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Résumé

Dans cette thèse je me suis interessé au transport électronique à l’échelle mésoscopique
dans des nanofils monocrystallins de Bismuth et d’Argent. Le terme mésoscopique sig-
nifie que l’on considère des nanofils de “grande” taille, pouvant mesurer typiquement
quelques micromètres de longueur, mais où pourtant la mécanique quantique joue un role
important.

Diffusion électronique et effet de taille finie dans des
nanofils monocristallins

Les matériaux étudiés ici ont des propriétés électroniques assez différentes. L’Argent
est un métal plutot standard, la longueur d’onde de Fermi des électrons vaut typiquement
une fraction de nanomètre. Au contraire, le Bismuth est semi-métallique, ce qui signifie
que la longueur d’onde de Fermi λF est beaucoup plus grande en volume (50 nm) qu’en
surface (1 nm). Par conséquent un nanofil de Bismuth de 100 nm de diamètre aura
jusqu’à 200 fois plus de canaux de conduction surfaciques que de canaux de conduction
volumiques.

Malgré le fait que ces nanofils soient tous des monocristaux ne contenant que très peu
d’impuretés (moins d’un ppm), leurs propriétés de transport éléctronique à basse tem-
pérature se révèlent décevantes. En effet, pour différents nanofils de longueur croissante,
la résistance augmente proportionnellement. Or pour obtenir cela, il est nécessaire que les
électrons subissent un très grand nombre de collisions afin d’équilibrer le potentiel éléc-
trostatique uniformément dans le fil. Autrement dit ces nanofils obéissent à la loi d’Ohm,
avec un libre parcours moyen qui s’avère être dans tous les cas à peine plus grand que
la dimension transverse des fils (fig 1A,B). Nous expliquons cela par l’inévitable rugosité
présente à la surface des fils, due par exemple à l’oxidation. Les collisions électroniques
avec la surface sont alors nombreuses et après une distance de l’ordre du diamètre du nan-
ofil, la vitesse initiale du paquet d’onde électronique est perdue : on dit que les éléctrons
sont diffusifs. Dans le Bismuth, nous avons observé de façon similaire que les électrons sont
diffusifs (fig 1C). Or ceux-ci étant majoritairement des canaux surfaciques, cette conclu-
sion ne peut s’appliquer qu’à ces derniers. D’autre part, les canaux volumiques ayant une
longueur d’onde de Fermi plus grande qu’en surface, on pourrait penser qu’ils sont moins
affectés par le désordre que les états surfaciques, car le désordre serait moyenné. Nous
avons montré qu’en réalité ce n’est pas le cas grâce à la mesure des oscillations quantiques
de la résistance à fort champ magnétique dans nos nanofils. Ces oscillations sont le ré-
sultat d’interférences quantiques se produisant lorsque le rayon cyclotron rC = mvF/eB
est de l’ordre d’un multiple de λF , et sont d’autant plus prononcées que le champ est fort
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Figure 1: Diffusion par effet de taille finie dans les nanofils monocristallins d’Argent et de
Bismuth. A : Lorsque les électrons subissent de multiples collisions, leur comportement est
diffusif. La résistance est alors proportionnelle à la longueur. B : Résistance en fonction
de la longueur dans les nanofils d’Argent. Le libre parcours moyen le ' 70 nm est proche
de leur diamètre ø ' 50 nm. C : Résistance en fonction de la longueur dans les nanofils de
Bismuth. Le libre parcours moyen le ' 200 nm est proche de leur diamètre ø ' 150 nm.
D : Oscillations quantiques de la résistance dans les nanofils de Bismuth. On en tire une
estimation du libre parcours moyen des états de bulk le ' 200 nm, également de l’ordre
du diamètre du fil.
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et le désordre faible1. Cela nous donne un moyen experimental d’estimer le libre parcours
moyen pour des porteurs de charge dont on peut aussi déterminer λF . Le résultat est
que les états volumiques sont diffusifs avec un libre parcours moyen similaire aux états
surfaciques, c’est à dire limité par le diamètre du fil (fig 1D).

En résumé, le transport électronique dans ces nanofils monocristallins d’Argent et de
Bismuth est diffusif, quel que soit le type de canaux : volumiques ou surfaciques.

Propriétés topologiques du Bismuth

Mais il existe un autre ingrédient qui distingue le Bismuth de l’Argent : c’est le
couplage spin-orbite. Or ce dernier est colossal dans le cas du Bismuth grace au fait que
son noyeau est très lourd. Cette forte interaction entre le spin et le mouvement orbital
aura pour conséquence de former des états électroniques sur les bords du crystal. Pour
comprendre pourquoi, il faut d’abord comprendre comment se forment les états de bord
dans l’effet Hall Quantique entier. Dans le cas d’un gaz d’éléctrons à deux dimensions
à fort champ magnétique, lorsque les interférences associées aux oscillations quantiques
sont très fortes, des résonnances apparaissent dans la densité d’état (les états de Landau)
qui correspondent à des orbites cyclotrons alors qu’aucun état n’existerait entre deux
résonnances : le gaz deviendrait isolant. En réalité les orbites cyclotron sont incomplètes
sur les bords, ce qui induit une conduction par des états de bord. Ces états sont chiraux
: ils suivent le bord de l’échantillon dans un sens déterminé par l’orientation du champ
magnétique. Ainsi, une collision avec une impureté ne peut pas changer leur vitesse : ces
états sont donc ballistiques (fig 2A).

