – liner interaction will be investigated
by performing a parametric study of acoustic liner’s resistance and resonance frequency,
and the flow M number. Scalo et al. (2015)[240] performed similar study of the turbu-
lent flow in a compressible periodic channel with an impedance boundary condition
and described how the structure of turbulence gets modified as the resistance of the
liner decreases. Scalo et al. (2015)[240] set the resonance frequency of the liner so that it
corresponds to some typical time scale of the flow. As a result the liner resonance fre-
quency was rather high, and larger than typical frequencies encountered in aeroacoustic
applications. Compared with Scalo et al. (2015)[240] smaller resonance frequencies were
considered in the present work, and only the bottom surface was lined in order to match
the experiments of Marx et al. (2010)[181]. In Section 6.4, procedure to extract the surface
wave due to the acoustic liner will be presented. In Section 6.5 it will be shown that this
wave is responsible for higher drag and finally in Section 6.6 it will be shown that this
surface wave was partially governed by a linear instability.

6.1 boundary condition - impedance wall

Until now, isothermal rigid wall boundary conditions (see Section 2.3.2) were used for
simulating channel flows. In this section, boundary conditions for the non-rigid wall will
be presented, which will be used to simulate channel flow with acoustic liner. The condi-
tions at the wall are u = w = 0 and Tw = constant. Wall-normal velocity component at the
wall is non-zero and the non-rigid wall is modelled with the impedance boundary condi-
tion. Generally speaking, an impedance boundary condition is a relation between p and
v at a given position on the wall. An impedance wall of the Mass-Spring-Damper (MSD)
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type has been used in here. This model is simple and accounts for one resonance/absorp-
tion frequency of the acoustic liner. This model was first introduced by Tam and Auriault
(1996)[264], and has been used several times since then, either in linearised codes[183], or
in NSE solvers[240]. At the bottom wall it reads:

M
d2v
dt2

+Rdv
dt

+Kv = −dp
dt

(6.1)

where R is the resistance, M the mass, and K the spring constant. These quantities are
respectively normalized with ρ̃bc̃w, with ρ̃bH̃, and with ρ̃bc̃2w/H̃. This equation can be
recast into a first-order system:

dv
dt

= Q (6.2)

dQ
dt

= 1

M
[−dp

dt
−RQ−Kv] (6.3)

For known resistance R, mass M and spring coefficient K, angular resonance frequency
can be defined as:

ωres =
√
K

M
(6.4)

and damping ratio as:

ξ = R

2ωresM
(6.5)

of an acoustic liner can be modelled as the impedance boundary condition. In addition
at the wall one still has the non-slip boundary conditions u = 0 and w = 0, as well as the
isothermal wall condition T = Tw. All together, these are four conditions that need to be
imposed in the characteristic formulation. Moreover, four characteristic quantities that
need to be computed at the wall were, Y+, Y−, Yu, Ys.

First note that due to the boundary condition u = 0, one has: X+ = 1
ρ
∂p
∂x

and X− = −1
ρ
∂p
∂x

,
and at the wall leading to

X+ +X− = Xs = Xv = Xw = 0
Due to the boundary condition w = 0 at the wall, one has similarly:

Z+ +Z− = Zs = Zv = Zw = 0
Accounting for these relations, and since one also has to satisfy ∂u/∂t = 0 at the wall, Yu

can fixed from equation 2.1.

Yu = −1
2
(X+ −X−)+ 1

Re
1

ρ

∂τ1j

∂xj

In the same fashion Yw will be fixed from equation 2.3 to satisfy ∂w/∂t = 0.
Yw = −1

2
(Z+ −Z−)+ 1

Re
1

ρ

∂τ3j

∂xj

To obtain the reflected wave Y+ at the bottom wall from the incident wave Y− one injects
equation 6.2 into equation 2.2 to obtain:

Y+ = Y− + 2( 1
Re
1

ρ

∂τ2j

∂xj
−Q) (bottom wall) (6.6)

Note that for a rigid wall, the same relation holds with Q = 0, this is equation 2.28.
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6.1.1 Validation

The implementation of the impedance boundary condition was validated against the
reference solution of Zheng and Zhuang (2004)[306] for the reflection of an initial Gaussian
pressure pulse by a plane MSD wall. To remain in the linear inviscid regime in which
the analytical solution has been derived, the amplitude of the pulse was small, and the
thermo-viscous terms were neglected (the solver was then an Euler equations solver).

The computational domain was a square box with (x,y, z) ∈ [−50 ∶ 50]× [0 ∶ 100]× [−50 ∶
50]. The bottom MSD wall was at y = 0, and on the other boundaries non-reflecting
boundary conditions were used (to be defined in Section 7.1.2). The MSD characteristics,
pulse size, and pulse-wall distance were the very same as those used by Zheng and
Zhuang (2004)[306]. Hence, R = 0.2;M = 2.0938; K = 0.4758, and the initial pressure (mean +
pulse) was given by: p(x,y, z, t = 0) = 1

γ
+pae− ln(2)/25(x2+(y−30)2+z2), where the amplitude

pa = 1e− 8 is very small. A regular mesh size was used in all directions, with ∆x = ∆y =
∆z. Equal numbers of grid points were used in all directions, Nx = Ny = Nz. Figure 6.1
shows a comparison between the computed and the analytical solution along the x-axis at
t = 30, obtained with ∆t = 0.5 and Nx = 101. The pressure from the simulation collapsed
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Figure 6.1: (a) Numerical vs analytical pressure solution by Zheng and Zhuang (2004)[306] on the
x-axis at time t = 30 for Gaussian pulse reflection at an impedance wall. (b) Error
(symbols) vs number of grid points in one direction.

excellently on the reference data. A convergence study was performed by varying Nx
(with Ny = Nz = Nx) with a smaller time-step ∆t = 0.01. Despite the boundary FDS being
of order 3, overall the error turns out to decrease as 1/N6x, which corresponds to the order
of the scheme used for central points.
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6.2 grid requirement for channel flow with acoustic
liner

The mesh size requirement in the vicinity of an impedance wall is not as well established
as for a rigid wall. Hence, in this section a grid convergence study was performed to
determine the grid requirements for accurate numerical simulations with impedance
walls. The different configurations studied are summarized in table 6.1. Four test cases
from table 6.2 were considered (AC01, AC02, AC03, AC05), which were those for which
the impedance strongly affected the flow dynamics. All simulations share the same value
for Reb = 6900, and lowM number for which compressibility effects were negligible (see
Chapter 4). For an incompressible channel flow with rigid walls (a configuration referred
to as M395) at similar Reb one would have Reτ ≈ 395[203]. Other useful quantities such as
the drag coefficient and the percentage change in drag coefficient summarised in table
6.1 and 6.2 were computed as follows:

cf = 2τ̃w

ρ̃bũ
2
b

(6.7)

∆cf% = cf − creff
creff

× 100 (6.8)

The change in drag was computed with respect to the conventional channel flow, with
creff being the drag coefficient for reference test-case M395. Thus, a positive value indi-
cates a drag larger than for a channel flow with rigid walls. As it will see below, for

Lx × Ly × Lz M R ωres Nx ×Ny ×Nz ∆x+ ∆y+min ∆z+ ∆cbotf % ∆ctopf %

AC01cc
6πH× 2H×πH

0.3 0.23

0.185
351× 151× 125

20

1

10

443 44

AC01c 351× 171× 125 0.5 573 45

AC01 351× 201× 125 0.25 575 44

AC02c
3πH× 2H×πH 0.367

185× 151× 125 1 162 20

AC02 185× 171× 125 0.5 159 18

AC03c
3πH× 2H×πH 0.738

185× 151× 125 20
1

10 74 7

AC03 91× 151× 61 40 20 78 -1

AC05 3πH× 2H×πH
2.960

185× 151× 125
20 1 10

0 -3

AC05w 3πH× 2H× 2πH 185× 151× 251 -2 -4

R0.1cc
6H× 2H× 6H 0.5 0.10 3.140

115× 151× 251
20

1
10

161 188

R0.1c 115× 171× 251 0.5 176 176

R0.1 115× 201× 251 0.25 181 181

Table 6.1: Test-cases for grid convergence analysis with impedance boundary condition.

test-cases AC01 and AC02, a travelling 2D surface wave were observed in the domain,
which strongly interacted with the flow due to blowing and suction at the impedance
wall. Hence, the grid convergence study was mainly focused on refinement in the wall-
normal direction. For test-case AC03 quasi-2D surface waves with ripples was observed
in the span-wise direction, therefore the grid requirement in the stream- and span-wise
directions were analysed. For test-case AC05 the influence of domain size in the span-
wise direction was studied. In addition, a configuration taken from Scalo et al. (2015)[240]

112



was also computed to validate the computations and is referred to as R0.1 in the table
6.1. In this configuration, the resistance R = 0.1 is smaller than generally used for other
test-cases, and both top and bottom walls had impedance boundary condition, whereas
for test-cases AC01-AC05 only the bottom wall had an impedance boundary condition.
Scalo et al. (2015)[240] usedM = 0.5, higher than used for other test-cases. All in all, con-
figuration R0.1 is not hugely different from the test case AC09 (see table 6.2), except that
for the latter only the bottom wall was lined. For impedance walls it is not possible to
estimate a priori the friction Reynolds number or viscous length-scale. Hence, all the grid
resolution mentioned in table 6.1 were based on the value of Reτ of the rigid wall sim-
ulation. Similarly cf and ∆cf% computed for the two walls were based on the velocity
and viscous length scales computed for bottom and top boundaries separately.

Results from the grid convergence analysis are shown in figure 6.2, where the mean
stream-wise velocity, as well as the rms of stream-wise and wall-normal velocity are
presented. Unless specified all results were non-dimensionalised with inner variables of
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Figure 6.2: Grid convergence for impedance wall test cases. Profiles of (a) mean velocity; (b) rms
of stream-wise and (c) rms of wall-normal velocity scaled with inner variables for
bottom impedance wall.

the bottom impedance wall. These results do not depend much on the grid resolution,
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which was therefore deemed to be sufficient in all test cases. From this study the grid
resolution that was required in the directions parallel to the wall was ∆x+ = 20 and
∆z+ = 10 (computed with friction Reynolds number Reτ = 395 for rigid-wall simulation).
In the wall-normal direction, a minimal mesh size of y+min = 0.25−1was necessary. These
values were about the same, or slightly more stringent than required for a rigid wall. In
particular smaller the resistance of the MSD wall, smaller the y+min should be.

The profiles for the mean velocity, rms of stream-wise and span-wise velocity for test-
case R0.1 were compared to the ones obtained by Scalo et al. (2015)[240] for the same
configuration in figure 6.3, where the rigid wall test-case M395 is also shown. Although
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Figure 6.3: Comparison between the present simulation and that from Scalo et al. (2015)[240] for
test-case R0.1. Profiles of (a) mean velocity; (b) rms of stream-wise and (c) rms of
wall-normal velocity.

an exact agreement with the results of Scalo et al. (2015)[240] was not obtained (their
simulation was also a LES), both simulations provided close results. The difference seen in
the mean velocity profile also shows up in the drag increase, where larger drag increase
(≈ 180%) was observed for test-case R0.1, whereas Scalo et al. (2015)[240] reported a value
of 148%. Nevertheless, it was clear that both simulations show similar changes compared
to the channel flow with rigid wall.
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6.3 flow statistics

In this section the statistics of a compressible turbulent flow in a channel having an
impedance boundary condition at the bottom wall and a rigid upper wall are presented.
The different test-cases for which ILES have been carried out are summarized in table 6.2.
Of particular interest is the dependence of the flow on the resonance frequency and re-

Case M R ωres ξ ωflow Rebotτ Retopτ ∆cbotf % ∆ctopf %

AC01 0.3 0.23 0.185 0.109 1.84 1031 476 575 44

AC02 0.3 0.23 0.367 0.109 1.84 642 434 162 20

AC03 0.3 0.23 0.738 0.109 1.84 523 411 74 7

AC04 0.3 0.23 1.479 0.109 1.84 453 399 31 1

AC05 0.3 0.23 2.960 0.109 1.84 397 392 0 -3

AC06 0.3 0.23 5.887 0.109 1.84 390 386 -3 -5

AC07 0.3 0.23 2.959 0.045 1.84 392 390 -2 -3

AC08 0.3 0.10 2.961 0.045 1.84 438 398 22 1

AC09 0.4 0.10 2.961 0.045 2.51 514 413 66 7

AC10 0.1 0.10 2.961 0.045 0.63 385 383 -4 -5

AC11 0.3 0.50 0.185 0.237 1.84 396 390 1 -2

AC12 0.3 1.00 0.185 0.474 1.84 393 391 -1 -2

Table 6.2: Simulation test-cases with impedance boundary condition.

sistance of the liner and dependence of liner on theM number of the flow. Several Mach
numbers have been used, but all of them remain small. Reτ and ∆cf were computed
separately for bottom and upper walls using their respective inner variables.

Scalo et al. (2015)[240] performed channel flow simulations with impedance walls forM ≤ 0.5 and resistance ranging from R = 0.01 − 1. In addition, they tuned the resonance
frequency of the liner so that it matches the typical angular frequency of the flow, defined
to be:

ωflow = 2πM (6.9)

This frequency is typically high and much larger than the acoustic frequency that would
be found in aero-engines. In the present work, ωres is first taken to be smaller than
ωflow for case AC01 and is progressively increased for the test-cases AC02 – AC06, while
keeping Reb,M, and R constant. The resistance is then varied for test-cases AC07 – AC08
and AC11 – AC12. The Mach number is varied for test-cases AC08 – AC10.

The baseline frequency and resistance for test-case AC01 correspond to that for which
an instability had been measured experimentally by Marx et al. (2010)[181], and the MSD

characteristics were chosen to fit the impedance law of the liner in the vicinity of the reso-
nance frequency. The fit was the same as the one used in Marx (2012)[182]. In dimensional
units, this fit provides: R̃ = 94.4 kg m−2s−1; M̃ = 0.0685 kg m−2; and K̃ = 2.71 × 106 kg
m−2 s−2. The resonance frequency is thus f̃res = ω̃res/(2π) ∼ 1 kHz, which corresponded
to a realistic value for a liner. The normalized resistance R ∼ 0.23 has a rather low value
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(lower than what would be found in practice in most aero-engines). In the experiments of
Marx et al. (2010)[181], the half-height of the rectangular channel was H̃ = 0.01m and this
value was used here to compute the normalised numbers. In the experiment the friction
Reynolds number upstream of the liner was Reτ ∼ 3000, which is costly to compute at the
moment, even with an ILES. The simulations are thus performed at Reb = 6900, which cor-
responded to a smaller value of the friction Reynolds number Reτ = 395. In the following
the results of the present simulations were compared with the DNS of an incompressible
channel flow with rigid walls at Reτ ≈ 395 made by Moser et al. (1999)[203].

Test-case AC01 was performed in a computational domain of size Lx ×Ly ×Lz = 6πH×
2H×πH taken to be long to match the long wavelengths of surface wave corresponding
to the low resonance frequency. Other test-cases use 3πH× 2H×πH. For all the test-cases,
the grid resolution was ∆x+ = 20 and ∆z+ = 10, based on the inner variables of the
conventional channel at Reτ = 395. In the wall-normal direction, for test-case AC01, ∆y+
varies between 0.25 at the walls and 10 in the channel centre, whereas for the other cases
∆y+ varies between 1 and 10.

6.3.1 Effect of the liner resistance R

The effect of liner resistance was first investigated. Olivetti et al. (2015)[211] performed the
simulation of a pipe flow with a liner having a resistance larger than 1 and reported that
the turbulence statistics were not much modified by the liner, compared to a rigid wall.
Scalo et al. (2015)[240] performed a series of simulations for resistance varying between
0.01 and 1. They observed important changes in the flow statistics for a low resistance
value. The effect of resistance is presently investigated for 3 different values of the re-
sistance with ωres = 0.185: R = 0.23 (test-case AC01); R = 0.5 (AC11); and R = 1 (AC12).
The mean velocity profile and the rms of the stream-wise velocity are plotted in figure
6.4. Also plotted is the M395 reference data for rigid walls. It is clear that for the lower
resistance R = 0.23 there were important changes in the flow statistics compared to the

rigid wall, with a lower and broader peak of
√
u ′2, and a quasi-disappearance of the

mean flow logarithmic region (that would be interesting to know if this remains true at
higher values of the Reynolds number). The law of the wall is not followed either. For
R = 0.5 and 1, the statistics are very close to the rigid wall channel. This is in line with
the findings of Olivetti et al. (2015)[211] and Scalo et al. (2015)[240].

In figure 6.5, change in the percentage change of drag with higher and lower values
of liner’s resonance frequency are presented. Test-cases AC07 and AC08 have ωres ≈ 2.96
and 0.1 < R < 0.23, whereas test-cases AC01, AC11 and AC12 have ωres = 0.185 and
0.23 < R < 1.0. All these test-cases were atM = 0.3. From the figures it was clear that, the
flow was affected when the resistance decreased, or permeability through the impedance
surface increased[211, 240]. Low resonance frequency liners at low resistance will strongly
affect the turbulent flow, theses configurations were difficult to simulate and tends to be
unstable. Hence in the following, configurations corresponding to a comparatively small
resistance (R = 0.23) were analysed.
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Figure 6.4: Profile of (a) mean and (b) rms of the stream-wise velocity for varying resistance of
the liner. Values of the resistance are R = 0.23 (AC01); R = 0.5 (AC11); R = 1 (AC12).
The straight dotted line indicates the log law, and the other dotted line the viscous
sub-layer (law of the wall).
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Figure 6.5: Percentage change in the drag as a function of liner resistance. Pink curve is for ωres ≈
2.96 and blue curve is for ωres = 0.185.

6.3.2 Effect of the resonance frequency ωres

In this section the influence of the resonance frequency of the liner on wall turbulence
was analysed and compared to the rigid wall turbulence. Test-cases AC01 – AC06 were
considered, which correspond to a constant value of Reb and M, and a given low
resistance value R = 0.23. The resonance frequency varies between ωres = 0.184 and
ωres = 5.887. The typical angular frequency of the flow was ωflow = 2πM = 1.84.

The mean velocity profile for the different test-cases is shown in figure 6.6. For low
resonance frequency (test-cases AC01 – AC04), the mean profile departs from the refer-
ence profile M395 and the law-of-the-wall was not valid any more. The flow speed was
smaller in the vicinity of the impedance bottom wall and due to flow-rate conservation
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Figure 6.6: Mean velocity profile for varying resonance frequency of the liner, scaled with (a)
outer units c and H; (b) inner variables uτ and lν from the bottom impedance wall. In
(b) the straight dotted line indicates the log law, and the other dotted line the viscous
sublayer (law of the wall).

and the top wall being rigid, the flow speed was larger in the upper half of the channel.
For the high resonance frequency test-cases (AC05 and AC06), the mean velocity profile
follows the reference curve M395 for the rigid channel. Hence, for resonance frequencies
somewhat higher than the flow frequency, the MSD wall behaves as a rigid wall, even at
low resistance.

Figure 6.7 presents the rms of stream-wise velocity, wall-normal velocity, Reynolds
stress, and rms of stream-wise vorticity. For higher resonance frequencies (test-cases
AC05 – AC06) the turbulent statistics do not differ significantly from the ones for the rigid
channel M395, which was the same behaviour as for the mean velocity profiles. For the
low frequency test-cases (AC01 – AC04) noticeable differences were seen in the profiles of

all quantities compared to the rigid wall channel M395. A broader peak in
√
u ′2 was seen

in the buffer layer (as has been already noticed in figure 6.4 (b) for test-case AC01), and
it occurs at a different location. This peak results from turbulent production, meaning
the turbulent production was strongly affected by a low resonance frequency acoustic
liner. Figure 6.7 (c) shows that large values of the Reynolds stress were found close to
wall for test-cases AC01 - AC04, which indicated an increased momentum transfer in
the turbulent flow throughout the channel. This momentum transfer increases the drag

as will be shown in Section 6.5. In addition, a drop in
√
ω ′2
x was observed in figure

6.7 (d) for these test-cases, and a similar drop of the other components of the vorticity
(not shown here) was observed. It is well known that there exists a near-wall turbulence
regeneration mechanism involving streaks and stream-wise vortices. This classical near-
wall turbulence mechanism was strongly disturbed for test-cases AC01 and AC02, the
flow dynamics being strongly affected by the acoustic liner and the non-vanishing wall-

normal velocity at its surface. The value of
√
v ′2 at the wall (√v ′2)

w
does not vanish

for a liner and decreases when ωres increases, as seen in figure 6.7 (b) (see also table

6.3). It was found that (√v ′2)
w

was roughly inversely proportional to the resonance
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Figure 6.7: Profiles of (a) rms stream-wise velocity; (b) rms wall-normal velocity; (c) Reynolds
stress and (d) rms stream-wise vorticity for varying resonance frequency of impedance
boundary condition.

frequency. For large resonance frequencies (test-cases AC05 – AC06), (√v ′2)
w
→ 0, the

liner behaves nearly as a rigid wall, and the statistics of turbulence were close to those
for a rigid wall, even for low value of the liner resistance.

6.3.3 Effect of the flow Mach numberM
The effect of the M number was studied for lower values of resistance and higher reso-
nance frequency (test-cases AC08 – AC10). The percentage change in the drag at differentM number is presented in figure 6.8. Drag increase was proportional to the change inM number, Scalo et al. (2015)[240] also had similar observations. For M = 0.1, a slight
decrease is the drag was observed, whereas for M = 0.4, 60% increase in the drag was
found. Liner with lower resonance frequency would interact more strongly with the flow
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at higherM number. These configurations are difficult to simulate and becomes unstable.
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Figure 6.8: Percentage change of drag as function ofM number.

6.4 existence of a wave along the acoustic liner

In the previous section, it had been shown that for a liner with a resistance sufficiently
small and a resonance frequency not too large, the statistics differ from that of a turbu-
lent channel flow with rigid walls. It was shown in this section that this is due to (or
accompanied with) the presence of waves along the impedance wall. To evidence these
waves the velocity spectra in the stream-wise direction are presented in figure 6.9. The
stream-wise wave-number is denoted by kx. The spectra were obtained at a position
y = 0.015 close to the impedance wall. The effect of the acoustic liner on the stream-wise
spectra was clearly observed, as energy piles up at the resonance frequency, which re-
sulted in the partial modification of the turbulent energy cascade. For test-cases AC01 –
AC05 the spikes in Euu and Evv were observed, whose wave-number corresponded to
the resonance frequency of the acoustic liner (see figure 6.9 (a)). Harmonics were found
for test-case AC01. For test-cases AC03 – AC04, spikes in Eww were observed. Spectra
for test-case AC06 were in good agreement with the spectra for the rigid wall (reference
data M395). The angular frequency corresponding to the waves, ωwave, has been com-
puted from measurements in time made at a point in the flow and reported in table 6.3.
Overall, the observed frequency corresponds to the resonance frequency of the acous-

tic liner. For low values of ωres, the convection speed for the surface wave, cwave, was
such that cwave/ub ≈ 0.6. In order to assess if the vertical movement at the lined wall
can perturb wall turbulence, the vertical displacement amplitude at the lined surface is

estimated from da = (√v ′2)
w

/ωwave. In wall units it becomes d+a = daReτ, where the

friction Reynolds number for a rigid wall is used here (Reτ = 395). For case AC01, d+a is
more than 50, which means that the vertical displacement from the wall goes well beyond
the turbulent production region well-known to be located at y+ ≈ 15. For case AC02, d+a
is also large. This explains why turbulence is so affected by the liner in these cases. As
the resonance frequency increases the value of the vertical displacement decreases. For
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Figure 6.9: Velocity spectra of (a) stream-wise; (b) wall-normal; (c) span-wise velocity, versus the
stream-wise wave-number kx, at a location close to the wall (y = 0.015), for several
resonance frequencies (test-cases AC01-AC06).

case AC05 and AC06, the displacement is less than d+a = 1, and y+ = 1 is often taken to
be the first grid point position off the wall in LES. Hence, for these two cases the wall
displacement is too small to modify turbulence and turbulent statistics are similar tot he
rigid wall channel (M395), as observed above.

Some flow visualizations are presented to illustrate the presence of the wave and show
its effect on the flow. Instantaneous visualizations of the turbulent structures for the
bottom half of the channel is shown in figure 6.10, where flow direction is from left to
right. Among the displayed quantities is a slice of the wall-normal velocity component
close to the wall (red colour for blowing with v out of the impedance wall, and blue
colour for suction with v into the impedance wall). Also shown are iso-contours of Q2
events (ejections) and Q4 events (sweeps), coloured with wall-normal location (darker
shade close to wall and lighter away from the wall, blue (red) shade is used for Q2
(Q4) events). Iso-contours of the Q-criterion are finally coloured in yellow to show the
near-wall turbulent structures.
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AC01 AC02 AC03 AC04 AC05 AC06

ωres 0.185 0.370 0.739 1.48 2.96 5.92

ωwave 0.185 0.380 0.78 1.5 3.0 5.1

kx 1 2 3 12.3 20.3 20.3

cwave/ub 0.61 0.62 0.42 0.41 0.49 0.87

(√v ′2)
w

0.024 0.0094 0.0068 0.0047 0.0016 0.0005

d+a 51 20 3.5 1.2 0.21 0.039

Table 6.3: Characteristics of the wave along the acoustic liner: ωwave, kx, and cwave are the mea-
sured angular frequency, stream-wise wave-number, and phase speed of the wave along

the impedance wall, while (√v ′2)
w

is the rms of the wall-normal velocity computed

at the impedance surface. The quantity d+a is the estimated vertical amplitude of the
displacement of a point on the lined surface in wall-units.

For the low resonance frequency test-case AC01, a large scale 2D wave was clearly
visible which propagates in the stream-wise direction, with alternating blowing and suc-
tion regions. This wave strongly modified and modulated the flow: structures (in yellow)
were mainly present in the blowing regions and were absent in the suction regions, lead-
ing to an inhomogeneous distribution of turbulent structures. In addition the near-wall
streaks which are characteristic of the rigid wall turbulence and an essential ingredient of
the regeneration cycle were not present. Q2 ejections were logically found in the blowing
region (v out of the impedance wall), since the fluid was pushed away from the wall, and
Q4 sweeps were found in the suction regions (v into the impedance wall).

For the higher resonance frequency test-case AC04, waves of v at the impedance wall
were observed that were not 2D any more and undulations were present in the span-
wise direction. The Q2 and Q4 events were rooted in the impedance wall but tends to
merge farther away from the impedance surface where their scale become larger than the
wavelength. This indicated an interaction between the flow and wave when ωflow ≈ ωres.
Unlike the flow for test-case AC01, the flow for test-case AC04 was densely populated
with the near-wall turbulent structures. For test-cases with ωres >ωflow (not shown here)
near-wall turbulent structures similar to rigid wall turbulence were observed. This may
not be the case if the resistance was smaller than for the baseline configuration (test-cases
AC01 – AC06). For example, figure 6.10 (c) corresponds to test-case AC09, where ωres is
large (but not much larger than ωflow) and where the resistance is very small (R = 0.1). In
that case there was a large interaction between the small scales in the flow and the liner,
leading to small span-wise rollers. Parameters for test-case AC09 were close to those
used by Scalo et al. (2015)[240], and these authors observed very similar patterns along
their impedance wall.

A slice of the instantaneous fluctuations of stream-wise velocity at wall distance y =
0.03, and slices of wall-normal velocity and pressure at the impedance surface are shown
in figure 6.11. The computational domain being larger for test-case AC01, only a half of it
is shown in the stream-wise direction. For the low resonance frequency test-cases (AC01
and AC02), waves were seen for all three variables. The waves were 2D with a phase
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Figure 6.10: Instantaneous visualization of turbulent structures for the test-cases: (a) AC01, (b)
AC04 and (c) AC09. Several quantities are shown: a color-map of v at the wall (light
blue is for negative v corresponding to flow into the impedance wall, light red is for
v positive corresponding to flow out of the impedance wall); iso-contours of Q2+=-4,
shown in blue and corresponding to ejection events; iso-contours Q4+=-4 shown in
red and corresponding to sweep events; iso-contours of Q-criterion Q+=3 in yellow
color.

difference of π between stream-wise and wall-normal velocity. Asωres increases the wave
progressively became less 2D. This was clearly seen for test-case AC04 (v component). For
the high resonance frequency test-case AC06, elongated streaks were found close to the
wall (bottom slice for u+), which is the feature of rigid wall flows. Waves for pressure
were not observed.

Hence, for a low resonance frequency, a wave was present along the liner surface. This
wave had a rather two dimensional character which was lost as the resonance frequency
increased and the wave length approached the typical size of the structures in the flow.
Phase averaging was now performed in order to obtain the wave spatial distribution.
Phase averaging allows distinguishing between the effect of the wave and that of the
random turbulence. Phase averaging relies on the following triple decomposition[229] for
any quantity a:

a = a+a ′ = a+ ã+a ′′ (6.10)
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Figure 6.11: Slices of instantaneous fluctuations of u+ (left) at wall distance y = 0.03, and of
v+ (centre) and p/Ruτ (right) at the impedance wall for the test-cases AC01, AC02,
AC04, and AC06. Blue (red) colour corresponds to negative (positive) values, and the
considered range is −6 ≤ u+ ≤ 6, −1 ≤ v+ ≤ 1 and −6 ≤ p/Ruτ ≤ 6 for all cases.

where a is the Reynolds average, ã is the contribution from the wave, and a ′′ is the

contribution from turbulence (note that depending on the context a tilde (̃)̇ is used either
for a dimensional quantity or for a wave component). The extraction of the wave is based
on phase averaging: ã(φ) =< a >φ where < ⋅ >φ is the phase average, i.e., the average
over all the available samples corresponding to the same phase φ, with 0 ≤ φ < 2π. When
the wave results from some periodic external triggering, the phase reference for phase-
averaging was provided by this external trigger. Here the wave was self excited and one
cannot rely on such external reference. However, for test-cases where the wave was two-
dimensional its normal component v at the impedance surface was not noisy (see figure
6.10 and 6.11) and sinusoidal; the phase of v at the wall was thus taken as the phase
reference. The procedure used to extract the wave (amplitude and phase angle) is the
following:

1. For any flow field, average of v at the impedance surface in the span-wise direction
was computed to obtain a periodic 1D wave of v in the flow direction. This is
legitimate as long as the wave is 2D;

2. Define several phases within a period (in the present case 12 bins were used);

3. For any component (u,v,...) a phase bin was assigned to any stream-wise position.
This phase bin was simply taken to be that of the 1D wave of v which serves as
the phase reference; Phase averaged components at each phase were computed, by
averaging the samples corresponding to the same phase bin;

4. The global mean was subtracted to obtain wave profiles at each phase;

5. The amplitude and phase angle of the waves were computed using the wave pro-
files at each phase.
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Several instantaneous flow fields were used for this process. The random components
a ′′ can then be obtained by subtracting the global mean a and the phase average ã from
instantaneous fields. 2D surface waves which go all the way up to the channel centre
were obtained at low values of ωres. Hence, phase average was computed for test-cases
AC01 – AC03. Satisfactory 2D surface wave were observed for test-cases AC01 and AC02.
However, entirely trustworthy results were not expected from test-case AC03, since the
2D character of the wave was partially lost.

The amplitude of the phase-averaged stream-wise, wall-normal velocity, pressure and
density are shown in figure 6.12. The stream-wise velocity component of the wave and
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Figure 6.12: Amplitude of the wave along the liner: (a) stream-wise velocity component; (b) wall-
normal velocity component; (c) pressure and (d) density.

density were larger close to the wall, and the maximum decreased as the resonance
frequency was increased. For the wall-normal velocity component and pressure, the peak
amplitude was obtained away from the impedance surface, and also decreased whenωres

was increased. Some characteristics of the wave (wavelength, phase speed) were given in
table 6.3. The shapes in figure 6.12 were reminiscent of the wave measured and modelled
by Marx and Aurégan (2013)[184] (see their Fig. 14 where normalized eigenfunctions for
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u and v are given). However, in the present case the wave was not in its linear regime.
More details are given in Section 6.6.

6.5 drag

In this section it was shown that the modifications in the flow induced by the liner were
associated with an increase in the drag, compared with the channel with rigid walls. The
friction at the wall is classically measured by Reτ defined in equation 2.25. This is given
in table 6.2 for both the bottom impedance surface and the top rigid wall. Table 6.2 shows
that the friction at the bottom impedance surface was more significant than the top rigid
wall in the test-cases for which the flow modifications were important. This was the case
for low resistance and a not too large resonance frequency, that is for test-cases AC01-
AC03 and AC09. For three of these cases a flow visualization has been shown in figure
6.10. For test-case AC01 the drag was increased by as much as 575%.

The connection between the wave along the acoustic liner and the drag increase is now
discussed. Using the phase-averaging process introduced in the previous section, it is
possible to compute the drag increase at each phase of the wave. This is shown in figure
6.13. The phase averaged wall-normal velocity at the impedance surface, which was used
as reference for phase averaging, is also presented in the figure. Phases Φ = 0 (and 2π)
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Figure 6.13: (a) Percentage change in drag computed after phase averaging and (b) reference
curve at the impedance wall.

correspond to blowing (v out of the impedance wall) and phase Φ = π to suction (v into
the impedance wall). During suction there was a tremendous increase in the drag, up
to ∆cf% ≈ 2200% for test-case AC01, due to the strong impingement of the flow at the
wall. Averaged over a period the drag increase is 575% (table 6.2). Remember from figure
6.10 that for test-case AC01 no turbulent structures were present in the suction regions.
Hence, the drag increase was not due to the effect of turbulent structures, but rather due
to the wave, which brings in high speed fluid to the liner surface. Figure 6.13 also shows
that there was a small drag reduction (∆cf% < 0) during blowing for test-cases AC01 and
AC02.
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Now the triple decomposition is used to decompose the total Reynolds stress u ′v ′ into
several contributions:

u ′v ′ = (ũ+u ′′)(ṽ+ v ′′) (6.11)

= ũṽ+u ′′v ′′ + ũv ′′ +u ′′ṽ
The 3 contributions are those from the wave, from the turbulence, and from cross terms.
In the original triple decomposition[229], these cross terms are null because the wave
and the turbulence were supposed to be uncorrelated, but such an assumption cannot
be made a priori in the present case when the wave can modulate the turbulence. Nev-
ertheless, it has been verified that the contribution of these terms was very small. The
contributions for the other two terms are shown for test-case AC01 in figure 6.14. Inner

u ′v ′+

y
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uṽ+u"v"+ũv"+u"ṽ
uṽ
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Figure 6.14: Contributions to the Reynolds stress u ′v ′, scaled with inner variables from the bot-
tom impedance wall for test-case AC01.

variables based on the bottom impedance surface were used for scaling the results. There-
fore, the peak values close to the top rigid wall had a smaller magnitude. Close to the
impedance surface, the major contribution to the Reynolds stress were from ũṽ, whereas
away from the wall it was from u ′′v ′′. Hence, close to the wall an increased momentum
transfer was mainly due to the wave, and since ũṽ is negative, the momentum was trans-
ferred to the wall, which contributes to increase in the drag. This was in agreement with
the drag increase being correlated with the wave, as observed above in figure 6.13.

It is interesting to draw a parallel between the wave created here spontaneously in
the vicinity of the liner and the waves that are sometimes imposed using blowing and
suction (or some related forcing) in flow control[84, 113, 174]. In flow control it is well known
that the surface waves resulting from blowing/suction should generally have a negative
phase speed to obtain a drag reduction. For example Mamori and Fukagata (2014)[174]

performed simulations of a channel flow with a wave-like wall-normal body-force. For
upstream travelling waves (with a propagation speed smaller than the bulk velocity)
they found drag reduction of up to 40%. They reported the presence of span-wise rollers
which produced positive u ′v ′ close to wall and which contributed to reducing the drag.
Here in figure 6.14 the opposite behaviour was found since the wave had a positive
phase speed and ũṽ was negative, which led to drag increase. In these test-cases the
wave was formed spontaneously by the interaction between the flow and the boundary
condition, thus it was not a controlled configuration. Hœpffner and Fukagata (2009)[113]
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studied wall actuation, such as wall deformation or wall blowing and suction. They
argued that both actuation can be characterized as pumping and this pumping was
strongly connected to drag reduction. Here the drag increased as a result of the phase
difference between the ũ and ṽ components of the wave, and this also correspond to
some pumping by the wave. The acoustic liners produced a wave with the phase speed
in the flow direction and magnitude of the order of ub and it is unlikely that they can
be used for passive drag reduction. Nevertheless, a slight drag decrease was reported for
some test-cases in table 6.2.

6.6 linear stability analysis

In this section it is shown that the wave observed above the liner can be connected to an
unstable surface wave. In the literature there has been several investigations of the sur-
face wave modes in flow duct acoustics[32, 36, 182, 184, 231, 232]. All these investigations have
been done in a spatial frame of work, in which the (real) mode frequency is given and the
(complex) mode wave-number is computed. This is the traditional way of computing a
wave-number spectrum in acoustics. In the present case, since the computational domain
was periodic in the flow direction, a temporal analysis was more relevant: the (real) wave-
number kx was given, and the spectrum of the (complex) angular frequencyω =ωr + iωi
was computed. Both the linearised Euler or NSE, possibly complemented with a turbu-
lent eddy viscosity model, were encountered for modal analysis. Normally, an unstable
surface mode was found by using an inviscid model, and including the dissipative phe-
nomena provides a better estimation of its characteristics[184]. In the present work, the
two-dimensional linearised NSE for compressible perturbations were employed. Given
lowM numbers were used for the numerical simulations, the shear base flow U0(y) for
the linearisation is almost incompressible, and the mean density and temperature were
uniform. The linearised NSE are given in equation E.1 to E.5 in Appendix E, where the
same normalization (see Section 2.1) as for the numerical simulation was used. These
equations were discretized in the wall-normal direction in the same way as in Marx and
Aurégan (2013)[184], which leads to the eigenvalue matrix problem in equation E.6. The
MSD boundary condition at the bottom wall (y = −1) was easily included in this eigen-
value problem, see equation E.16 to E.17. The top wall at y = 1 was rigid. The solution of
equation E.6 relies on standard libraries[184], and for each value of the wave-number kx
an eigenvalue spectrum ω was provided. The solver has been validated against spatial
solvers that have themselves been extensively validated[184]. In the following, the spec-
trum of standard canonical flows were first considered briefly to show how a MSD wall
can lead to instability before the method is applied to the numerical simulation.

6.6.1 Instability due to impedance boundary

A parabolic mean flow U0(y) = Uc(1 − y2) for a channel with rigid walls was first con-
sidered, where Uc = 0.1 is the velocity at the centre of the channel (which is related to
the Mach number M = 2Uc/3 given the normalization with the speed of sound). For a
Reynolds number based on the centre velocity of Rec = 2000 (Reb = 2/3Rec) and kx = 1
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this flow is known to be stable in the incompressible regime[245], which is confirmed
by the spectrum of the phase speed C = ω/kx = Cr + iCi presented in figure 6.15 (a).
Indeed, all eigenvalues have Ci < 0 (that is, also ωi < 0), meaning the flow is stable.
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Figure 6.15: Complex phase speed spectrum (+) for a parabolic flow with rigid walls and kx = 1,
Rec = 2000. (a) Full spectrum. Symbols (◻) indicate the acoustic modes; The verti-
cal dotted lines are at Cr/Uc = 1 + 1/Uc and Cr/Uc = 1 − 1/Uc. (b) Zoom in on the
non-acoustic modes. Symbols (◯) are some reference values obtained for an incom-
pressible flow.

Acoustic modes were indicated by square symbols. The inviscid limit for these modes in
a uniform flow of Mach numberM is given by:

ω = kxM±
√
k2x + (nπ

2
)2 ∀n = 0,1,2,⋯ (6.12)

Two vertical lines indicate the speed Uc − cw = Uc − 1 and Uc + cw = Uc + 1, which are
the propagation speeds of the upstream and downstream plane sound waves. The modes
located outside the region comprised within the two vertical lines are all non-plane acous-
tic modes. Figure 6.15 (b) presents a zoom in of the region within the two vertical lines.
This region consists of non-acoustic modes. It classically displays a Y-shaped spectrum
with 3 branches denoted as A, P, and S. The A-branch modes are often designated as
wall modes because their eigenfunctions are maximal close to the walls. The P modes are
designated as centre modes, since their eigenfunctions reach their maxima close to the
channel centre. Some reference values for an incompressible flow (given in the appendix
A.7 of Schmid and S Henningson (2001)[245]) were added to the plot. For the low Mach
number value Uc = 0.1 taken here, the agreement between the present results and the
reference value was already quite good (the agreement can be reached at any order of
accuracy by lowering compressibility, by reducing the value of Uc).

The effect of the MSD boundary condition on stability is now evidenced. The particular
mode shown by an arrow in figure 6.15 (b) belongs to the A-branch for rigid walls and
corresponds to C/Uc ∼ 0.31 − 0.020i and ω ∼ 0.031 − 0.0020i. The bottom wall of the
channel was changed from rigid to MSD, and the MSD resonance frequency was taken to
match the frequency of that particular mode, with ωres = √

K/M ∼ 0.031. The resistance
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was given an arbitrary small value, R = 0.0001, all other parameters were unchanged. The
corresponding spectrum is shown in figure 6.16 (a). A new mode, indicated by an arrow,
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Figure 6.16: (a) Complex phase speed spectrum (+) for a parabolic flow with a top rigid wall
and a bottom MSD wall tuned to resonance frequency 0.031, kx = 1, Rec = 2000.
The reference values for the incompressible flows with rigid wall are still indicated
(◯). (b) Comparison of the spectra obtained for a Uc(1 − y8) base flow with a top
rigid wall and: (◯) a bottom rigid wall; (+) a bottom MSD wall tuned at the correct
resonance frequency. kx = 1, Rec = 2000.

stood just above the original particular mode chosen. This new mode had a small positive
value Ci ∼ 0.00002, indicating that the flow was now unstable, other modes remaining
approximately the same. By modifying the resonance frequency of the MSD wall, it was
possible to render unstable any mode of the A-branch and many modes of the P-branch.
However, the modes with the highest growth rate were those with a lower value of Cr.
Hence, a MSD wall can prompt some modes to become unstable, particularly those of
the A-branch. Unstable modes above liners are often called surface waves due their fast
decrease away from the wall. This was in agreement with these modes arising from the
A-branch of wall modes.

A mean flow with a steeper profile U0(y) = Uc(1 − y8) (let us call it "turbulent like")
was now considered, again with kx = 1, Rec = 2000. The spectrum for rigid walls was
shown with ◯ symbols in figure 6.16 (b). Overall, compared with the parabolic profile,
the spectrum was shifted toward higher phase velocities. All eigenvalues were found in
the bottom half plane, indicating that the flow was stable. The spectrum obtained by
replacing the bottom rigid wall by a MSD wall is shown with + symbols in figure 6.16
(b). The resonance frequency was tuned to the frequency of the leftmost mode of the
rigid wall case (corresponding to ωr ∼ 0.04, or Cr/Uc ∼ 0.4). With a bottom MSD wall,
a slightly unstable mode (indicated with an arrow) was found on top of the leftmost
stable mode. All other modes were unchanged. This was the same behaviour as for the
parabolic profile. Only the modes pertaining to the A-branch could be destabilized in
that way. The normalized norm of the stream-wise velocity eigenfunction is given in
figure 6.17 for both the parabolic and eighth-power velocity profiles. For the parabolic
flow, the maxima close to the rigid and MSD walls were about the same. For the steeper
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Figure 6.17: Stream-wise velocity eigenfunction (normalized to have unit maximum) for the un-
stable mode for: the parabolic mean velocity profile with U0(y) = Uc(1 − y2);

the steeper profile U0(y) = Uc(1 − y8). kx = 1, Rec = 2000. The bottom wall at
y = −1 is of the MSD type.

profile, the peakedness of the eigenfunction close to the MSD wall was more pronounced
and resembles the shape of a surface mode.

In this subsection, the major ingredients for the temporal linear stability of a channel
flow with a bottom MSD wall have been given. If the MSD wall was tuned to the frequency
of the modes of the A-branch, these modes can be destabilized. The destabilization was
more effective for the modes located on the left of the A-branch. This was also where the
classical Tollmien-Schlichting unstable wave can be found at higher Reynolds numbers.
There is thus some similarity between this wave and the liner-due surface modes in
acoustics, although the latter can exist even without viscosity.

6.6.2 Comparison with the numerical simulations

The waves observed in the numerical simulations and reported in Section 6.4 for test-
cases AC01-AC03 were 2D, and their presence is explained by the same type of 2D
stability analysis as in the previous subsection. These waves are non-linearly saturated
waves, not really prone to a linear stability analysis. To circumvent this limitation the
following method that has been employed: the configurations AC01, AC02, and AC03
were run with a bottom rigid wall rather than a MSD wall until a statistically stationary
turbulent channel flow was obtained. Then at some instant chosen as the origin of time,
t = 0, the bottom rigid wall was suddenly replaced by a MSD wall. Due to the flow
being unstable, an instability developed in the numerical simulation in the vicinity of the
bottom impedance wall and for some time it should be linear.

The time evolution of the amplitude of the dominant spectral component (spectral
refers to Fourier transform in the x-direction) of the wall-normal velocity v on the bottom
impedance wall is shown in figure 6.18 (a), for test-case AC02. The value of the axial
wave-number kx corresponding to this maximal spectral amplitude is given in figure
6.18 (b). Before saturation starts at time t ∼ 150 the amplitude corresponds to a constant
value of kx = 3.55 and exhibits an exponential growth, typical of an instability. At later
times, saturation leads to a final state that is the same as described in Section 6.4, and the
wave-number corresponding to the final state (kx ∼ 2 in figure 6.18 (b), see also table 6.3)
differs from the wave-number for the initial instability (kx = 3.55). The characteristics of
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Figure 6.18: For test-case AC02: (a) Time evolution of the spectral component of the wall-normal
velocity at the impedance wall having the largest amplitude (the straight dashed line
with symbol is a fit to the initial exponential growth); (b) Stream-wise wave-number
of the spectral component having the largest amplitude; (c) Normalized phase speed
spectrum (+) resulting from a linear stability analysis performed for kx = 3.55. The
triangle is the phase speed computed from the numerical simulation.

this instability (wave-number, angular frequency, growth rate) were computed for t < 150
and compared to those predicted by the temporal linear stability analysis. The base flow
U0(y) for the stability analysis was taken to be the mean velocity profile of the turbulent
channel flow with rigid walls at Reb = 6900 (Reτ = 395), which was the actual profile
when the MSD wall is set up at t = 0. The numerically calculated profile could be used
but it is more convenient to use an analytical velocity profile that matches this mean flow.
As in Marx and Aurégan (2013)[184] (see equations (3-4) therein), Cess’s mean velocity
profile was used for that purpose, it was a very good approximation of the computed
mean flow.

The characteristics of the wave extracted from the numerical simulations was com-
pared to that of the stability analysis in table 6.4. For the numerical simulation the char-
acteristics were the one of the observed wave. For the stability analysis, a search for the
most unstable mode was done, and the reported value of kx is the one for which the
largest value of ωi was obtained. If not perfect, the agreement was satisfactory. For ex-
ample, for test-case AC02 the wave-number kx and the growth rate ωi agree rather well.
In any case the value of ωr was slightly larger than the angular resonance frequency of
the liner, ωres = √

K/M. Figure 6.18 (b) shows the spectrum predicted by the stability

Case ωres Numerical simulation Stability Analysis

= √
K/M kmax

x ωr ωi kx ωr ωi

AC01 0.185 2.3 0.22 0.028 1.65 0.210 0.0282

AC02 0.367 3.3 0.47 0.044 3.55 0.408 0.0445

AC03 0.738 6.7 0.79 0.073 7.05 0.787 0.0585

Table 6.4: Comparison between the characteristics of the instability wave observed in the numer-
ical simulation during the growth period and the characteristics of the most amplified
wave computed by using the linear stability analysis.
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analysis, for test-case AC02. It bears many similarities with that for the canonical eighth-
power velocity flow considered previously. In particular, the unstable mode indicated by
an arrow stood on the left side of the A-branch. The mode calculated from the numerical
simulation was indicated with a triangle symbol. The eigenfunctions for the stream-wise
and wall-normal velocities for test-case AC02 were compared in figure 6.19 (a, b) respec-
tively. Both were normalized with the value of the wall-normal velocity eigenfunction at
the wall.
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Figure 6.19: (a) Stream-wise velocity eigenfunction. (b) Wall-normal velocity eigenfunction for
test-case AC02 (kx = 3.55). Stability analysis; Numerical computation, dur-
ing the exponential growth of the instability; Numerical computation, final satu-
rated state.

However, the values were not exactly the same, especially for û, the general trends were
similar. The eigenfunctions for the saturated state obtained at larger time (which were
already included in figure 6.12 (a, b)) are also shown. Obviously, the saturated state will
differ in many respects of the initial instability leading to this state. Nevertheless, some
similarities exist between the eigenfunction in the two regimes, which tends to indicate
that the dynamics of the wave observed in the vicinity of the lined wall in Section 6.4
was partially governed by a linear instability.

6.7 conclusion

Numerical simulations of a compressible channel flow with an impedance boundary
condition have been performed. When the liner resistance is small, and when its reso-
nance frequency is not too large compared to a typical frequency of the flow, the tur-
bulent statistics differ from those for a channel with rigid walls. Surface waves are also
observed along the liner surface. The waves have a large wavelength compared to the
turbulent structures. They modulate these structures and transport momentum toward
the impedance wall, causing a drag increase. As the resonance frequency increases these
waves progressively lose their spanwise coherence while their wavelength decreases to
get close to the flow typical length scales, which may also results in a drag increase when
the resistance is sufficiently small, as was also observed by Scalo et al. (2015)[240].
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At low resonance frequencies the two-dimensional waves have a spatial distribution
which resembles the waveforms observed in former experiments[181], even if the condi-
tions differ (the simulation are periodic in the stream-wise direction, the Reynolds in the
simulation is lower).

A linear two-dimensional temporal stability analysis has been performed. A temporal
analysis suits the stream-wise periodic configuration of the channel flow and offers a new
perspective on unstable modes, compared with the more widespread spatial analysis of
surface modes in acoustics. It has been shown that by tuning the resonance frequency
of the liner to the frequency of a mode pertaining to the A-branch of wall modes, it is
possible to destabilize this mode. Numerical simulations of a channel flow have been
performed where the bottom rigid wall is suddenly replaced by an impedance wall. An
instability is then observed with characteristics similar to those obtained from a linear
stability analysis. This instability saturates and leads to a final state of the flow which
corresponds to a waveform different from the initial instability, but is not completely
different.

The liner was modelled by an impedance boundary condition corresponding to a me-
chanical oscillator. This has first been introduced by Tam and Auriault (1996)[264] and
has been recast here to match the characteristic form of the equations used in the solver.
It is a simple model that accounts for a resonance of the liner. As virtually any other
impedance model, it can be derived by supposing that the incident acoustic wave has
a long wavelength compared to the perforations of the face sheet. This model has been
used as is in the turbulent channel numerical simulations, but some turbulent scales may
be so small that the model is not valid any more. Also it is not clear how the rugosity
due to liner perforations can be accounted for by an impedance boundary condition. As
a result, the low frequency waves certainly correspond to some reality (and have been
observed experimentally) but the presence of small span-wise rollers at high frequency
probably needs to be confirmed by experiments or simulations including the full geome-
try of the liner.

Chapter 8 focus on spatial simulations, with a well defined inlet and outlet and no
periodicity assumption. This is closer to practical situations, and also allows introducing
a sound wave into the domain. The triggering of the surface wave by an incoming wave
is indeed important physically. In the present case, the periodic stream-wise boundary
conditions probably acts as means to sustain the wave as an incoming wave would do in
a spatial simulation.
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7
S PAT I A L S I M U L AT I O N O F C H A N N E L F L O W A N D S O U N D
AT T E N U AT I O N

Until now, temporal (i.e., stream-wise periodic) ILES of a turbulent channel flow, with
rigid and/or impedance wall boundary conditions were performed. In this chapter spa-
tial simulation (non-periodic in stream-wise direction) of a turbulent channel flow is
performed. This requires imposing well-defined inflow and outflow sections. This also
allows introducing an incoming sound wave at the inflow. The objective is then to study
the attenuation of the sound wave in a turbulent channel and its interaction with the
turbulence.

In the following, the inflow and outflow boundary conditions (Section 7.1) will be
presented, followed by the wave-extraction technique (Section 7.2). Then results from
the validation test-cases will be presented (Section 7.3). Finally, results for the spatial
turbulent channel flow will be presented, followed by the extraction of the sound-waves
from the turbulent channel (Section 7.4).

7.1 boundary conditions

Simulations are always performed in truncated computational domain, with appropriate
boundary conditions at the truncated boundary. Sometimes periodicity is assumed and
periodic boundary conditions are used, which to some extent do not affect the computa-
tion unless the truncated domain is small. But for most of the practical application peri-
odicity cannot be considered. In these computations the exact conditions at the truncated
boundary are usually unknown, and they require some special treatment. Generally, for
a simulation one will have an inflow and outflow boundaries, and these two boundary
require special treatment such that spurious oscillations and reflections are not created
inside the computational domain.

7.1.1 Subsonic inflow boundary condition

Theoretically for a fluid flowing from left to right at subsonic M, four characteristics
travel downstream (X+, Xv, Xw, Xs), whereas X− characteristic wave travels upstream (see
figure 2.2). Therefore at the inlet one has to prescribe downstream travelling character-
istics, because they cannot be computed using the information from within the domain.
Generally one would prefer to prescribe (a) three velocity components and one thermo-
dynamic component at the inlet, and (b) use them to compute the four downstream trav-
elling characteristics. Characteristics are 1D approach, and for multidimensional problem
there is no exact method to prescribe incoming characteristics, due to the limitation of
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the characteristic formulation. Assuming u, v, w and T are the turbulent quantities one
choose to impose, then the characteristics X+, Xv, Xw, Xs can be computed using either
Local One Dimensional Inviscid (LODI) relations or NSE. One can find several examples
for inlet characteristic boundary conditions in Sesterhenn (2000)[255],Poinsot and Lele
(1992)[223], Yoo et al. (2005)[298] and Lu and Sagaut (2007)[173] among others. In this sec-
tion, existing subsonic characteristics inlet boundary conditions will be presented and
their pros and cons will be discussed.

7.1.1.1 Based on Local One Dimensional Inviscid (LODI) relations

As the name indicates, LODI relations are for one dimensional inviscid problem[223]. LODI

relations are obtained from equations 2.1 – 2.5 by neglecting viscous forces as well as
transverse terms (see equations 7.1 – 7.5). All terms on the r.h.s. of LODI relations are
x-derivatives. These simplified relations can be used to estimate the incoming character-
istics for multidimensional viscous problem. LODI equations writes as:

∂u

∂t
= −1

2
(X+ −X−) (7.1)

∂v

∂t
= −Xv (7.2)

∂w

∂t
= −Xw (7.3)

∂s

∂t
= −Xs (7.4)

∂p

∂t
= −ρc

2
(X+ +X−) (7.5)

The thermodynamic relation given by equation 2.31 in Chapter 2 is rewritten once again
for completeness.

∂s

∂t
= 1

T

∂T

∂t
− (γ− 1)

γ

1

p

∂p

∂t
(7.6)

If one specifies u, v, w and T at the inlet, then one does not have to solve equations 2.1
– 2.4. From the LODI relations the 4 unknown characteristic can be calculated by simply
recasting the equations 7.1 – 7.4.

X+ = X− − 2∂u
∂t

(7.7)

Xv = −∂v
∂t

(7.8)

Xw = −∂w
∂t

(7.9)

Xs = (γ− 1)
γ

1

p

∂p

∂t
− 1
T

∂T

∂t
(7.10)

Equation 7.10 was obtained by substituting equations 7.6 in equation 7.4. Xv and Xw

only appear in the equations for ∂v
∂t

(equation 7.2) and ∂w
∂t

(equation 7.3) respectively,
thus prescribing v and w is equivalent to substituting the Xv and Xw characteristics. X+
and X− are used for computing ∂u

∂t
and ∂p

∂t
(equation 7.1 and 7.5). X− is known as it

comes from inside the domain (see figure 2.2). Therefore X+ computed from the LODI
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relation (equation 7.7) is substituted into equation 7.5 to solve for pressure. Then entropy
is solved using equation 7.6 with ∂p

∂t
from equation 7.5 and known T .

7.1.1.2 Based on Navier-Stokes equations

Similarly as it was done with the LODI relations, one can estimate the inlet characteristics
using the NSE (equations 2.1 – 2.4). Like for the LODI relations, Xv and Xw only appear
in the equations for ∂v

∂t
(equation 2.2) and ∂w

∂t
(equation 2.3) respectively. Therefore pre-

scribing v and w is equivalent to substituting the Xv and Xw characteristics, and X+ is the
only characteristic which appears in multiple equations (equations 2.1 and 2.5). Equation
2.1 can be used to compute the X+ characteristics.

X+ = X− + 2(−Yu −Zu + 2

Re

1

ρ

∂τ1j

∂xj
)− 2∂u

∂t
(7.11)

X+ computed from the above relation can be substituted into equation 2.5 to solve for
pressure. Then entropy is solved using equation 7.6 with ∂p

∂t
from equation 2.5 and

known inlet T . This relation has more physical information compared to the LODI re-
lations because it maintains the transverse and viscous terms.

7.1.1.3 Non-reflecting characteristics boundary condition

As it is shown previously, it is straightforward to formulate the characteristics boundary
conditions. Both of the above mentioned formulation of the inflow boundary conditions
in Sections 7.1.1.1 and 7.1.1.2 were found to produce excellent results for laminar flows.
But for turbulent flows, in practice these boundary conditions do not perform as ex-
pected. These boundary conditions were found to create spurious reflections, due to
the strong formulation of the boundary conditions. Characteristic equations are meant
for 1D problems, hence 3D turbulent flows are very difficult to simulate without proper
boundary treatment. Yoo et al. (2005)[298] presented the boundary formulation with some
relaxation terms, which accounts for multidimensional flow effects and eliminates spuri-
ous acoustic wave reflections. For simulating spatial turbulent channel flow, the bound-
ary conditions proposed by Yoo et al. (2005)[298] were used at the inflow plane, and they
produced better results compared to the boundary formulations in Sections 7.1.1.1 and
7.1.1.2.

The basic idea of this boundary treatment is to introduce a non-reflecting boundary
condition by reducing the spurious wave reflections at the boundary. This kind of bound-
ary condition can be applied at both inflow and outflow boundaries, but here the ap-
plication of such boundary condition is limited to the inflow section. In general these
boundary conditions are just the simple extension of LODI relations, which introduces a
set of linear relaxation constraints between the inlet flow variables and their prescribed
values.

X = α(a−atarget) (7.12)

where X is any characteristics one needs to specify, α is the relaxation term, a is the flow
variable and atarget is the prescribed value at the inlet plane. This relaxation coefficient
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allows for the soft control of the boundary variables and this coefficients can be tuned to
reduce the reflections. With larger values for α one will find reflecting boundary condi-
tions similar to the ones in Sections 7.1.1.1 and 7.1.1.2, whereas with smaller values for
α the boundary condition will become non-reflecting, but with poor control of the inlet
flow variables. Therefore the choice of the relaxation coefficient must be made a priori
in order to have a better compromise between the control of reflection and simulation
accuracy.

The inflow boundary condition given by Yoo et al. (2005)[298] (adapted to the present
notation/normalisation):

X+ = α+ c (1−M2)
2Lx

(u−utarget) (7.13)

Xv = αv

ρLx
(v− vtarget) (7.14)

Xw = αw

ρLx
(w−wtarget) (7.15)

Xs = αs
(γ− 1)
γ

1

Lxc2
(T − Ttarget) (7.16)

where α+,v,w,s are the relaxation coefficients for each flow variables and Lx is the do-
main length. Target value is defined below in equation 7.17. Yoo et al. (2005)[298] also
introduced a relaxation coefficient for the transverse terms, which is not used here. With
careful examination it can be found that by using the above boundary conditions with
the LODI relation (equations 7.1 – 7.4) yields the same boundary conditions as Yoo et al.
(2005)[298]. X+ computed using equation 7.13 is injected into equation 7.5 to solve the
pressure equation.

In this thesis, the non-reflecting inlet boundary conditions (equations 7.13 – 7.16) were
used for performing spatial simulation of channel flow. It is rather straightforward to
send an incoming sound wave with such boundary treatment.

atarget = aflow +awave (7.17)

where aflow is the flow and awave is the sound wave which one wants to send into the do-
main. This boundary condition produced better results compared to the previous bound-
ary conditions mentioned in Sections 7.1.1.1 and 7.1.1.2, especially for the turbulent flow.

7.1.2 Subsonic outflow boundary condition

The objective of the outflow boundary condition is to allow the outgoing flow features to
leave the domain without creating any reflections. There are several techniques, Colonius
(2004)[54] performed a review of several such boundary conditions. The most popular
ones are the one based on characteristics[94, 223, 266], sponge zone[19, 55, 82, 132, 175, 176], grid-
stretching[56, 144], and perfectly matched layers (PML)[118, 119].

The most challenging part of the characteristic boundary condition is to make sure
that the imposed characteristics at the inlet and the one that leave the domain do not
create spurious oscillations. Outflow boundary conditions have to ensure that all types
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of characteristics waves which leaves the domain do not create reflections and spoil the
simulation. The most straightforward way to define characteristics outflow boundary
condition is to impose

X− = 0 (7.18)

It ensures that no wave enters the domain through outlet, and thus no reflections are
created[173, 255, 276]. Non-reflecting boundary condition mentioned above is ill-posed be-
cause some type of feedback is required in order to maintain the right level of pressure
at the outlet. In the absence of this feedback there will be a drift in the mean pressure
field, and the simulation might not converge. The problem will be well-posed if outlet
pressure is specified, but this can lead to reflections[210]. Thus rather soft outlet bound-
ary condition has to be imposed (similar to the inlet boundary condition mentioned in
Section 7.1.1.3), so that the pressure at the outlet plane is close to some target pressure.
When the pressure at the outlet plane is not close to the target pressure then incoming
waves will enter the domain through outlet plane in order to bring the pressure close
to the target pressure. Thus a partially reflecting outlet boundary condition with some
relaxation can be defined as:

X− = σ

ρH
(p−p∞) (7.19)

where σ is the relaxation factor[223, 238], and p∞ is the outlet pressure. The above boundary
condition is well-posed and avoid drift of the mean values. Such boundary condition
was first introduced by Rudy and Strikwerda (1980)[238], which was then upgraded by
Poinsot and Lele (1992)[223] by adding an asymptotic value for incoming characteristics
to the above equation 7.19:

X− = σ

ρH
(p−p∞)+X−exact (7.20)

where X−exact is the exact value of X− found from some asymptotic method. The additional
term is just a small correction to equation 7.19, and the absence of this term is not going
to affect the results drastically.

7.1.2.1 Sponge zone

Another simple approach to treat the outflow boundary is to use a sponge zone. The
sponge zone technique is very popular due to its simplicity, robustness, non-stiff nature
and flexibility to handle complex geometries and unstructured grids[175]. In the litera-
ture one can find several examples for sponge zones for simulating mixing-layer[13, 27],
jets[18, 258], cavity[95, 162], and bluff-body[20] flows.

With this method a sponge layer is added to the computational domain (see figure
7.1 for computational domain with sponge zone for simulating channel flow), where the
modified NSE (equation 7.21) are solved. If Lx is the length of the physical domain of the
channel and Lsponge is the length of the sponge then length of the complete computational
domain will be Ldom = Lx + Lsponge.

If q = [u v w s p]t is the solution vector, then the modified NSE in the sponge zone for
a channel will be:

∂q
∂t

← ∂q
∂t

−σ(x) (q−qref) (7.21)
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σ(x) (q−qref) is the unphysical term added to the NSE inorder to damp the flow field to
a known reference solution. σ is the damping function defined as:

σ(x) = (1− Ldom − x
Lsponge

)3 (7.22)

Inside the sponge zone 0 ≤ σ(x) ≤ 1. Sponge zone is generally characterised by its length

Physical domain Sponge zone

Lx Lsponge

σ(x)

Figure 7.1: Sponge layer for a spatial channel flow simulation.

(Lsponge) and strength (σ). For a fixed strength here, longer sponge zone will perform
better than shorter sponge zone, because the former will damp the flow features more
gradually. On the other hand, longer sponge zone means longer computational domains
and this will increase the computational cost. Hence, one has to find a better compromise
between the sponge zone characteristics and the computational cost in order to have an
optimal sponge zone. This is a numerical technique and, in the literature one can find
mathematical analysis about their well-possessedness and stability[19, 132]. An optimal
sponge zone is mostly designed based on the trial-and-error approach. Mani (2012)[176]

performed the analysis of sponge zone to better understand the interaction between the
flow and sponge zone and provided a guideline to design sponge zone for practical CFD

purposes.

One solution for longer sponge zone is to use grid-stretching complemented with the
excess dissipation[23, 27]. Grid-stretching allows for longer sponge zone without increased
computational cost. But this has to be accompanied with the excess dissipation in order
to prevent reflections from unresolved flow features in the sponge zone. One can either
add excess viscous or numerical dissipation, and the choice of excess dissipation should
not affect the results because the sponge zone requirements are not dependent on the
high wave-number features. For the present case, in the physical domain uniform grid
was used in the stream-wise direction and in the sponge zone the grid was stretched
gradually with the coarsest grid at the end of the sponge zone. The coarsest grid was
about 15∆x – 20∆x. In the whole computational domain the SVV kernel mentioned in
Section 2.5.2.2 was used for the excess dissipation. Same set of coefficients were used for
the SVV kernel in the physical domain and the sponge zone. Therefore in the physical
domain where finer grids were used the SVV kernel will add dissipation in a narrow high
wave-number region, whereas in the sponge zone the coarser grid will damp some flow
features by not being able to discretise them, and the SVV kernel will remove grid-to-grid
oscillations if any (due to coarser mesh). Other filtering techniques were also tested in-
stead of the SVV in the sponge zone, better results were obtained with the SVV kernels.
The final step is to find a reference solution as a target in the sponge zone. Usually one
can use some asymptotic solutions, or the solution for the same problem. In the present
case, weighted time averaged flow field taken from the end of the physical domain is
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used as the reference solution. The procedure to compute the reference solution is de-
tailed in the Appendix F.

7.2 wave extraction using global minimization

One of the objective of this chapter is to extract acoustic wave from a turbulent flow in
a duct and investigate the effect of turbulence on sound attenuation. In this section the
plane wave decomposition technique which was used to determine the wave amplitude
and complex wave-number is presented. Generally, the standard methods for measuring
the acoustic properties of a wave in a duct are using the Standing Wave Ratio (SWR)
and Two Microphone Method (TMM)[127, 128]. The SWR method performs very well for
stationary medium but it is very difficult to apply for a turbulent flow moreover it is
very time consuming[214]. Whereas TMM can work with broadband acoustic wave much
faster than the SWR. Several research has been devoted to the analysis of accuracy of the
TMM[17, 206, 257, 308]. Another technique is the least square method, which was introduced
by Fujimori et al. (1984)[83]. Later Pope (1986)[224] showed that the least square method
using the transfer function between 2 microphone is similar to the TMM. Chu (1991)[50]

and Chu (1988)[49] showed that the least square method using multiple microphones
give more accurate results that the TMM. Jang and Ih (1998)[134] found improved results
with the least square method where multiple microphones which were placed at uniform
distance within half wavelength. All these works assume that the complex wave-number
is known based on theory or empirical formulas. With no mean flow, the wave-number
for circular ducts can be calculated from the Kirchhoff solution for plane waves[150]. With
the mean flow the situation is complicated[61, 68, 69, 115, 130, 205].

Acoustic wave of frequency f can be written as the sum of down- and up-stream
travelling waves:

p̂(x) = p̂+e−ik+x + p̂−eik−x (7.23)

p̂ is the Fourier transform of the acoustic pressure, x is the stream-wise location, k is
the complex wave-number and ± is used for the down- and up-stream travelling waves
with time dependence ei2πft. Here the objective is to extract the wave and compute its

x a b

p+
p−

Figure 7.2: Up-stream and down-stream travelling acoustic waves and the measurement configu-
ration for the TMM. a and b are the microphones at positions xa and xb.

complex wave-number and waveform. Firstly, the simple TMM is presented, using which

141



one can find p± knowing k±, thanks to the microphone measurements pa and pb. See
figure 7.2 for a schematic representation of acoustic field using the down- and up-stream
travelling waves and measurement configuration for the TMM. For the TMM, the complex
wave-number is computed from theoretical or empirical equations 7.38 and 7.41. With
the known value of k±, one can write a set of two equations for microphones a and b:

at xa: p̂(xa) = p̂+e−ik+xa + p̂−eik−xa (7.24)

at xb: p̂(xb) = p̂+e−ik+xb + p̂−eik−xb (7.25)

The above set of equations can be written in the matrix form as:

b = Ap (7.26)

b = ⎡⎢⎢⎢⎢⎣
p̂(xa)
p̂(xb)

⎤⎥⎥⎥⎥⎦ A = ⎡⎢⎢⎢⎢⎣
e−ik+xa eik−xa
e−ik+xb eik−xb

⎤⎥⎥⎥⎥⎦ p = ⎡⎢⎢⎢⎢⎣
p̂+
p̂−

⎤⎥⎥⎥⎥⎦ (7.27)

the unknowns p̂± can be found by solving for:

p = A−1b (7.28)

The above system of equations will not yield any results if the distance between two
microphone s = xb−xa is a multiple of wave-length. In that case matrix A is not invertible.
In addition, even whenA is invertible, it can be ill-conditioned leading to incorrect results.
Bodén and Åbom (1986)[17] showed that the TMM is least sensitive to errors if ks = π(1−M2)/2, and Åbom and Bodén (1988)[308] found TMM should be restricted to 0.1π(1 −M2) < ks < 0.8π(1−M2).

Above mentioned TMM requires known wave-number information, and this data is
not available a priori for wave attenuation in turbulent flow. Therefore, another method
to find the wave-number was proposed by Allam and Åbom (2006)[6]. The method by
Allam and Åbom (2006)[6] is very straightforward and simple. The method is based on
the measurements from multiple microphones. For each microphone, the pressure field
of frequency f is:

p̂j = p̂+e−ik+xj + p̂−eik−xj (7.29)

here j is the microphone position.

Unlike the TMM, for this method the complex wave-number is considered unknown.
This leaves one with 4 unknowns to solve: p± and k±. Equation 7.29 is written for each
microphone j = 1,2, ...,N. Since one has 4 unknowns, one should have minimum 4 micro-
phone recording, and they are placed such that:

0.1π(1−M2) < ks < 0.8π(1−M2) (7.30)

Several microphones were placed in the stream-wise direction which recorded the data
averaged in the span-wise direction. Span-wise averaging removes a part of the turbu-
lence from the measurement assuming that the wave is plane in the span-wise direction
(see figure 7.3 for an example). Then cross-spectrum is computed between the acoustic
wave and the microphone measurement.

Sj = FTmic
j conj(FTwave) (7.31)
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Figure 7.3: Comparison of raw and span-wise averaged signal.

If the source is excited at a frequency f then in the cross-spectrum one will find only a
single peak at this particular frequency. By averaging the cross-spectrum computed over
multiple blocks (like Welch’s method), one can cancel the contribution from turbulence
at frequency f and only retain the contribution from acoustic wave[308].

p̂j = ∑nbblocks
1 Sj

nbblocksconj(FTwave) (7.32)

But this requires averaging over a large number of blocks of cross-spectra. When multiple
wave modes are present at the same frequency, then each mode must be separated from
p̂j. Transverse modes has the shape cos(n(y−1)π/2), where n is the mode. Acoustic field
with multiple modes can be written as,

p̂j(y) = a0 +a1cos((y−H)π/2)+a2cos(2(y−H)π/2)+ ... (7.33)

here kny = nπ/2H is the wave-number of the transverse wave, a0 is the plane wave, a1 is
the amplitude of the first order mode and a2 is the amplitude of the second order mode.
The amplitude of mode n can be computed by projecting the acoustic field on to the
basis,

1

2H
∫ H

−H p̂(y)cos(kmy (y−H))dy = ∑
n

an
1

2H
∫ H

−H cos(kny(y−H))cos(kmy (y−H))dy
= anδnm (7.34)

An example of synthetic acoustic field with multiple transverse mode and random noise
is presented in figure 7.4. Wave amplitude is an = 1 and amplitude of random noise is
0.1. A synthetic non-uniform grid with 81 points in the wall-normal direction was used
to define the wave profiles.

Microphone recording in the stream-wise direction is required to compute the complex
wave-number, and microphone recording in the wall-normal direction to find the acoustic
wave-profile. At each wall-normal location, acoustic wave can be split into plane and
transverse modes. Hence, for each wave mode, one knows the l.h.s. of equation 7.29.
Now one can minimise the residual R to find the unknowns (k+, k−, p̂+, p̂−) using the
set of equations written for different microphones as:

R = ∣A−B∣ (7.35)

where

A = p̂+e−ik+xj + p̂−eik−xj B = p̂j (7.36)
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Figure 7.4: Example of transverse acoustic modes. ∣p̂∣ is the complete acoustic field with random
noise of amplitude 0.1 and ∣p̂∣i is the different modes each with amplitude 1.

Presently, Global non-linear minimisation method “NOMAD” from the “OPTI” Matlab
Toolbox was used for this purpose. NOMAD uses a Mesh Adaptive Direct Search algo-
rithm to solve non-differentiable and global non-linear programs, it is a derivative free
optimisation[10, 163]. Other optimisation techniques were also tested using the Newton-
Gauss method[6] and Simplex search method[157]. Better results were obtained with the
global minimisation method.

As a starting point one needs to provide some initial guess for the 4 unknowns. This
is done in 2-steps. First, guess of k± is computed from asymptotic theory, and secondly
this guess is used to find guess for p±. For no mean flow case, wave-number of the plane
wave is given by Kirchhoff (1868)[150] modified for the rectangular duct is:

k0

ω
= 1+ √

i

2
√
2Sto

[1+ (γ− 1)√
Pr

]+ i

4Sto2

⎡⎢⎢⎢⎢⎣1+
(γ− 1)√

Pr
− 1
4
(1+ (γ− 1)√

Pr
)2⎤⎥⎥⎥⎥⎦ (7.37)

where Sto is the non-dimensional Stokes number (ratio of duct half-height to the acoustic
boundary layer thickness, to be defined later in equation 7.49), Pr = 0.75 is the Prandtl
number and γ is the ratio of specific heats. By accounting for the mean flow, Dokumaci
(1995)[68] proposed the up- and down-stream wave-numbers as:

k± = k0(1± k0M) (7.38)

these values are used as the initial guess of k± for plane wave.

For uniform flow, angular frequency can be defined as,

ω = kxM±
√
k2x + (nπ

2
)2 (7.39)

For the transverse wave n = 1, the above relation will have the form,

(ω− kxM)2 = k2x + (nπ
2

)2 = k2x(1−M2)+ 2ωMkx + (nπ
2

)2 −ω2 = 0 (7.40)

Wave-number kx can be found as the roots of the above quadratic equation given by,

kn± = −Mω±√
ω2 − (1−M2) (nπ

2
)2(1−M2) (7.41)
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For the transverse wave, dissipation is not accounted for in the guess value for k± given
by equation 7.41. One will find transverse acoustic wave only for ω2 > (1−M2) (nπ

2
)2.

Results from equation 7.38 and 7.41 are substituted in to equation 7.29 and then equa-
tion 7.28 is solved for 2 unknowns p±. The second step is very similar to the TMM. These
guesses are finally used for the global non-linear optimisation (equation 7.35).

In summary the steps, of the wave extraction procedure are:

1. Record data averaged in the span-wise direction using multiple microphones with
appropriate spacing between them (see equation 7.30);

2. Compute acoustic amplitude by computing cross-spectra between the source and
microphone reading over multiple blocks of data (see equation 7.32);

3. Extract required wave modes using equation 7.34;

4. Compute initial guess for k± with equation 7.38 and 7.41;

5. Use k± from step 4 to find initial guess of p̂± using equation 7.28;

6. Use the initial guesses from stem 4 and 5 for the global non-linear optimisation (see
equation 7.35).

7.3 validation

In this section the inflow and outflow boundary conditions will be validated by simu-
lating a Poiseuille flow. The results are compared with the analytical solution. Then the
wave extraction method will be tested by extracting the wave profile from the Poiseuille
mean flow. The results of the wave extraction will be compared with the modal analysis.

7.3.1 Poiseuille flow

7.3.1.1 Flow configuration

Spatial simulation of laminar plane Poiseuille flow was computed using the inflow and
outflow boundary conditions mentioned in Section 7.1. Computational domain of size
Lx × Ly × Lz = 10H × 2H × 0.5H was discretised with Nx ×Ny ×Nz = 121 × 81 × 10 grid
points. Uniform discretisation was chosen in the stream-wise and span-wise direction, in
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the wall-normal direction refined mesh was used near the walls. For the subsonic inflow,
three velocity components and temperature were prescribed.

u(1,y, z) = 3

2
M(1−y2)

v(1,y, z) = 0

w(1,y, z) = 0

T(1,y, z) = Tw (7.42)

whereM = 0.05 and Re = 150. This channel flow configuration is the same as in Poinsot
and Lele (1992)[223]. For completeness the boundary conditions used for this particular

X−
u X+
v Xv

w Xw

T Xs

Flowy

x

Figure 7.5: Flow configuration for Poiseuille flow validation.

test-case are presented once again. The fluid flows from left to right. Stream-wise velocity,
pressure and entropy are interlinked with each other (see Section 2.1), hence at the inlet
(left) incoming characteristics X+ (downstream travelling characteristic wave) is:

X+ = X− + 2(−Yu −Zu + 2

Re

1

ρ

∂τ1j

∂xj
)− 2∂u

∂t

X+ computed from the above relation (this is equation 7.11) is used to compute pressure
using equation 2.5. Computing Xv and Xw is equivalent to imposing wall-normal and
span-wise velocity component at the inlet, because these characteristic terms appear only
in their respective equations (equations 2.2 and 2.3). Isothermal inlet was considered

∂s

∂t
= 1
p

∂p

∂t

(γ− 1)
γ

With this way of prescribing inflow conditions, one solves the compressible NSE at the
inlet boundary. It was found that such boundary conditions based on LODI and/or NSE

(see Sections 7.1.1.1 and 7.1.1.2) are suitable for laminar flows due to their simplicity.
In the present case results obtained with characteristic boundary conditions based on
NSE are only presented, with other formulations similar results were obtained. For turbu-
lent flows, such inflow boundary conditions creates reflections, hence the non-reflecting
boundary conditions introduced in Section 7.1.1.3 will be used. This will be addressed
later in Section 7.4.1.

For the present case,
X− = σ

ρH
(p−p∞)

will be used as the outflow boundary condition. σ = 0.58 was used for the simulation.
σ = 0.025 to 2 was also tested. With smaller values of σ mean flow variables were slightly
over-predicted, results are not shown here. Another approach is to introduce a sponge
layer (see Section 7.1.2.1), where all the turbulence and acoustic wave will be damped
gradually without creating any reflections. The sponge layer approach will be used while
simulating wave-propagation in Section 7.3.2 or turbulence in Section 7.4.
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7.3.1.2 Results

In figure 7.6, the time evolution of mass flow-rate is presented to show the convergence
of the simulation. Within the reduced time of tub/H = 20, a very well steady converged
flow state was obtained.

tub/H
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Outlet

20 40 60 80
0
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Figure 7.6: Time evolution of inlet and outlet mass flow rate

Figure 7.7 presents the stream-wise evolution of mass flow-rate, and the percentage
change in the pressure and temperature. Constant mass flow rate was found along the
channel in the stream-wise direction. Due to normalisation the flow-rate should be equal
to the Mach number. Percentage change in pressure and temperature close to the wall
and at the channel centre is presented in figure 7.7 (b,c). For the pressure a linear curve
was found, which indicates a constant pressure drop along the stream-wise direction.
Moreover curves close to the wall and at the centre collapse one over the other, which
indicates the pressure do not vary across the wall-normal direction. For temperature fig-
ure 7.7 (c), close to the wall, almost a constant temperature was found due to isothermal
wall. At the channel centre, in the stream-wise direction, a slight drop in temperature
was witnessed. At the outlet the drop in temperature was 0.08%.

Visualisation of flow field at reduced time tub/H = 70 is presented in figure 7.8. For
the velocity plane parallel flow along the stream-wise direction was found, which is
consistent with the above observation in figure 7.7 (a). Gradual drop in the pressure is
noticeable in figure 7.8 (b). For the temperature in figure 7.8 (c), at the inlet plane and
the walls the temperature is prescribed to be constant. A slight drop is the temperature
can be found towards the center of the channel and the stream-wise direction. Like the
pressure, in figure 7.8 (d) density drops in the stream-wise direction.

The analytical solution for velocity and temperature can be found in Schlichting et al.
(1955)[244] and Poinsot and Lele (1992)[223]:

u = −1
2µ

∂p

∂x
(H2 −y2) (7.43)

T − Tw = −u2cPr(1
2
+ 1
2
y4 −y2) (7.44)

147



(a)

x/H

Q
m

×10−2

0 2 4 6 8 100

2

4

6

8

10

(b)

x/H

(p/p
∞−

1
)[in

%
]

○ close to wall
y = H

0 2 4 6 8 100

0.5

1

1.5

2

(c)

x/H

(T/T
w
−1)

[i
n

%
]

×10−2

○ close to wall
y = H

0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

Figure 7.7: (a) Mass flow rate, percentage change in (b) pressure and (c) temperature in stream-
wise direction.

In figure 7.9, the velocity and temperature profiles from the simulation are compared
with the analytical solution. Profiles to velocity and temperature are taken at various
stream-wise locations. Profiles of velocity collapsed excellently over each other. The
Poiseuille velocity profile is maintained along the channel. Constant temperature pro-
file was imposed at the inlet, and the agreement with the analytical solution improves as
the flow travels downstream.

7.3.2 Poiseuille flow with acoustic wave

Propagation of acoustic wave in Poiseuille flow was simulated using the boundary condi-
tions in Section 7.1. Two simulations were performed, firstly plane acoustic waves at two
frequency were excited at the inflow boundary. Secondly, plane and transverse acoustic
waves were excited at the same frequency. The wave decomposition procedure intro-
duced in Section 7.2 will be used to extract the acoustic wave from the flow. Simulations
are performed atM = 0.25 and Re = 9905. At the inflow boundary, characteristic bound-
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Figure 7.8: Visualisation of (a) stream-wise velocity, (b) pressure, (c) temperature and (d) density
fields for the low Reynolds number Poiseuille flow. Slice taken at z=0

ary conditions based on NSE were used. This is the same boundary treatment used for the
validation test in Section 7.3.1. Since there is acoustic wave propagation in the computa-
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Figure 7.9: Comparison of (a) velocity and (b) temperature to the analytical solution

tional domain, sponge zone introduced in Section 7.1.2.1 is used at the outflow boundary.
Other simulation details will be presented for the respective cases below.

7.3.2.1 Multiple plane acoustic waves

Propagation of plane acoustic waves of frequency 800 and 1000Hz are simulated. The
boundary conditions for the flow at the inlet were similar as in Section 7.3.1. The acoustic
wave is imposed through a power 4 profile excitation u = uPoiseuille +uwave(1−y4)sin(ωt),
here uwave is the amplitude of the wave, and at the inlet it was fixed at uwave = 5%M.
The height of the channel is H̃ = 0.0043702, here (̃ ) is used for the dimensional quantity.
Physical computational domain of size Lx × Ly × Lz = 800H× 2H × 0.5H was used for the
simulation to accommodate 6 – 8 wavelengths in the computational domain. Sponge zone
of length Lsponge = 400H was added past the outflow boundary. The physical domain was
discretised with Nx ×Ny ×Nz = 241× 81× 10 (uniform grid in the stream-wise and span-
wise direction). 40 grid points in the stream-wise direction was used to discretise the
sponge zone with stretched grids. Refined grid was used in the wall-normal direction.

The perturbation field at a given time of the simulation (obtained by removing the
mean) of the stream-wise and wall-normal velocities, pressure and temperature are pre-
sented in figure 7.10. Plane wave can be observed in the different perturbation fields.
Due to the acoustic boundary layer close to the wall, waves in stream-wise velocity and
temperature are not entirely plane across the channel height. For the temperature, close
to the inflow, entropy modes are excited which are evanescent in nature. Hence they are
damped quickly, leaving the plane waves to only exist downstream.

Approximately a minimum of 6 microphones per half-wavelength in the stream-wise
direction was used to find the complex wave-number with the minimisation procedure
presented in Section 7.2. At each stream-wise station, microphones were deployed in the
wall-normal direction to estimate the wave profile. The acoustic wave profiles extracted
using the decomposition technique in Section 7.2 is shown in figure 7.11 and the complex
wave-number is presented in table 7.1. Since both frequencies are very close the wave
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(a)

(b)

(c)

(d)

Figure 7.10: Example of perturbation field at the given time of the simulation with two plane
waves at f̃ = 800 and 1000 Hz. (a) Stream-wise velocity, (b) wall-normal velocity, (c)
pressure and (d) temperature.

profiles also looks alike. The wave profiles are normalised with the amplitude of the
stream-wise velocity component at the channel centre. The profile extracted from the
simulation agree very well with the modal analysis. As found earlier in figure 7.10, the
acoustic wave in the stream-wise velocity and temperature is not entirely planar across
the channel height. Plane waves are present for the pressure, whereas transverse wave
exists for wall-normal velocity.

The wave-number and damping coefficient are presented in table 7.1. The real part of
the wave-number is R(k) = 2π/λ, where λ is the wavelength. Wavelength of the acoustic
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Figure 7.11: Comparison of wave profiles from simulation and modal analysis. (a) Stream-wise
velocity, (b) wall-normal velocity, (c) pressure and (d) temperature.

wave at 800Hz is about 122H and for 1000Hz is 98H. The real part of the wave-number
computed from the simulation data using the wave-extraction procedure matches the
result obtained from the modal analysis. The damping coefficient (imaginary part of the
wave-number k) is also predicted accurately.

Case 800 Hz 1000 Hz

R(k) I(k) R(k) I(k)
Simulation 0.05107 0.0006492 0.0638 0.000730

Modal 0.0515 0.000658 0.064 0.00073

Table 7.1: Comparison of wave properties computed from the simulation and modal analysis.

7.3.2.2 Plane and transverse acoustic waves

Propagation of a plane and transverse wave at a constant frequency 20kHzwas simulated
with the same channel height as in previous example, H̃ = 0.0043702. First transverse
mode is only present if the excitation is above the cut-on frequency 18.8kHz (see equation
7.39). The objective was to test the detection procedure to extract different wave modes
at same frequency. The inflow and outflow boundary treatment was similar like the
previous test-case where two plane waves were excited at the channel inlet. The plane
and transverse wave excitation has the form u = uPoiseuille +uwavecos((y−1)π/2)sin(ωt)+
uwave(1 − y4)sin(ωt), and the wave amplitude uwave was set at 133dB at the inlet. The
physical computational domain has the dimension Lx × Ly × Lz = 80H× 2H× 0.5H, and it
was discretised with Nx ×Ny ×Nz = 483 × 81 × 10. Past the outflow boundary, a sponge
zone of stream-wise length Lsponge = 120H (discretised with 300) points was used to damp
the acoustic waves.

The acoustic pressure field is shown in figure 7.12. Both plane and transverse waves are
visible in the pressure field. Plane waves have shorter wavelength, whereas the transverse
wave have longer wave-length because they are just above the cut-on frequency at which
the latter waves are not evanescent. The wave extraction procedure was used to separate
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the plane and transverse waves using cosine projection. Approximately a minimum of
6 microphones per half wave-length were used in the stream-wise direction to find the
complex wave-number. Microphones recording in the wall-normal direction was used to
find the profiles of the acoustic wave using the wave-extraction procedure in Section 7.2.

Figure 7.12: Example of instantaneous acoustic pressure field with plane and transverse wave.
The first probe in the stream-wise direction is located at xp1 = 23.

The comparison of the extracted transverse pressure wave and the result from the
modal analysis is presented in figure 7.13. The curves are normalised with the amplitude
of the transverse wave at the wall. The curves obtained from the detection procedure
and the modal analysis collapse very well on each other. Current procedure with cosine
projection will only work for uniform mean flow, or with plane acoustic wave. In the
present case, due to the no-slip wall, there is a boundary layer in the near-wall region
(e.g., see figure 7.11). However, plane mode exists for pressure, therefore transverse wave
could be extracted only for one component.

∣p̂∣/∣p̂w∣

y
/H

◊ Simulation
Modal

0 0.5 1-1

-0.5

0

0.5

1

Figure 7.13: Comparison of transverse wave profile from simulation and modal analysis.

The wave properties computed from the modal analysis and the extraction procedure
are presented in table 7.2. The results agree very well with the modal analysis. The plane
wave has wavelength approximately 4.9H and the transverse wave has wavelength ap-
proximately 46H. Plane wave has higher damping coefficient compared to the transverse
wave.
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Case plane wave transverse wave

R(k) I(k) R(k) I(k)
Simulation 1.2900 0.0030 0.1398 0.00103

Modal 1.2817 0.0036 0.1325 0.00108

Table 7.2: Comparison of wave properties computed from the simulation and modal analysis.

7.4 spatial turbulent channel flow

In Section 7.1, different types of inflow and outflow boundary conditions for subsonic
spatial simulations were presented. Some of these boundary conditions were validated
for laminar flows with and without waves in Section 7.3. For turbulent flows, the inflow
characteristic boundary conditions defined in Section 7.1.1.1 or 7.1.1.2, and the outflow
boundary conditions in equations 7.18 or 7.19 creates spurious reflections due to the
complexity of this flow. Moreover, the channel is a closed domain and any unwanted os-
cillation or artefact generated will not leave the computational domain due to the strong
boundary conditions. In this section, simulation of spatial turbulent channel flow will be
performed using inflow and outflow boundary conditions in Sections 7.1.1.3 and 7.1.2.1.
These conditions were found to be more suitable for turbulent flows and they do not
create spurious reflections. Weak formulation of the inlet boundary conditions ensures
the imposition of the boundary conditions itself does not create strong reflections and
additionally any upstream travelling artifacts which exist in the domain will be allowed
to exit the domain through the inlet plane. The sponge layer in the outlet gradually adds
excess numerical viscosity or dissipation which explicitly damps the down-stream travel-
ling turbulent structures and/or acoustic waves. The sponge layer is accompanied with
the grid-stretching (see Appendix B.2) and it complements the damping in sponge zone
by under-resolving the flow features. Finally, the most important aspect for simulating
turbulent flow is the quality of inlet data. Currently, a simultaneous temporal precursor
channel flow simulation is performed which is coupled to the spatial simulation for the
inflow turbulence data. The procedure will be addressed in the following section.

7.4.1 Turbulent inflow

Generally for simulating spatial evolution of turbulent flow, laminar or turbulent pro-
files are used at the inlet. When one uses laminar inlet, the flow has to go through a
transitional phase before becoming turbulent. For such strategy one will require to have
a very long domain upstream the developed flow regime, which will eventually increase
the computational cost. A simple solution to this problem is to forcefully trigger turbu-
lence with some tripping, yet the flow has to go through a transitional phase which is
sometimes very longer. Therefore the best approach to have fully developed turbulent
flow is to use turbulent inflow. This could be done by (a) using the data from a precursor
simulation[263] or (b) synthetic turbulence. Generally, for the precursor simulation, one
has to perform an additional simulation with stream-wise periodic boundary condition
and save the time-resolved data on a plane. This procedure is straightforward, but it
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requires large storage space to save the data from the precursor simulation. Currently, a
simultaneous precursor simulation is performed for the inflow data for the spatial chan-
nel. Since, both simulations are coupled in order to exchange the data on a plane from the
temporal simulation to the inflow section on the spatial channel, additional storage space
is not required. This approach will indeed increase the computational cost because one
has to perform 2 simulations simultaneously, thanks to the “2DECOMP” library which
allows for efficient parallel computation. The flow configuration is presented in figure
7.14. The main advantage of such technique is that, one can provide realistic turbulent

Flow

u, v, w, T

Sponge layer

Figure 7.14: Flow configuration for turbulent spatial channel flow simulation.

inflow data for the spatial simulation. In the following, an acoustic wave will be sent
along with the turbulence through the inlet. With the weak inlet boundary conditions
presented in Section 7.1.1.3, one can easily impose realistic inflow data without creating
spurious reflections. At the outflow the sponge layer with grid stretching was used to
damp the flow features.

In the following sections, firstly flow statistics for a spatial turbulent channel flow will
be presented. Secondly, the interaction between the turbulent flow and acoustics will be
addressed.

7.4.2 Turbulent flow statistics

7.4.2.1 Simulation set-up

Spatial simulation of turbulent channel flow at Reτ ≈ 395 and M = 0.3 was performed.
The size of the physical domain was Lx × Ly × Lz = 180H× 2H× 4π/3H, and it was discre-
tised with Nx ×Ny ×Nz = 1767×101×85 grid points. In the stream-wise direction sponge
zone of size Lsponge = 80H was discretised with stretched grid consisting of 300 points. In
the physical domain the grid has size, ∆x+ = 40, ∆y+min = 2, ∆y+max = 14 and ∆z+ = 20.
Due to the weak inlet formulation, the flow has to go through a transition to reach the
fully turbulent state (α+,v,w,s = 20 is the value of the relaxation parameter in equations
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7.13 – 7.16). Due to the lack of homogeneity in the stream-wise direction, the mean quan-
tity < ( ) > is a function of stream-wise and wall-normal location, and averaged only in
time and span-wise direction. In the same fashion other global quantities are function of
x. The friction Reynolds number is:

Reτ(x) = ρ̃w(x)H̃ũτ(x)
µ̃w

(7.45)

the friction velocity is defined as:

ũτ(x) =
¿ÁÁÀ τ̃w(x)
ρ̃w(x) (7.46)

the non-dimensional heat-flux through the walls:

Bq(x) = − K̃t,w

ρ̃w(x)c̃pũτ(x)T̃w
∂T̃(x)
∂ỹ

RRRRRRRRRRRRw (7.47)

and the friction coefficient is:

cf(x) = 2τ̃w(x)
ρ̃b(x)ũb(x)2 (7.48)

7.4.2.2 Results

2D mean flow fields are presented in figure 7.15. Mean stream-wise velocity is roughly
constant along the stream-wise direction. Mean pressure is independent of wall-normal
location. Mean temperature and density varies along the stream-wise and wall-normal
direction. Brun et al. (2011)[39] performed LES of spatial channel flow at a lower Reynolds
but higher M number. They found similar trend for the velocity and pressure distribu-
tion. Their fluid was always hot at the channel centre compared to the wall-temperature,
whereas in the present case the fluid becomes cold and in the down-stream region the
fluid is hotter in the near-wall region than in the core of the flow.

Stream-wise evolution of Reτ, cf and Bq are presented in figure 7.16. The transition
length is about 20H− 25H. As it was mentioned earlier, the relaxation coefficient α+,v,w,s

determines the level of reflectivity of the inflow boundary. But one should find a bet-
ter trade-off between the reflectivity and the simulation accuracy. The present choice of
α+,v,w,s = 20 is reasonable. Since the pressure drop is constant in the stream-wise direc-
tion, Reτ and cf are constant in the fully turbulent regime and equal to their respective
values in the periodic simulations. Non-dimensional heat-flux decreases linearly after the
transition to fully turbulent state.

The evolution of mean pressure and temperature at the first point from the wall (y+ = 2)
and at the channel centre is presented in figure 7.17. After the initial transition, the pres-
sure drops linearly in the stream-wise direction. The pressure drop is constant close to
the wall and at the channel centre, and it does not depend on the wall-normal location.
The mean temperature also drops linearly in the stream-wise direction once the flow be-
comes fully turbulent. The temperature gradient is not constant close to the wall and at
the channel centre. The stream-wise mean temperature gradient is stronger at the channel
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Figure 7.15: Mean field of (a) stream-wise velocity, (b) pressure, (c) temperature and (d) density
fields.

centre, whereas due to constant wall-temperature boundary condition the temperature
remains more or less constant. Brun et al. (2011)[39] found the temperature and pressure
gradient is independent of wall-normal location. The present results for the mean tem-
perature disagree with the findings of Brun et al. (2011)[39], and the exact reason for this
difference is not known.
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Figure 7.16: Stream-wise distribution of (a) Reτ, (b) cf and (c) Bq.

Profiles of mean stream-wise velocity and temperature is shown in figure 7.18. Profiles
are taken from different stream-wise locations x/Lx = 0 ∶ 0.25 ∶ 1. The mean velocity profile
at all stream-wise locations collapse very well on the mean profile from the temporal
simulation, except at x = 0.25Lx. The profile at x = 0.25Lx deviates slightly from other
profiles because the flow is going through a transition. The mean temperature profile
at the inlet and the one computed from the temporal channel collapse very well. The
flow temperature keeps dropping especially at the core of the flow, which was earlier
shown in figure 7.17(b). Due to turbulent mixing close to the isothermal walls, the rate
of drop in the fluid temperature is very low near the walls. Present result for the mean
temperature disagree Brun et al. (2011)[39], who found collapse of mean temperature
profiles at different stream-wise locations.

Comparison of Reynolds stress profiles at different stream-wise stations are presented
in figure 7.19. Due to the relaxation coefficient α+,v,w,s, the inlet turbulence level is very
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Figure 7.17: Evolution of (a) mean pressure and (b) mean temperature close to the wall and at the
channel centre.
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Figure 7.18: Profiles of (a) mean stream-wise velocity and (b) temperature at different stream-wise
station.

low, and this is the reason for the initial transition close to the inflow boundary. For
higher values of α+,v,w,s, higher levels of inflow turbulence can be attained but, with the
drawback that the boundary condition being more reflective. The profile at x = 0.25Lx
deviates slightly from rest of the profiles because the flow is undergoing transition in
this region. The profiles from x/Lx = 0.5, 0.75 and 1 collapse very well on the profile
computed from the periodic simulation of channel flow at similar Reτ.

Comparison of rms of thermodynamic quantities are presented in figure 7.20. Like
other quantities, at the inlet plane rms of thermodynamic quantity is under-predicted.
Curves for rms of pressure at x/Lx = 0.5− 1 has satisfactory collapse, but they are under-
predicted compared to the rms of pressure from the temporal channel flow simulation.
Rms of temperature and density is enhanced (x/Lx = 0.5 − 1) compared to the statistics
computed from the periodic channel flow simulation.
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Figure 7.19: Comparison of (a)
√
u ′2, (b)

√
v ′2, (c)

√
w ′2 and (d) u ′v ′ profiles.

Present results suggests that the spatial development of turbulence in a duct is repro-
duced satisfactorily. Simultaneous temporal precursor simulation ensures that realistic
turbulent data is fed to the spatial channel. Due to the weak formulation of the inflow
boundary the flow goes through a transition before reaching the fully turbulent state.
Weak formulation of the inflow boundary ensures the best compromise between the ac-
curacy of the inflow turbulence data and the reflectivity of the boundary. Global flow
variables such as, Reτ, cf and pressure gradient remains constant in the fully developed
region. Mean and rms velocity profiles also collapse very well in this region. Difference is
mainly found for the mean temperature distribution. The fluid in the core of the channel
cools in the down-stream region, and due to the turbulent mixing close to the isothermal
wall, the drop in fluid temperature is very low. The sponge zone ensures no reflections
are created by the flow features which exits the domain. Except for the disagreement on
the mean temperature distribution, the present results agree with the findings of Brun
et al. (2011)[39]. The reason for the difference in the mean temperature distribution is not
clearly understood. Nevertheless, the present simulations describes the turbulent flow
field accurately and the results are satisfying. In the following section, acoustic wave
attenuation in a turbulent channel flow will be addressed.
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7.4.3 Interaction between sound and turbulence

7.4.3.1 Simulation setup

In this section attenuation of sound wave in a turbulent channel flow will be addressed.
Simulation of acoustic propagation in the turbulent channel flow in Section 7.4.2 is done
here. The computational domain, resolution and simulation parameters are given in Sec-
tion 7.4.2.1 Acoustic waves are injected into the domain through the inlet, together with
the turbulence (see equation 7.17). Several probes were deployed in the stream-wise and
wall-normal directions to record the temporal data averaged in the span-wise direction.
The flow configuration is presented in figure 7.21. The rate of attenuation and profiles
of the acoustic wave was found with the wave extraction technique presented in Section
7.2. Approximately a minimum of 6 microphones per half wave-length were used in the
stream-wise direction to find the complex wave-numbers using the minimisation proce-
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Figure 7.21: Simulation setup to study sound attenuation in a turbulent channel flow.

dure, and at each stream-wise station microphones were deployed in the wall-normal
direction to estimate the wave-profile.

It is well-known that for wall-bounded flow there is a turbulent boundary layer, sim-
ilarly there exists an acoustic boundary layer for the acoustic wave. Thickness of the
acoustic boundary layer is denoted as δν (see figure 7.22). Non-dimensional Stokes num-
ber is used to relate the acoustic boundary layer thickness to the channel half-height:

Sto = H̃
δ̃ν

= H̃√
ν̃/πf̃ (7.49)

The objective is to know if the gradients of the acoustic boundary layer interact with
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Figure 7.22: Schematic of acoustic and turbulent boundary layers.

the turbulence. Experiments have shown that the behaviour if governed by the ratio:

δ+ν = δ̃ν
l̃ν

(7.50)

When the acoustic boundary layer remains smaller than the viscous sub-layer of the
turbulent boundary layer then the acoustic wave will not interact with the turbulence.
On the other hand when the acoustic boundary layer is thicker than the viscous sub-layer
then turbulence will interact with the acoustic wave. This will lead to enhanced damping
of acoustic waves. See figure 1.3 to see different regions in the turbulent boundary layer.
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7.4.3.2 Results

Channel flow simulation at Reτ ≈ 395 and M = 0.5 was performed to study the effect
of turbulence on sound attenuation. Plane sound waves at frequency varying between
195 ≤ f̃ ≤ 10000 Hz were introduced through the inlet. At f̃ = 10000 Hz, a transverse
acoustic wave was also excited. See Section 7.3.2 to find more information on acoustic
wave excitation. The simulation parameters are presented in table 7.3.

Case δ+ν Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max f̃(Hz) Sto

WA25 25

120H× 2H× 4π/3H 1179× 121× 85
40 20

1

14

196 15.8

WA20 20 306 19.75

WA15 15 544 26.33

WA12 12 850 32.91

WA10 10 1224 39.50

WA08 8 1912 49.37

WA05 5
60H× 2H× 4π/3H 590× 155× 85 0.24

4894 79

WA3.5 3.5 9988 112.85

Table 7.3: Simulation parameters to study wave attenuation in turbulent channel flow.

Mainly two simulations were performed, one for low frequency waves (test-cases
WA25 – WA08) and for high frequency waves (test-case WA05 and WA3.5). Test-cases
WAXX correspond to δ+ν = XX. Multiple sound waves were excited together as shown pre-
viously in Section 7.3.2. An example of pressure perturbation field at a given time with
multiple plane acoustic waves is shown in figure 7.23. Noise in the perturbation field
due to turbulence can be seen in the figure in comparison with the previous example of
acoustic propagation in Poiseuille mean flow (see figure 7.10).

Figure 7.23: Instantaneous pressure perturbation field in turbulent channel with multiple plane
waves (corresponding to test-cases WA25 – WA08).

Frequency spectra of wall-pressure is presented in figure 7.24. Spikes corresponding
to the excitation frequency can be clearly seen in the figure. Similar result was found
for pressure spectra elsewhere in the channel. Spectra without the acoustic wave from
the spatial channel at the same location is also presented for comparison. For the stream-
wise velocity spectra, spikes were visible only at lower excitation frequency due to better
Sound to Noise Ratio (SNR). At higher frequency SNR is very poor for stream-wise veloc-
ity, therefore the spectral peaks does not stand out (not shown here). The spectral peaks
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present in the figure is due to the up- and down-stream travelling waves. However the
average reflection coefficient was about p̂r/p̂i ∼ 0.01, therefore this may not reflect the
situation for the up-stream travelling wave.
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Figure 7.24: Frequency spectra of wall-pressure with (a) low frequency excitation (test-cases
WA25 – WA08) at y = H and (b) high frequency excitation (test-case WA05 and
WA3.5) at y = 0.43H. Vertical dashed lines are used for different excitation frequency.

Details of signal used for the minimisation procedure is given in table 7.4. Since acous-
tic waves at multiple frequencies was injected at once, the number of periods recorded
for each frequency is different. For all the cases, Welch’s method was used without over-
lap to cancel turbulence (see equation 7.32). Each block of signal used for the Welch’s
method was 2 period long. In the following, acoustic wave was extracted using the
procedure presented in Section 7.2. Present minimisation method relies on sufficiently
accurate guess values and the variable bounds for minimisation search, therefore extra
care should be taken while post-processing the data. However, it is also possible to use
Prony’s method[106, 141, 145] to extract the characteristics of the acoustic wave, and this
method does not require any guesses. In the future it will be interesting in general to
compare two different methods.

WA3.5 WA05 WA08 WA10 WA12 WA15 WA20 WA25

nbperiod 180 88 82 52 36 22 12 8

nbWelch 90 44 41 26 18 11 6 4

Table 7.4: Details of signal used for post-processing

Profiles of the downstream travelling waves, extracted using the procedure in Section
7.2 are presented in figure 7.25. Span-wise averaged microphone reading was used for
the minimisation procedure, this helps reducing turbulent noise from the signal up to
some extent (see figure 7.3). For test-case WA3.5 about 80 period of the acoustic wave
was recorded, and for test-case WA25 only 8 period was recorded. All wave profiles are
scaled with the amplitude û at the centre of the channel. For the pressure component,
plane waves were recovered. Due to the isothermal no-slip wall acoustic waves in veloc-
ity component and temperature have a boundary layer. The overall shape of the wave
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û/ûc
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Figure 7.25: Down-stream travelling (a) p̂, (b) û, (c) v̂ and (d) T̂ waves.

profiles are similar to the ones reported in Section 7.3.2. With the decreasing excitation
frequency the size of the boundary layer increases.

Comparison of wave profiles computed from the simulation and modal analysis is pre-
sented in figure 7.26. Modal analysis was performed with regular turbulence model and
frequency dependent turbulence model[291, 292]. For case WA20 and WA25 (figure 7.26(b,
c)) wave profiles obtained from different methods collapse satisfactorily. Especially in
the near-wall region there is an excellent collapse, whereas away from the wall a slight
discrepancy can be found between the three cases. However, the result from the simula-
tion is very close to the result found from the modal analysis with frequency dependent
turbulence model. For case WA10 (figure 7.26(a)) noticeable difference can be found be-
tween different cases. Profile computed from the modal analysis with regular turbulence
model has a boundary layer close to the wall and the profile is approximately uniform
thereafter, whereas the profile from the modal analysis with frequency dependent turbu-
lence model undulate away from the wall. Similar undulation of the wave profile can be
found for case WA10, but the level of undulation is high compared to the modal analysis
(case νf vs WA10 in figure 7.26(a)). Exact reason for the such difference is not known,
however this can be attributed to the amount of physics described by each method.

The damping coefficients for the down-stream and up-stream travelling waves (α± =
I(k±)) were compared against the results from the modal analysis with (a) regular
mixing-length turbulence model(αmodal± ; ν), (b) frequency dependent turbulence model
(αmodal± ; νf), and (c) no turbulence (αmodal± ; laminar). The result is presented in figure
7.27. The damping coefficients are scaled with α0 (damping coefficient in a quiescent
flow).

α0 = 1

4Sto
[1+ (γ− 1)√

Pr
]+ 1

4Sto2

⎡⎢⎢⎢⎢⎣1+
(γ− 1)√

Pr
− 1
4
(1+ (γ− 1)√

Pr
)2⎤⎥⎥⎥⎥⎦ (7.51)

This equation is the imaginary part of equation 7.37 and is valid for large Stokes num-
ber. Waves at different excitation frequency interact differently with the turbulence. For
smaller δ+ν (large frequencies), acoustic wave do not come in contact with turbulence.
Hence they would encounter laminar damping. From the figure it is clear that for δ+ν < 10,
α± computed from the simulation agrees well with the laminar solution. Similarly for
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Figure 7.26: Comparison of û wave profiles from simulation and modal analysis for (a) WA10,
(b) WA20 and (c) WA25. Modal analysis with ν – regular turbulence model and νf –
frequency dependent turbulence model.

larger values of δ+ν, turbulence interact with the acoustic wave and enhance the damp-
ing. For δ+ν > 10, damping coefficients computed from the simulation follow the modal
solution with turbulent eddy viscosity. With the frequency dependent turbulence model
given by Weng et al. (2013)[291] these regions can be blend, and there is a good level of
agreement between the present results and those predicted by Weng’s model. however,
while agreement is obtained obtained on the value of Ik, there is a discrepancy on the
waveform at low δ+ν, as seen in figure 7.26(a).

Up-stream travelling waves are generally more damped compared to the down-stream
travelling waves. For larger δ+ν wave attenuation is enhanced by the turbulence (see the
difference between the laminar solution and present result in figure 7.27). Similar curves
can be found in Howe (1995)[115] and Allam and Åbom (2006)[6].

δ+ν

α
±/α

0

○ α± ; present
αmodal+ ; νf αmodal− ; νf
αmodal+ ; ν αmodal− ; ν

αmodal+ ; laminar αmodal− ; laminar

100 101 102
10−1

100

101

102

Figure 7.27: Damping coefficient for the down-stream and up-stream travelling waves in a turbu-
lent channel flow. Results are compared with the modal analysis.
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plane wave transverse wave

WA25 WA20 WA15 WA12 WA10 WA08 WA05 WA3.5 WA3.5

R(k+) 0.0258 0.0378 0.0670 0.1084 0.1633 0.2452 0.6187 1.7159 0.3897

Modal 0.0240 0.0373 0.0667 0.1041 0.1497 0.2338 0.5988 1.227 0.4160

R(k−) 0.0752 0.1248 0.2055 0.3010 0.4159 0.7045 1.7801 5.0749 -

Modal 0.0746 0.1150 0.2036 0.4518 0.3156 0.7021 1.7928 3.7214 -

Table 7.5: Properties of acoustic waves in turbulent channel flow.

Comparison between the real part of the complex wave-number is presented in table
7.5. For the down- and up-stream travelling waves, satisfactory agreement was found
with the results from the modal analysis. Wavelength can be estimated as λ = 2π/R(k).
For the plane waves, λ decreases with increasing frequency, and up-stream travelling
plane waves has shorter wave-lengths compared to the down-stream travelling waves.
Transverse waves have larger wave-length compared to the plane waves at similar fre-
quency. The damping coefficient for the transverse wave is 0.0056 (with modal analysis
0.00538). Unlike the plane wave (with frequency dependent acoustic boundary layer),
transverse wave interacts with the turbulence in the core of the channel. For a better
understanding, similar to the plane wave several frequency must be analysed.

7.5 conclusion

Different inlet and outlet boundary conditions or treatment for a subsonic spatial channel
flow were presented. Characteristics boundary conditions produced reflections for turbu-
lent flow, due to their strong formulation. Successful spatial turbulent channel flow was
simulated with a weak inlet formulation and sponge zone with grid stretching. The tur-
bulent inflow data is obtained from a simultaneous precursor simulation with periodic
boundary condition in the stream-wise direction. Due to relaxed inflow treatment, the
flow has to go through a transition before reaching a fully turbulent state. The choice of
relaxation coefficient affects the transition length and reflectivity of the the inflow plane.
The outflow sponge zone damps the turbulent flow features and acoustic waves.

A wave decomposition procedure was used to extract the properties of the injected
acoustic wave. It was shown that in figure 7.27, turbulence enhance the acoustic wave
damping. Results of damping agreed with the models based on experiments at low M,
and the effect of turbulence on the wave attenuation is controlled by δ+ν. However, for
smaller δ+ν significant difference was found between modal solutions computed with
different turbulence model.
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8
S I M U L AT I O N O F F L O W T U B E W I T H A C O U S T I C L I N E R

In this chapter, we continue our study of liner – turbulence interaction. Earlier in Chap-
ter 6, it was already shown that low resistance acoustic liner triggers 2D instability, which
is responsible for enhanced flow modification eventually resulting in drag increase. How-
ever, the earlier simulation in Chapter 6 considered periodic boundary conditions in the
stream-wise direction. This is not representative of the realistic flow configuration, more-
over it is also important to verify if the observed instability is affected by the periodic
boundary condition. Another limitation of the previous flow configuration in Chapter 6
was the inability to send an acoustic wave, and therefore to study its attenuation.

Hence, the objective of the present chapter is to use a realistic flow configuration to ac-
count for the above mentioned concerns. A schematic of the present flow configuration
is presented in figure 8.1. It involves simulating the spatial development of turbulent

p1i

p1r

p2i

p2r

p3i

p3r

Turbulence

Acoustic wave

Figure 8.1: Configuration for flow tube with acoustic liner.

flow and acoustic propagation in a flow tube with an acoustic liner with a well-defined
inflow and outflow section (see Chapter 7 for the inflow and outflow boundary condi-
tions). Performing a spatial simulation will also allow to send an acoustic wave through
the inflow plane and study the noise attenuation. Both walls are isothermal. The top wall
is completely rigid, whereas the bottom surface has a limited lined section. This flow
configuration is typical of flow ducts used to measure acoustic impedance of materials,
e.g., Jing et al. (2008)[141], Jones et al. (2013)[142] and Zhou et al. (2014)[307], among others.
The flow configuration is same as in Section 7.4, except the bottom wall boundary condi-
tion. The acoustic liner is modelled as an impedance boundary of the MSD type given in
Section 6.1. Simulation with an unstable and a stable liner was performed to understand
(a) liner induced flow-instability which leads to complex flow-liner-acoustic interaction
and (b) sound attenuation.
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8.1 simulation setup

ILES of the turbulent flow and acoustic propagation in a flow tube with acoustic liner was
simulated atM = 0.3 and Reb = 6900 (ωflow = 2πM = 1.884). For a channel with top and
bottom rigid wall, it would yield Reτ ≈ 390. The size of the full computational domain
(physical + sponge zone) was Lx × Ly × Lz = 170H× 2H× 4

3
H, and it was discretised with

Nx ×Ny ×Nz = 1183 × 171 × 171 grid points. Sponge-zone was 80H long and discretised
with 300 grid points in the stream-wise direction with exponential stretching. In the phys-
ical domain uniform grid spacing was used in the stream-wise and span-wise direction,
∆x+ = 40 and ∆z+ = 10. Close to the wall, refined grid was used with ∆y+min = 0.5 and
∆y+max = 14 at the channel centre. This grid resolutions were chosen based on the previ-
ous grid-convergence analysis in Section 6.2. The grid resolution is based on the friction
Reynolds number Reτ ≈ 390 for rigid-wall simulation.

The physical domain was 90H long and the acoustic liner (of length 15H) was placed
between x = 35H and x = 50H. Initially, we were interested reproducing the experiment
of Marx et al. (2010)[181], however due to numerical instability, simulation with liner
corresponding to the experiment (test-case AC01 in table 6.2) was not feasible. Therefore,
acoustic liner for which less unstable surface wave is present was used for the simulation.
The acoustic liner corresponding to test-case AC02 (R = 0.23, ωres = 2πfres = 0.367 and
ξ = 0.109) in table 6.2 was used for the simulation. In the present simulation, the half
height of the channel is considered to be H̃ = 0.01m, this corresponds to a resonance
frequency f̃res = 2kHz (fres = 0.058). Resonance angular frequency (ωres) of the acoustic
liner is well below the typical flow frequency (ωflow). Previously in Chapter 6, it was
found that a 2D instability was triggered when the acoustic liner was introduced to the
simulation (ωres <<ωflow and smaller R), and the findings were verified by performing a
LSA (see figure 6.18). As mentioned earlier, one of the interest of this chapter is to check if
the detected instability was affected by the periodic boundary conditions (with the help
of spatial simulation).

The different steps in the simulation are the following, firstly a simulation was per-
formed with top and bottom rigid wall until the flow reached a steady state. Later the
acoustic liner was introduced. Once the simulation of flow tube with the lined section
reached a steady state, finally acoustic wave which matches the resonance frequency of
the liner was excited at the inflow boundary. As it was mentioned earlier, acoustic liners
are designed to damp the sound wave which matches ωres of the liner. Therefore this
will allow to check the performance of the acoustic liner for sound damping.

Instantaneous visualisation of the flow in the vicinity of the bottom surface of the
physical domain is presented in figure 8.2. Due to the relaxation coefficient (α+,v,w,s)
in the inflow boundary conditions (given in Section 7.1.1.3), the flow has to go through
a transition before reaching a fully developed turbulent state. The transition length in
the present case is about 15H − 20H. At the interface of change in boundary condition
(rigid-wall to impedance at x = 35H and impedance to rigid-wall at x = 50H) a part of the
acoustic wave is transmitted down-stream and reflected up-stream (see figure 8.1). Non-
zero wall-normal velocity can be seen in the region of acoustic liner (35H− 50H) and the
modified turbulent structures can be found. Flow modification, instability over the liner
and its effect on sound attenuation will be discussed in the following section.
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8.2 flow statistics

The mean flow field in the flow tube with lined section is presented in figure 8.3. For
the mean velocity field in figure 8.3(a), boundary layer development can be seen over
the acoustic liner. The boundary layer is strongly pushed away from the bottom surface
(around x = 40H – 45H) close to the leading edge of the acoustic liner. Past x ≈ 45H, the
effect of wall-transpiration on the mean flow is relatively weak. About 20H down-stream
the trailing edge of the acoustic liner the mean flow returns to its original state. The
comparison of mean velocity profile at different stream-wise locations is presented later
in figure 8.7(a). Qualitatively the mean pressure, temperature and density fields look
similar to the mean field without liner (see figure 7.15).

(a)

(b)

(c)

(d)

Figure 8.3: Contours of mean (a) stream-wise velocity, (b) pressure, (c) temperature and (d) den-
sity fields for the flow tube with a lined section.
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Evolution of mean velocity over the lined surface is presented in figure 8.4. Displace-
ment of fluid close to the lined surface can be seen in the figure. Boundary layer over the
lined surface is gradually evolving, with rapid development in the region close to the
leading edge.

x/H

y
/H

35 40 45 50 55
-1

0

1

Figure 8.4: Evolution of the mean velocity over the lined surface. Present simulation com-
pared with the rigid-wall.
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Figure 8.5: Stream-wise distribution of (a) Reτ and (b) cf at the bottom surface of the flow tube
with lined section.

The evolution of stream-wise local friction Reynolds number (equation 7.45) and skin-
friction coefficient (equation 7.48) is presented in figure 8.5. Density and viscosity at the
bottom surface are used to compute the Reτ(x) and cf(x). After the initial transient
region up to x = 20H, the flow statistics in figure 8.5 reaches a plateau until the leading
edge of the acoustic liner. When the acoustic liner is introduced at x = 35H, the Reτ and cf
increase abruptly. Reτ is increased twice, whereas the skin-friction coefficient is 4 times
larger. Down-stream of the acoustic liner, noticeable effect on the flow statistic cannot be
found. For test-case AC02 (periodic box simulation) in table 6.2, cf was 2.5 times and
Reτ was 1.6 times larger compared to the rigid-wall test-case. The increase in Reτ and cf
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over the lined section in the spatial flow configuration is relatively higher compared to
the values found with the stream-wise periodic boundary condition (see table 6.2). There
is a small influence on the top rigid-wall due to the acoustic liner (not presented here).

Stream-wise evolutions of mean pressure and temperature close to the bottom sur-
face and at the channel centre are presented in figure 8.6. Curves for the mean pressure
collapse very well, indicating that the pressure field is independent of the wall-normal
location. Nevertheless, a sharp gradient can be found over the liner indicating drag in-
crease (see figure 8.5(b)). Earlier in Chapter 7, it was shown that the temperature field has
2D space dependence. Similar trend is seen in the present simulation as well, however
the sharp gradient similar to the mean pressure is observed over the lined section. This
is the result of enhanced heat transfer due to increased wall-permeability.

(a)

x/H

p
/p ∞

○ close to wall
y = H

0 20 40 60 80
1.02

1.04

1.06

1.08

1.1

(b)

x/H

T
/T w

0 20 40 60 80
0.995

1

1.005

1.01

1.015

Figure 8.6: Evolution of (a) mean pressure and (b) mean temperature close to the bottom surface
and at the centre of the flow tube with acoustic liner.

Profiles of the mean stream-wise velocity and Reynolds stresses are presented in figure
8.7. Profiles computed at various stream-wise locations are compared with the profile
computed from the temporal simulation at similar Reynolds and Mach numbers with
top and bottom rigid-walls and with test-case AC02 from Chapter 6. x = 0.25Lx(0.75Lx) is
up(down)-stream the lined section. x = 0.5Lx = 45H is at the location of the lined section.
For the mean velocity profiles, all the curves have a satisfactory collapse on the rigid-wall
profile, except the curve at x = 0.5Lx. The boundary layer growth due to the acoustic liner
can be clearly seen in the figure. The mean flow is pushed away from the bottom surface.
In order to maintain the flow-rate, the displaced mean flow is accumulated in the upper-
half of the channel. Curve for x = 0.5Lx and AC02 do not collapse perfectly, however the
general trend is similar. For the Reynolds stresses, only the curve at x = Lx collapse over
the profile computed from the temporal channel flow simulation with bottom and top
rigid-wall boundary condition. Due to the relaxation coefficient in the inlet boundary
conditions, Reynolds stresses are not accurately reproduced at the inflow plane ( x/Lx =
0). Acoustic liner allows wall-transpiration, and due to the non-zero wall-normal velocity
component at the impedance surface conventional wall-turbulence is modified. But this
effect is more pronounced down-stream the liner. Maybe with longer liner section, this
effect could be witnessed over the acoustic liner. For the rms of the stream-wise velocity
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component over the liner, turbulence intensity is not very different from the rigid-wall

curve. Down-stream the lined section,
√
u ′2 is enhanced in the bottom half of the channel.

For the
√
v ′2, similar observation was made for the curves at x/Lx = 0 and 1. Curve at x =

0.5Lx has non-zero value at the bottom surface due to the wall-transpiration. Comparison
of Reynolds stress is presented in figure 8.7(d). Close to the bottom surface, enhanced
Reynolds stress was found over the acoustic liner x = 0.5Lx, and the curve matched the
result for test-case AC02. Away from the wall, enhanced Reynolds stress was found at
x = 0.75Lx.

(a)

y/H

u
/u b ○ Rigid-wall

◻ AC02 periodic BC
x/Lx = 0
x/Lx = 0.25
x/Lx = 0.50
x/Lx = 0.75
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Figure 8.7: Comparison of (a)
√
u ′2, (b)

√
v ′2, (c)

√
w ′2 and (d) u ′v ′ profiles.

It can be concluded that, because of the strong wall-transpiration close to the leading
edge of the acoustic liner the mean flow is modified in the vicinity of the impedance
surface. This led to the boundary layer development. Conventional wall-turbulence was
also modified over the liner, but its effect on the central part of the channel was felt
down-stream the lined section. With longer lined section, it could be possible to witness
turbulence modification in the core part of the flow over the acoustic liner.
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8.3 instability over the acoustic liner

In the previous section the turbulent flow field was discussed, and it was shown that
the acoustic liner modifies the turbulent flow due to wall-transpiration. In this section,
we will be looking at the wall-transpiration in the vicinity of acoustic liner in detail. In
figure 8.8, instantaneous wall-normal velocity component at acoustic liner is presented
(see figure 8.2 for the 3D instantaneous visualisation). Close to the leading edge of the
acoustic liner, the amplitude of the wall-normal velocity component increases because an
instability is triggered. After an initial growth, the amplitude of the wall-normal velocity
component decreases towards the trailing edge of the acoustic liner. The surface wave
has shorter wave-length in the growth region compared to the decaying region. The
transition from the growth to decaying region happens around x − linerpos = 5 − 7. The
drop in the value of Reτ and cf (x = 40H− 42H) in figure 8.5 corresponds to this location.

λ ∼ 2 λ ∼ 3

v
′

(x− linerpos)/H
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.04
-0.02

0

0.02

0.04

Figure 8.8: Instantaneous wall-normal velocity on the impedance surface, linerpos = 35H. Dashed
lines indicate the growth and decay regions.

Time averaged mean spatial spectrum of the wall-normal velocity data on the impedance
surface is plotted in figure 8.9(a). Spectral peaks are observed at kx = 2π/λ = 2.3→ λ = 2.73
and kx = 3.06 → λ = 2.07. These wave-numbers correspond to the growth and decay re-
gions of surface wave shown by dashed lines in figure 8.8. The instability close to the
leading edge has growth rate σ = 1.6. For the temporal case, there was an evolution of
kx in time, which here corresponds to an evolution in space (see figures 6.18(b) and 8.9).
Temporal spectra for each stream-wise location on the acoustic liner are presented in

(a)
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Figure 8.9: (a) Spatial and (b) temporal spectra over the acoustic liner.

figure 8.9(b). It can be clearly seen that the wall-normal velocity has the spectral speak
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which corresponds to the resonant frequency (fres = 0.058) of the acoustic liner even
though the surface wave has two wave-number components.

Eigen functions of stream-wise and wall-normal velocity component are shown in
figure 8.10. Eigen functions are computed close to the leading and trailing edges of
the acoustic liner. Due to some non-linear interaction or changing mean flow profile the
eigenfunctions at two different locations are clearly distinguishable from each other. The
shape is reminiscent of the instability profile in the temporal case (see figure 6.19).

(a)

y/H

∣û∣
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Figure 8.10: Eigen function of stream-wise and wall-normal velocity component over acoustic
liner.

8.4 turbulence-liner-acoustic interaction

As it was mentioned earlier, due to numerical instability spatial simulation of flow-tube
with liner corresponding to test-case AC01 was not feasible. Since explicit computation
was performed, the only solution was to increase the grid resolution and it increases
the computational cost. Therefore, acoustic liner for which less unstable surface wave
is present was used for the simulation (test-case AC02). However, it is still possible to
draw some conclusions on turbulence-liner-acoustic interaction by comparing with the
experiment of Marx et al. (2010)[181].

LSA for the experiment of Marx et al. (2010)[181] is reproduced in figure 8.11. The major
difference between the experiment and the numerical simulation is the one order magni-
tude difference in the Reτ. Linearised NSE was solved using both molecular and turbulent
eddy-viscosity. Upstream branch is only presented in the figure. During the experiments,
convective(global) instability was found without(with) acoustic wave excitation. With
turbulent eddy-viscosity included in the LSA, the trajectory of the unstable modes fol-
lows path which is reminiscent of convective instability. However, with just molecular
viscosity, the unstable modes follows the path which is reminiscent of a global instability
with branch exchange. Therefore it can be generalised that, the change in the stability
behaviour of liner is originating from the interaction between turbulence and acoustic
wave.

The observation made in figure 8.11, can be demonstrated using the schematic shown
in figure 8.12. For the experiment due to higher Reynolds number, laminar part of the
turbulent boundary layer was very thin, whereas the acoustic boundary layer was thick.
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Figure 8.11: LSA of experiment of Marx et al. (2010)[181] (liner corresponding to test-case AC01).

This resulted in the enhanced dissipation of the acoustic wave due to the interaction of
turbulence. Therefore, it can be concluded that the transition from the global to convec-
tive instability of the liner is due to turbulence.

laminar

turbulent

δν

Figure 8.12: Turbulence-acoustic interaction for experiment of Marx et al. (2010)[181]. Area within
the red box represents the turbulence-acoustic interaction region.

LSA for the simulation with liner corresponding to test-case AC02 is presented in figure
8.13. A pinch point was found at k = 3.5 − 4.7i, where branch exchange occours. Global
instability was observed in the simulation at resonance frequency of the liner, f̃res = 2kHz.
The instability has wave-number k = 3− 1.6i.

From the previous example, it was shown that excess dissipation of the acoustic wave
due to turbulence prevents liner from being globally unstable. In the present simulation,
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Figure 8.13: LSA of simulation with liner corresponding to test-case AC02.

Reynolds number is one order smaller and acoustic boundary layer is thinner compared
to the experiment of Marx et al. (2010)[181] (see figure 8.14).

laminar

turbulent

δν

Figure 8.14: Turbulence-acoustic interaction for simulation test-case AC02.

8.5 effect on sound attenuation

In this section, the effect of the instability detected in the previous section on sound
attenuation will be addressed. The primary objective of the acoustic liner is to damp
the sound wave at a particular resonance frequency. Therefore acoustic wave whose fre-
quency matches the resonance frequency of the liner was excited at the inflow plane.
In figure 8.15(a), instantaneous pressure signal at the top rigid-wall is presented. The
lined section is between x = 35H and x = 50H. The amplitude of pressure fluctuations
decreases in the lined section compared to the up-stream region. However, the wave am-
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plitude gradually grows towards the trailing edge of the liner. In a duct with bottom
and top rigid wall, one would except the wave-length of the acoustic wave to be approxi-
mately (1+M)/f = (1+ 0.3)/0.06 = 21.6H. Up-stream and down-stream the lined section,
the wave-length is approximately close to the above mentioned value. However, in the
lined section, the wave-length of the acoustic wave has been modified.
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Figure 8.15: (a) Pressure signal and (b) SPL on the top wall.

SPL computed at the top rigid wall is presented in in figure 8.15(b). Up-stream of lined
section, a standing wave feature can be seen due to the reflection from the rigid wall-
acoustic liner interface at x = 35H. In the leading edge part of the acoustic liner, SPL

decreased from 120dB to 100dB. Due to the instability, SPL was enhanced and excess
noise was created by the acoustic liner. SPL was increased from 100dB to 110dB in the
lined region. A similar standing wave feature can be seen close to the trailing edge of
the liner, due to the wave reflection from the acoustic liner-rigid wall interface at x = 50H.
Down-stream of lined region, SPL slightly oscillates around a constant mean value up to
x = 70H. This is due to the effect of acoustic liner in the down-stream region. Past x = 70H,
SPL is almost constant and noise attenuation is mainly due to turbulence (see Chapter 7).

Stability analysis for varying resistance of the liner was performed to determine the
resistance values for a stable liner (see figure 8.16). Firstly simulation was performed
with a liner which is globally unstable and then with a liner which is stable to check the
effect of liner on sound attenuation.

Another simulation was performed for similar configuration as in Section 8.1, except
the liner resistance. In the following simulation R = 1, and multiple acoustic wave of
frequency f̃res = 1400 ∶ 200 ∶ 2200Hz was injected through the inflow plane. Comparison
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Figure 8.16: Stability analysis for varying resistance of the liner.

for the complex wave-number of the acoustic wave over the liner is shown in figure 8.17.
Due to lack of large number of acoustic period, slight discrepancy was found in the
result, however the general trend in the result is recovered.
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Figure 8.17: Comparison of (a) real and (b) imaginary part of the wave-number over liner against
the modal analysis.

SPL computed for the stable liner is presented in figure 8.18. In the up-stream part of
the liner, standing wave was found similar to figure 8.15. However, in the lined section,
SPL drops up to 20dB approximately with the stable liner (see figure 8.18(b)). With the
low resistance liner (R = 0.23), sound production was observed due to the instability. For
higher frequency acoustic wave, in the down-stream part of the liner, sharp decrease in
the SPL was found at the trailing edge of the liner. Physical mechanism behind this drop
in SPL is not known.
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Figure 8.18: (a) SPL and (b) sound absorption in the flow-tube with stable liner.

8.6 conclusion

Simulation of flow tube with acoustic liner and incoming sound wave was performed.
For an unstable liner, it was found that the turbulent flow was pushed away from the
bottom surface by the lined section. The effect of the flow modification over the acoustic
liner can be felt up to some extent in the down-stream region as well. Skin friction is
about 4 times larger over the lined section, and this is complemented with a strong
pressure gradient in the lined section.

A 2D instability is triggered at the leading edge of the liner. The instability grows
exponentially before decaying close to the trailing edge of the acoustic liner. Growth
and decay regions of the instability have different wave-lengths at the same pulsation
frequency. Existence of 2D instability was verified with the spatial simulation and the
wave-number corresponds to the previous findings in Chapter 6. Comparison between
the present simulation and experiment of Marx et al. (2010)[181] shown that the transition
from global to convective instability over the lined section is due to the turbulence-acoustic
interaction. In the present simulation, global instability was observed, it generated excess
noise affecting the performance of the acoustic liner.

Another simulation with a stable liner shown that, in the absence of flow instability
better sound attenuation can be obtained with the liner.
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9
C O N C L U S I O N A N D P E R S P E C T I V E S

In the context of this thesis, a detailed research was done to understand the flow physics
of acoustic wave propagation in a turbulent flow in a channel with acoustic liner. As part
of the PhD, a parallel compressible Navier-Stokes Equations (NSE) solver Compact3D for
High Performance Computation (High Performance Computation (HPC)) was developed
in FORTRAN with Message Passing Interface (MPI) protocols for inter-communication be-
tween different processors. Compact3D has 80% – 90% parallel efficient for strong scaling.
Computing facility at GENCI, TGCC, CINES and local Mesocentre was very crucial to the
successful completion of the research presented in this thesis. The compressible NSE was
solved in the characteristics form. Implicit Large Eddy Simulation (ILES) of channel flows
were mainly performed with different boundary conditions. Excess numerical dissipa-
tion for the ILES was introduced through the discretisation of diffusion terms in the NSE.
Parametric study of the modified discretisation operator for the diffusion terms showed
that high-order accurate simulations can be performed at a reduced computational cost.
However, when the excess dissipation was concentrated in a narrow wave-number range,
the code became unstable. It was found that minimum grid resolution for a wall-resolved
ILES with acceptable error was ∆x∗ = 50 and ∆z∗ = 30, with ∆y∗min = 2. However, finer grid
resolution is always preferred to have statistics accurate up to 4th order moment.

For supersonic flows for which compressibility effects are mainly due to the density or
temperature gradients scaling techniques which compensate the compressibility effects
were tested. Simulations for up toM = 3 was simulated to test the scaling transformation
and excellent results were obtained. An efficient and straightforward feature extraction
algorithm was developed using the scaling technique to detect the large-scale structures
from the turbulent channel flow. Conditional analysis based on the feature extraction
revealed that close to the wall high-momentum large-scale structure has significant con-
tribution to the turbulence intensity and Reynolds stress. Vorticity and streak breakdown
underneath a High-Momentum Large Scale Structure (HMLSS) is enhanced compared to
the Low-Momentum Large Scale Structure (LMLSS). Away from the wall, LMLSS has a
dominant effect on the turbulence intensity and Reynolds stress. Large Scale Motions
(LSM) are similar in the range 0.5 ≤M ≤ 3.

With periodic boundary condtions in the stream-wise direction, when the acoustic liner
with low resistance and resonance frequency is introduced, an unstable surface wave is
triggered. This was verified by the Linear Stability Analysis (LSA). For a typical liner, the
surface wave has larger wave-length compared to the turbulent structures and modulated
these structures and transport momentum toward the impedance wall, causing drag
increase. As the resonance frequency increases, the surface waves loose the span-wise
coherence and effect on the turbulent flow decreases.

Inflow boundary conditions with weak formulation was used for non-reflecting inlet
boundary condition. At the outflow sponge zone with grid stretching was used to damp
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the turbulent flow features and acoustic waves. The choice of the relaxation coefficient
for the inflow boundary condition decides the transition length (to reach fully turbulent
state) and reflectivity of the inflow plane. A new technique to compute the target field
for the sponge zone was introduced which has less memory effect compared to moving
average. Realistic turbulent inflow data for the spatial channel was generated with a
simultaneous periodic channel flow simulation. Successful spatial simulation of turbulent
channel flow was performed with and without acoustic wave. The wave decomposition
procedure was used to extract the properties of the acoustic wave. Span-wise averaged
temporal signal was used for the wave decomposition, and this helped in reducing the
turbulence in the signal. When the acoustic boundary layer is thicker than the viscous
sub-layer of the Turbulent Boundary Layer (TBL), turbulence interacts with the acoustic
wave leading to enhanced attenuation. The effect of turbulence on wave attenuation is
essentially controlled by δ+ν.

Simulation of acoustic propagation in a flow duct with liner revealed that with a liner
prone to instability, the turbulent flow was pushed away from the impedance surface and
boundary layer developed over the liner. Effect of the flow modification can be felt down-
stream the liner as well. Drag increase over the liner in the flow duct was more compared
to the one found with the periodic box simulation. A 2D spatial instability was triggered
at the leading edge of the liner, whose wave-number matched the wave-number of the
temporal instability. 2D spatial instability created excess noise, affecting the performance
of the liner, whereas with a stable liner better sound attenuation was found. Comparison
with the experiment, revealed that transition from global to convective instability over
the liner is resulting from the excessive dissipation of acoustic wave due to turbulence.

9.1 future works

In the framework of the thesis very efficient high order compressible Navier-Stokes Equa-
tion (NSE) solver was developed to study wall-turbulence, duct-acoustic and grazing flow
over the liner. Several scientific, numerical and technical challenges were encountered,
and most of them were addressed in this work. In this section, additional works that can
be done in the future for better understanding wall-turbulence and aeroacoustic within
the framework of this work will be addressed.

Currently, Compact3D uses collocated arrangement of the flow variables and character-
istic formulation. However forM > 3, certain difficulties were encountered. One possible
solution to this problem is to use the staggered arrangement and skew-symmetric for-
mulation of the convective terms for enhanced stability. Another numerical issue encoun-
tered was the instability and code blow-up with highly concentrated excess dissipation
in a narrow wave-number range. For explicit computation this can be solved only by
reducing the global time-step. However, after a certain extent reducing the time-step will
not be practical any more. Diffusion terms can be made implicit to relax the time-step
constraint due to the modified second-derivative operator.

Compact3D has been updated over the past several years. Currently one can success-
fully perform high order accurate simulations of free-shear and wall-bounded flows. The
next step would be to enable the code to simulate flow around complex geometry for
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studying aerodynamics and bluff-body noise. Immersed Boundary Method (IBM) can be
incorporated in to Compact3D for simulating such flows. High-order schemes for the
solid-fluid boundary interpolation could be developed which uses the advantages of the
2D pencil decomposition used here.

Currently, LSM and their influence on flow dynamics was investigated for up toM = 3.
In this Mach number range, compressibility effects are due to the variation of the mean
property variation, and the feature extraction technique is developed with keeping this
in mind. However, it is very interesting to study the wall-turbulence ay hypersonic Mach
number. Effect of compressible fluctuations and LSM on the flow dynamics will provide
deeper insights in the flow physics. Moreover, it will also be an opportunity to check the
validity of the present feature extraction technique.

For simulating spatial evolution of turbulence, one can generally either choose to im-
pose a laminar profile at the inflow plane and use some artificial tripping for flow transi-
tion or store the turbulence data from the precursor simulation. The main disadvantages
of these techniques is the longer computational domain due to slow transition to turbu-
lence and large storage memory. Therefore in this work, simultaneous precursor simula-
tion was performed to generate the inflow turbulence data. This approach do not have
the above issues, but the overall computational cost increases. Hence, the best solution to
overcome this problem is to generate synthetic turbulence. This technique can overcome
the limitations of the simultaneous precursor simulation technique.

Presently in this work, a minimisation problem is solved to find the attenuation of the
sound wave in a turbulent duct flow. The present approach strongly relies on the guess
values, thus it will be very interesting to calculate the attenuation rate using the method
which is more robust for example Prony’s method and compare the findings with the
present approach.

It was shown that the modal analysis with the regular and frequency dependent tur-
bulence model predicted different wave attenuation rate. For low Mach number, such
discrepancy was not that profound. Moreover, even though with correct attenuation rate,
the waveform is not accurately reproduced with the modal analysis. However, in the fu-
ture it will be rewarding to investigate the discrepancy between regular and frequency
dependent turbulence models by studying wave-attenuation at differentM numbers.

Presently for the simulation of flow-tube, low resistance acoustic liner was used which
triggered an instability and created noise. Most of the current research was focussed on
the flow instability created by the liner. However, in the future an acoustic liner with
higher resistance will be used to analyse the sound damping by the acoustic liner. For
experiment sometimes the impedance of the liner is not known a priori, whereas for a
simulation liner impedance is known. Therefore it will also be an opportunity to perform
impedance eduction, and compare different techniques.
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A
B R I E F H I S T O RY O F C O D E “ C O M PA C T 3 D ” A N D
C O E F F I C I E N T S F O R C O M PA C T S C H E M E S

a.1 history of compact3d

The code Compact3D was initially developed during the Ph.D. thesis of Fortuné (2000)[78]

for studying the sound radiation from temporal mixing-layer flows with the DNS in a com-
putational domain large enough to include the acoustic field from the flow[79]. This was a
sequential version of Compact3D, which used conservative formulation of compressible
NSE with centred 6th order compact schemes[167].

Later the code was updated by replacing the conservative formulation with the char-
acteristics type formulation of NSE in the Ph.D. thesis of Moser (2006)[202]. The numerical
schemes were maintained as in the previous version in Fortuné (2000)[78]. This version
of Compact3D was used to study the acoustic radiation from a spatially evolving 2D
mixing-layer flow[201].

The third version of Compact3D was developed in the Ph.D thesis of Cabana (2008)[42].
Compact upwind scheme of Adams and Shariff (1996)[3] was introduced to solve the NSE

in characteristics form to simulate acoustic radiation from spatial evolving mixing-layer
and jet flows[41].

Recently, the code was updated by incorporating the 6th order modified compact FDS

for the spatial second-derivative (to mimic the hyper-viscosity kernel)[161]. This is the same
scheme used for the validation of the present version of Compact in Section 5.3.1.

All the previous versions of Compact3D were sequential and used for studying acous-
tic radiation from free-shear flows. In the current version of Compact3D, rigid and non-
rigid wall boundary conditions, non-reflecting inlet and outlet boundary conditions were
introduced. This is the first time Compact3D is used for studying wall-bounded flows.
Like the previous versions, characteristic type NSE were solved using the compact FDS.
The new version of the code has the modified FDS which mimics the hyper-viscosity and
SVV kernels to introduce excess numerical dissipation for DNS and ILES respectively. In
this version, the code was parallelised using the 2D pencil decomposition (with the “2DE-
COMP” library) of the computational domain. This is the first version of Compact3D
which can perform parallel computation. With this smart way of domain decomposition,
no inter communication between processes are required to compute the spatial deriva-
tives. The present version of Compact3D is mainly used for simulating temporal and
spatial channel flows with rigid and non-rigid (acoustic liner) wall boundary conditions,
and to study the interaction between turbulence, acoustic propagation and lined wall. See
Chapter 2, 6 and 7, to find detailed information about the present version of Compact3D.
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a.2 coefficient of compact schemes

Compact schemes introduced by Lele (1992)[167] are very popular in CFD and CAA. This
schemes have good resolution properties in the wave-number space. For higher order of
accuracy, the schemes moves close to the spectral scheme (see Section 2.5.1 and 2.5.2).
Compact schemes for the first- and second-derivatives and their coefficients are listed in
table A.1 and A.2. Modified wave-number computed from the compact FDS in the tables
are presented in figure 2.4 and 2.6

scheme coefficients

Pade

βf ′i−2 +αf ′i−1 + f ′i +αf ′i+1 +βf ′i+2= c 1
6∆x

(fi+3 − fi−3)+b 1
4∆x

(fi+2 − fi−2)+a 1
2∆x

(fi+1 − fi−1)

Pade scheme

α = 1
4

;β = 0; a = 3
2

;b = 0; c = 0
6TriD

6th order tri-diagonal compact FDS

α = 1
3

;β = 0; a = 14
19

;b = 1
9

; c = 0
8TriD

8th order tri-diagonal compact FDS

α = 3
8

;β = 0; a = 25
16

;b = 1
5

; c = 0
8PentaD

8th order penta-diagonal compact FDS

α = 4
9

;β = 1
36

; a = 40
27

;b = 25
54

; c = 0
10PentaD

10th order penta-diagonal compact FDS

α = 1
2

;β = 1
20

; a = 17
12

;b = 101
150

; c = 1
100

spectral like
4th order spectral like compact FDS

α = 0.05771439;β = 0.0896406;
a = 1.3025166;b = 0.9935500; c = 0.03750245

Table A.1: Compact schemes for spatial first-derivative[167].
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scheme coefficients

Pade

βf ′′i−2 +αf ′′i−1 + f ′′i +αf ′′i+1 +βf ′′i+2= c 1
9∆x2

(fi+3 − 2fi + fi−3)+b 1
4∆x2

(fi+2 − 2fi + fi−2)+a 1
∆x2

(fi+1 − 2fi + fi−1)

Pade scheme

α = 1
10

;β = 0; a = 6
5

;b = 0; c = 0
6TriD

6th order tri-diagonal compact FDS

α = 2
11

;β = 0; a = 12
11

;b = 3
11

; c = 0
8TriD

8th order tri-diagonal compact FDS

α = 9
38

;β = 0; a = 147
152

;b = 51
95

; c = −23
760

8PentaD
8th order penta-diagonal compact FDS

α = 344
1179

;β = 23
2358

; a = 320
393

;b = 310
393

; c = 0
10PentaD

10th order penta-diagonal compact FDS

α = 334
899

;β = 43
1798

; a = 1065
1798

;b = 1038
899

; c = 79
1798

spectral like
4th order spectral like compact FDS

α = 0.50209266;β = 0.05569169;
a = 0.21564935;b = 1.7233220; c = 0.17659730

Table A.2: Compact schemes for spatial second-derivative[167].
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B
G R I D S T R E T C H I N G

The stretching functions used to generate the non-uniform grid for the non-periodic
boundary conditions are presented in this appendix. For the flow configuration consid-
ered in this thesis, non-uniform grid is required in the wall-normal and/or stream-wise
direction. While using non-uniform grid, one will have to compute the derivative based
on the information from the uniform grid. It involves mapping the non-uniform grid on
to a uniform grid.

b.1 wall-normal grid

For wall-bounded flows, it is very important to discretise the near-wall region of the
turbulent boundary layer where there are large gradients of flow and higher turbulence
intensity. Hence, non-uniform grids are used in the wall-normal direction which can add
more points in the vicinity of the wall and less points away from the wall. In this section
two kind of grid stretching in the wall-normal direction will be presented.

b.1.1 Tanh stretching

This is the popular hyperbolic Tangent stretching function:

y = tanh(κs)
tanh(κ) (B.1)

here κ is the stretching parameter and s is a uniform grid from [−1 ∶ 1]. The stretching
function is available in Compact3D and one just has to provide κ. The coefficient κ is
estimated using a Matlab script. By giving (a) the target Reτ, (b) the number of grid
points that one would like to have in the wall-normal direction and (c) the size of the
first grid size close to the wall, the Matlab script will give the corresponding value of κ.
See Listing 1 for the input data for the Matlab script to find κ.

Listing 1: Wall-normal grid stretching

1 Retau=1000; % target friction Reynolds number

ny=300; % required number of wall-normal grid points

dyplus_wanted=1; % required smallest mesh size
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b.1.2 Incompact stretching

This version of stretching will add more points close to the wall compared to the hy-
perbolic Tangent stretching in the previous section, and it is more suitable for DNS. The
stretching function is:

y = p× tan−1 (q× tan(πs
2

)) (B.2)

where parameters p and q are:

p = √
β√

α
√(1+αβ)

q =
√(1+αβ)√

αβ

here α and β are the stretching parameters, and they are related as:

β = α(π
2
)2 −α2 (B.3)

Like the hyperbolic Tangent stretching in the previous section, one just has to provide
the stretching parameter computed from the Matlab script to Compact3D. The value of
stretching parameter α can be found by providing the information in Listing 1.

b.2 stream-wise grid

Stretched grid in the stream-wise direction is used for the spatial simulation. Uniform
grid is used in the physical domain and non-uniform grid is used in the sponge zone.
The grid-stretching in the sponge zone helps reduce the computational cost and damp
the flow-features and acoustic wave by under-resolving them. The stretching function is:

x = aLdom
s

s(nk) − 1+ eα(s−s(nk)θ) (B.4)

where a is the ratio of physical domain to the complete domain Lx/Ldom. s is a uniform
grid with spacing dxmin, and nk is the position where x(nk) = Lx. θ and α are the
stretching parameters. α and nk can be found as:

α = ln (Ldom + 1− aLdoms(nx)
s(nk) )

(s(nx)− s(nk))θ nk = int(aLdom

dxmin
)+ 1 (B.5)

The Matlab program will generate mesh using exponential stretching, for which the user
should provide information about the length of the physical domain, sponge zone and
the mesh size required in the physical domain.1

Listing 2: Stream-wise grid stretching

l_phy=40; % length of physical domain

1 Note: the program generates uniform mesh in the physical domain.
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l_buf=40; % length of sponge zone

dxmin=0.1019; % grid size in physical domain

4

nx_buf=153; %initial guess for number of points in sponge

epsilon=5e-1; %initial guess percentage increase for the fist mesh in sponge

For successful generation of good quality meshes the user has to follow 3 steps:

1. Provide an arbitrary initial guess for the (a) number of grid points in the sponge
and (b) stretching percentage. Once executed, the script will provide the maximum
number of points which ensures smooth mesh coarsening.

2. Use the result from step 1 while maintaining the initial guess for the stretching
percentage. The script will provide the best value for the stretching percentage.
This step will ensure that there is a smooth transition from the physical domain to
sponge.

3. Use the optimum stretching value from step 2, and provide required number of
grid points in the sponge zone.2

The script contains 3 Matlab while-loop for finding the optimum values for the stretching.
After completing the three steps, the script will return the values for a, nk, θ, which the
user can use directly in Compact3D.

2 Number of grid points in sponge should not exceed the value from step 1.
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C
C O M PA R I S O N B E T W E E N D N S A N D I L E S

Results from different simulation techniques are presented in this appendix. First of all,
different simulation techniques are compared with each other and the reference DNS

using the spectra. Secondly, mean and rms statistics computed using the present DNS

and ILES techniques are compared against the spectral DNS of Coleman et al. (1995)[52]

and a very recent DNS of Modesti and Pirozzoli (2016)[194].

Simulation techniques were introduced in Chapter 2 and 3. Simulations are performed
with Reb = 3000 and M = 1.5, and compared with Coleman et al. (1995)[52]. All together
5 channel flow simulations are performed (see table C.1). First of all a very refined simu-
lation is performed, where all the scales of the flow is discretised. Then 3 simulations are
performed with the same computational grid as in the reference simulation of Coleman
et al. (1995)[52]. The reference simulation was done with a spectral solver. Different tech-
niques such as filtering, hyper-viscosity and SVV-like operators are used to damp the
high wave-number oscillations in these three simulations. Filter was used with compact
FDS and applied after each time-step.[22, 156] Finally, the computational grid is coarsened
in the wall-normal direction and SVV-like kernel is used.

Case Nx ×Ny ×Nz ∆y+min ∆y+max ∆x+ ∆z+

DNS
Refined 170× 150× 100 0.99 8.88 16 9

Filter
144× 119× 80 0.99 14.07

19 12
Hyperviscosity

ILES
SVV-like

SVV-like2 144× 100× 80 1.99 10.07

Ref[52] (Case A spectral) 144× 119× 80 0.1 5.88

Table C.1: Computational grids for testing DNS and ILES. Reference values taken from Coleman
et al. (1995)[52].

Spectra computed from different computational techniques and grids are compared
in figure C.1. In the low wave-number range, spectra computed from all the test-cases
collapse very well on the reference data of Coleman et al. (1995)[52]. The difference are
visible in the vicinity of the cut-off wave-number for each case. The refined DNS has more
grid points compared to the spectral DNS of Coleman et al. (1995)[52]. The spectra extends
to higher wave-number range, and smoothly drops to zero. When filter was used, the
spectra was smoothly damped, whereas with the hyper-viscosity operator (introduced
in Section 2.5.2.1), the spectra stays close to the refined DNS before dropping to zero.
As it is already addressed in Chapter 2, the excess numerical dissipation introduced
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by the hyper-viscosity operator is concentrated in the high wave-number range close
to the cut-off. The SVV-like operator acts on a wider wave-number range compared to
the hyper-viscosity operator, and it is evident from the spectra. When SVV-like operator
was used the spectra departs from the reference spectra earlier compared to the other
techniques. But one has to recall from Chapter 2 that the SVV-like kernel is more suited
for the ILES. A parametric study on operators from SVV-like kernel family was presented
in Chapter 3. Computational grid coarser in the wall-normal direction was also used to
simulate the channel flow with the SVV-like operator. It is worth noting that noticeable
difference was not found between the coarse and fine grid simulation with the SVV-like
operator.

kx

E
u
′+ u

′+

Refined DNS○ Filter
◻ Hyperviscosity○ SVV-like

SVV-like with y+min = 2
Ref

10−1 100 101 102
10−15

10−10

10−5

100

Figure C.1: Comparison of velocity spectra obtained from different simulation techniques for
channel flow at Reb = 3000 and M = 1.5 at channel center. Reference data from
Coleman et al. (1995)[52].

Secondly, this opportunity is taken to report a slight inconsistency in the results ob-
tained for a similar channel flow configuration with other 2 solver. DNS and ILES of
channel flows at Reb = 3000 andM = 1.5 and 3 was performed with Compact3D and the
mean and rms velocity were compared with the DNS of Coleman et al. (1995)[52] and Mod-
esti and Pirozzoli (2016)[194]. The computational grids used for the simulations are given
in table C.2. Coleman et al. (1995)[52] used a spectral code and Modesti and Pirozzoli
(2016)[194] used a high order Finite Volume code.

In figure C.2, the mean velocity profiles are compared for both configurations. In the
inner-layer of turbulent boundary layer all the profiles collapse very well on each other. In
the outer-region, a slight disagreement was found. The mean velocity profile computed
from the present DNS is very close to the DNS of Coleman et al. (1995)[52] and the present
ILES is very close to the DNS of Modesti and Pirozzoli (2016)[194].

The comparison of rms velocity profiles are presented in figure C.3. For the rms of
wall-normal and span-wise velocity component the curves collapse on each other. No-
ticeable mismatch between the results was found for the rms of the stream-wise velocity,
especially the turbulence production peak in the buffer layer. It is well-known that with
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Case Lx × Ly × Lz Nx ×Ny ×Nz ∆y+min ∆y+max ∆x+ ∆z+

Reb = 3000M = 1.5
DNS

4πH× 2H× 4π
3
H

170× 150× 100 0.99 8.88 16 9
ILES

Coleman 144× 119× 80 0.1 5.88 19 12

Modesti 6πH× 2H× 2πH 512× 128× 256 0.4 5.61 8 5.2

Reb = 4880M = 3.0
DNS

4πH× 2H× 4π
3
H

220× 181× 120 0.99 8.88 16 9

ILES 71× 57× 51 4 28 80 40

Coleman 144× 119× 80 0.2 11.95 39 24

Modesti 6πH× 2H× 2πH 1024× 256× 512 0.56 5.35 8.2 5.5

Table C.2: Computational grid for comparing the benchmark channel flow test-case with other
solvers. Reference values taken from Coleman et al. (1995)[52] and Modesti and Piroz-
zoli (2016)[194].
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Figure C.2: Comparison of mean velocity profiles: (a) Reb = 3000; M = 1.5 and (b) Reb = 4880;M = 3. Reference data taken from Coleman et al. (1995)[52] and Modesti and Pirozzoli
(2016)[194].

the coarsening of the mesh in the buffer layer, the peak value of the
√
u ′2 will be over-

predicted. With a close comparison between the present DNS and ILES this difference can
be easily noticed. Similar to the mean velocity profile in figure C.2, the present DNS is
very close to the curve by Coleman et al. (1995)[52], and ILES to the Modesti and Piroz-

zoli (2016)[194]. It is unclear why the peak value of the
√
u ′2 reported by Modesti and

Pirozzoli (2016)[194] is over-predicted even though the computational grid used for the
simulation is very refined close to the wall. Similar trend was found for the Reynolds
stress shown in figure C.4. It has to be mentioned that in all these comparison mismatch
increased with theM number.
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Figure C.3: Comparison of rms velocity profiles: (a) Reb = 3000; M = 1.5 and (b) Reb = 4880;M = 3. Reference data taken from Coleman et al. (1995)[52] and Modesti and Pirozzoli
(2016)[194]
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Figure C.4: Comparison of Reynolds stress profiles: (a) Reb = 3000; M = 1.5 and (b) Reb = 4880;M = 3. Reference data taken from Coleman et al. (1995)[52] and Modesti and Pirozzoli
(2016)[194].

From this comparison between results obtained from different solvers, one would pre-
fer to favor the simulation of Coleman et al. (1995)[52] because they were using a spectral
solver for their simulation. The results presented for the DNS and ILES with the Com-
pact3D are consistent and highly accurate.
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D
C O M P R E S S I B L E R E L AT I O N S H I P

In Chapter 4, compressibility effects and appropriate scaling techniques were discussed.
It was shown that the results from the flow over isothermal walls can be compared with
the incompressible results only at equivalent friction Reynolds number. At supersonicM number for which the Morkovin’s hypothesis is valid, the compressibility effect due
to the mean property variations of density and temperature is maximum. For a fixed
Reb the equivalent friction Reynolds number Re∗τ will decrease (see table 4.2). In order
to have similar Re∗τ at high M, the bulk Reynolds number Reb has to be raised. For the
present simulations, Reb andM number is the operating point for the channel flow, and
at higher M number one cannot know a priori the required Reb to get a similar Re∗τ. In
this appendix the recipe to infer the Reb for a givenM and target Re∗τ will be presented.

The idea is to relate the conventional and equivalent friction Reynolds number by
substituting for H̃.The relation is:

Reτ = Re∗τ
√
ρw
ρc

( µc
µw

) (D.1)

The friction Reynolds number of the raw and the transformed state is related through
the ratio of density and viscosity at the wall and core of the channel. In figure D.1,
ratios of density and viscosity is presented for different Reb at various M number. An
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Figure D.1: Evolution of (a) ρw/ρc and (b) µc/µw as the function ofM number. Solid curve is the
exponent law eαM which passes through the data points. Different exponents were
used forM ≤ 0.7 andM > 0.7 for both case.

exponential law eαM was fitted to the data points in figure D.1. In the subsonic regimeM ≤ 0.7 the exponent for ρw/ρc was α = 0.0441 and for µc/µw α = 0.0252. Similarly in
the transonic and supersonic regime the exponent α was 0.3995 and 0.2791 respectively.
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At a given M number, for a required Re∗τ one can get the value of ρw/ρc and µc/µw
using the exponential fit. These values of density and viscosity ratios can be used to find
Reτ using equation D.1. Then one can use the following relationship to find Reb.

Reb
Reτ

= 1

ρwuτ
(D.2)

The evolution of ρwuτ as a function of M number is presented in figure D.2. An
exponential law is used to fit a curve through the data points like in the previous figures.
The value of the exponent for M ≤ 0.7 was α = 0.01314 and for M > 0.7 was α = 0.2037.
With the Reτ from equation D.1 and the value of ρwuτ from the exponential fit in figure
D.2, one can use equation D.2 to find the Reb.
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Figure D.2: Evolution of ρwuτ as the function ofM number. Solid curve is the exponent law eαM
which passes through the data points. Different exponents were used forM ≤ 0.7 andM > 0.7.
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E
L I N E A R I S E D 2 D N AV I E R - S T O K E S E Q U AT I O N S A N D
B O U N D A RY C O N D I T I O N S

The linearised two-dimensional N-S! equations were considered for performing the linear
stability analysis. For the linearisation all variables were written as a sum of a base
flow indicated by subscript 0, and a perturbation indicated with a prime: ρ(x,y) = ρ0 +
ρ ′(x,y, t); u(x,y, t) = U0(y) +u ′(x,y, t); v(x,y, t) = v ′(x,y, t); p(x,y, t) = p0 + p ′(x,y, t);
T(x,y, t) = T0 + T ′(x,y, t). The base flow was taken to be essentially a shear flow with
a stream-wise component U0(y) that depend on y. For the present test-cases, the M
number was small, as a result the base density ρ0 and temperature T0 were not dependent
on y. The linearised equations for the perturbations were:

∂ρ ′
∂t

+U0∂ρ ′
∂x

+ (∂u ′
∂x

+ ∂v ′
∂y

) = 0 (E.1)

∂u ′
∂t

+U0∂u ′
∂x

+ v ′dU0
dy

+ ∂p ′
∂x

= 1

Re
µT∆u

′ + 1

Re
(µT
3
+ κ
µ
) ∂
∂x

(∂u ′
∂x

+ ∂v ′
∂y

)⋯
+ 1

Re
dµT
dy

(∂u ′
∂y

+ ∂v ′
∂x

) (E.2)

∂v ′
∂t

+U0∂v ′
∂x

+ ∂p ′
∂y

= 1

Re
µT∆v

′ + 1

Re
(µT
3
+ κ
µ
) ∂

∂y
(∂u ′
∂x

+ ∂v ′
∂y

)⋯
− 2
3

1

Re
dµT
dy

∂u ′
∂x

+ 4
3

1

Re
dµT
dy

∂v ′
∂y

(E.3)

∂p ′
∂t

+U0∂p ′
∂x

+ (∂u ′
∂x

+ ∂v ′
∂y

) = 1

RePr
(1+ νtPr

γPrt
)∆T ′ + 1

γRePrt

dνt
dy

∂T ′
∂y

⋯
+ (γ− 1)

Re
2

dU0
dy

(∂u ′
∂y

+ ∂v ′
∂x

) (E.4)

p ′ = 1
γ
(T ′ + ρ ′) (E.5)

These equations were normalized with the same reference quantities used in the nu-
merical solver (see Section 2.1). Since the temperature was uniform, the speed of sound
at the wall was simply the speed of sound anywhere. For completeness, a turbulent
eddy-viscosity µt(y) depending on y was retained. The result obtained with this eddy-
viscosity were slightly different but neither better or worse than the ones obtained by
accounting only for the molecular viscosity. The total viscosity (molecular + turbulent) is
µT (y) = µ+µt(y). The corresponding dynamic viscosity (obtained after dividing by the
uniform ρ0) is νT (y) = ν+νt(y).

For a temporal linear stability analysis, modal solutions of the form u ′(y) = û(y)ei(kxx−ωt)
are searched for, where kx is a real wave-number andω is the complex angular frequency.
This solution is injected into equation E.1 to E.5, which were discretised on a y-grid. The
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corresponding derivation matrix was denoted by D. Marx and Aurégan (2013)[184] pro-
vided the generalized eigenvalue problem:

(A+ωB)Ψ = 0 (E.6)

where:

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ikxU0 ikxI D

ikxU0 + A1 U ′
0 + A2

A3 ikxU0 + A4 D

ikxI + A5 D+A6 ikxU0 A7− 1
γ

I I − 1
γ

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(E.7)

B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iI

−iI

−iI

−iI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(E.8)

A1 = 1

Re
(4
3

NT +K)k2x − 1

Re
(NTD2 +N ′

TD) (E.9)

A2 = − 1
Re

(1
3

NT +K) ikxD− ikx
Re

N ′
T (E.10)

A3 = − 1
Re

(1
3

NT +K) ikxD+ 2

3Re
ikxN ′

T (E.11)

A4 = − 1
Re

(4
3

NT +K)D2 + 1

Re
(k2xNT − 4

3
N ′

TD) (E.12)

A5 = −2(γ− 1)
Re

U ′
0D (E.13)

A6 = −2(γ− 1)
Re

ikxU ′
0 (E.14)

A7 = 1

RePr
(I+ Pr

γPrt
Nt) (k2xI−D2)− 1

γRePrt
N ′

t D (E.15)

The vector of unknown is Ψ = [R U V P T]t where U for example contains the values
of û at the grid points. U0 and U ′

0 are matrices containing the velocity and velocity
derivative at the grid points. NT is the square matrix containing the total viscosity (νT )
in its diagonal; N ′

T is the square matrix containing the y-derivative of the total viscosity
(dνT /dy) in its diagonal; Nt is the square matrix with the turbulent eddy-viscosity only
(νt) in its diagonal; N ′

t is the square matrix with the y-derivative of the turbulent eddy-
viscosity only (dνt/dy) in its diagonal.

Finally, the implementation of the impedance boundary condition is discussed. Con-
trary to the spatial stability case, in the general case when the impedance Z(ω) is a
transcendental function of ω it would not be possible to easily insert the impedance
boundary condition into equation E.6. As the present MSD boundary condition leads to
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an algebraic function of ω, there is no such difficulty. Taking the Fourier transform of
equation 6.2 and 6.3, one obtains:

q ′+ ω (iv ′) = 0 ( at y = −1) (E.16)

Kv ′+ ω (−iMq ′ − iRv ′ − ip ′) = 0 ( at y = −1) (E.17)

To introduce this into equation E.6, one has to add one unknown q ′ in the vector Ψ, and
add an extra line in equation E.6 that corresponds to the first equation (equation E.16),
in the former system. The second equation of the system (equation E.17), replaces the
equation for v ′ at the bottom wall in equation E.6. Overall The matrices A and B are
square of size (5Ny + 6) × (5Ny + 6), where Ny is the number of discretisation points in
the y-direction.

205





F
TA R G E T S O L U T I O N F O R S P O N G E Z O N E

The final step is to find a reference solution as a target in the sponge zone. Usually one
can use some asymptotic solutions, or the solution for the same problem. In the present
case, weighted time averaged flow field taken from the end of the physical domain is
used as the target solution. For this, an auxiliary array of size M is used, where the time
averaged solutions are solved. The idea is to compute moving average with maximum
nbsam_per_box samples and store it progressively in the auxiliary array. Such that, mov-
ing average computed from the first nbsam_per_box samples and store it in idx = 1 of
the array, then the moving average from next nbsam_per_box samples in idx = 2, and so
on. A simple schematic for storing the time average is shown in figure F.1. The reference
solution was computed only for u, v, w and s, and for the pressure ptarget = p∞ was used.
If a = u, v, w and s then the moving average can be defined as:

avg(idx) = nbiter ∗avg(idx)+a
nbiter

(F.1)

where idx = 1, ..,M and nbiter is the number of iteration with the limit being nbiter =
nbsam_per_box. Usually the spatial simulation will go through a transition phase start-

nbsam_per_box = const

size =M

Figure F.1: Schematic for computing the target field for the sponge zone.

ing from its initial state in the beginning of the simulation. Generally, with the traditional
moving average, one uses samples from the start of the simulation to directly use as the
reference solution. But the problem with the traditional moving average is the memory
of the old samples remains in the reference solution (because latest samples used to
compute moving average has the weight-age 1/nbiter). Therefore, moving average is cal-
culated and segregated for different time window. Then each segregated moving average
is given appropriate weight-age, such that the history effect has minor effect while com-
puting the reference solution. In figure F.1, for idx = 1 – 3, the moving average is already
computed with nbsam_per_box (this can also be called as history), and for idx = 4moving
average is being computed (which means nbiter ≤ nbsam_per_box). For this example, the
reference solution for flow field a can be computed as follows:

aref = (∑3idx=1nbsam_per_box ×avg(idx))+nbiter ×avg(4)
3×nbsam_per_box +nbiter

(F.2)

Here the first three moving averages (or history) has equal weightage and for the present
average the weightage varies according to the number of samples used for that particular
moving average. By doing so, the weightage of the history is distributed among averages
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computed from different time, thus the history effect is reduced. Additionally, the new
samples are given more weightage compared to the traditional moving average. Thus the
new method to find the reference solution for sponge zone using the segregated moving
time average is more efficient than the traditional moving average technique. Moreover,
once the auxiliary array is filled completely with the moving averages, then the old
moving averages will be replaced with the new data. From the several tests performed,
it was found that, one local moving average length should be at least H/ub and the
complete average should be at least 5 – 6 flow through time.
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bulk Reynolds number, 18
bulk velocity, 18

C
CFL, 31
characteristics waves, 16, 114
compact FDS, 22, 24
Compact3D, 33
compressibility effects, 49, 65
compressible N-S, 15
compressible scaling, 67
compressible transformation, 66

D
damping ratio, 114
DNS, 25, 35, 47
drag, 120
drag coefficient, 116

E
eddy-viscosity, 201
eigenvalue problem, 202

F
flow modification, 120, 121, 125
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friction Reynolds number, 19
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non-reflecting boundary conditions, 115
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phase-speed spectrum, 133
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Re effect, 66
resistance, 120
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Reynolds number, 18, 19
Reynolds stress, 66, 122, 131
rigid-wall boundary condition, 20
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scaling techniques, 65
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