Il est possible de généraliser cette situation sans champ magnétique, et donc sans briser
l’invariance par renversement du temps requise dans le cas de l’effet Hall Quantique entier
: il suffit de considérer un champ magnétique de signe différent pour des spins différents
(fig 2B). Afin de garantir l’invariance par renversement du temps, nous sommes forcés de
choisir une interaction du type σ× k ou bien σ · k : c’est à dire un couplage spin-orbite2.
Un matériau avec de telles propriétés s’appelle un isolant topologique. C’est précisément
cette idée qui a été mise en oeuvre dans les travaux fondateurs de Kane et Mele, où ils
ont étudié l’effet du couplage spin-orbite dans le graphène. Il y a seulement deux types de
couplage spin-orbite que l’on peut ajouter dans le graphène : le spin-orbite Rashba ou le
spin-orbite intrinsèque, qui se distinguent par leurs différentes symmétries. Kane et Mele
ont montré que seul le couplage spin-orbite intrinsèque conduit à la formation d’états de
bords, alors que le couplage spin-orbite de type Rashba a tendance a les détruire s’il est
trop fort. Ce résultat très surprenant nous dit qu’en réalité le graphène serait un isolant
topologique ! En pratique le spin orbite intrinsèque du graphène est tellement faible que
cet effet serait très difficilement observable. En revanche, ce que nous dit cette théorie
c’est que c’est bien du coté des matériaux à fort spin orbite intrinsèque qu’il faut chercher
un candidat : le Bismuth est donc tout indiqué.

Pour des matériaux avec d’avantage de symétries comme c’est le cas du Bismuth, il y
1C’est d’ailleurs au Bismuth que l’on doit la découverte des oscillations quantiques par Kapitza dans

les années 1930, car le champ requis pour les observer est très bas, du fait de λF grand pour les états
volumiques. Si on voulait observer les memes oscillations dans l’Argent il faudrait appliquer des champs
magnétiques de l’ordre de 30 T !

2En toute rigueur il faudrait associer une fonction impaire en k au spin σ, mais nous nous limitons ici
au premier ordre.
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Figure 2: De l’effet Hall quantique entier aux isolants topologiques. A : Lorsque l’on
applique un fort champ magnétique sur un gaz électronique à 2 dimesions des niveaux
de Landau peuvent se former. Entre deux niveaux de Landau d’energies successives, la
conduction est assurée par des états de bord, qui transportent le courant de manière
chirale, donc sans rétro-diffusion. B : L’effet Hall quantique de spin est l’analogue de
l’effet hall quantique entier, sauf qu’on applique un champ magnétique effectif opposé
pour des spins opposés. Cela revient à avoir un couplage spin orbite dans le matériau.

a d’avantage de possibilités pour la forme du couplage spin-orbite, ce qui signifie que l’on
ne peut pas appliquer directement le résultat de Kane et Mele. Or il se trouve que la bi-
couche de Bismuth est un isolant topologique grace à son spin orbite « naturel » , comme
l’a démontré théoriquement Murakami : il est isolant en volume et conducteur sur les
bords avec des états hélicaux (fig 3B). Cette spectaculaire prédiction a été partiellement
confirmée en 2012 par l’équipe d’Ali Yazdani à Princeton. Pour cela ils ont utilisé un
microscope à effet tunnel à balayage (en anglais Scanning Tunneling Microscope ou STM),
qui permet de cartographier la conductance tunnel (proportionnelle à la densité d’états)
avec une grande sensibilité, sur des surfaces de matériaux clivés in-situ. Ils ont alors
observé sans ambiguité l’existence d’états unidimensionnels, mais seulement sur la moitié
des bords (fig 3C). Pour comprendre pourquoi, il faut remonter à la façon dont les bords
du défaut cristallin sont couplés aux états volumiques sous-jacents : soit le bord se termine
par un atome en haut de la bi-couche et alors l’état de bord survit, soit le bord se termine
par un atome en bas de la bi-couche et alors l’état électronique se délocalise (fig 3B).
Néanmoins, cela rapelle fortement les états de bords prédits par Murakami.

J’ai alors voulu étendre la prédiction théorique de Murakami au cas des nanofils de
Bismuth. Pour cela, j’ai utilisé le meme modèle de liaisons fortes que lui, mais considéré
des systèmes plus épais : jusqu’à une dizaine de bicouches empilées en hauteur, et confiné
latéralement à une dizaine d’atomes. Le résultat est sans appel : en calculant la densité
d’états locale, nous voyons que la signature des états de bords uni-dimensionnelle survit,
meme à la présence des états de surface à laquelle elle se superpose (fig 3D).
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Figure 3: Du modèle de Kane et Mele à la topologie dans le Bismuth. A : Le modèle
de Kane et Mele est un modèle de liaison fortes basé sur celui du graphène. La seule
différence est l’ajout d’interaction spin-orbite intrinsèque qui couple les atomes de meme
site. Cela conduit à la formation d’états de bords. B : La bi-couche de Bismuth est très
semblable au modèle de Kane et Mele : réseau hexagonal et fort couplage spin orbite
intrinsèque. En revanche, les atomes de site différent n’appartiennent pas au meme plan.
C : Cartographie de la densité d’états locale par STM par l’équipe de Yazdani. D : Densité
d’états locale simulée avec un modèle tight binding de nanofils de Bismuth. Les états de
bord apparaissent directement à partir de cette simulation.
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La supraconductivité par effet de proximité

Mais comment observer ces états de bords, et surtout comment démontrer le caractère
ballistique, sachant que le transport est dominé par des états surfaciques diffusifs ? Nous
utilisons pour cela la supraconductivité par effet de proximité.

Lorsque l’on connecte un nanofil métallique avec des contacts supraconducteurs, le
transport électronique dans le fil hérite des propriétés supraconductrices des contacts. On
peut ainsi faire passer un courant sans résistance dans la jonction, jusqu’à une valeur
maximale permise : le courant critique IC . Microscopiquement, pour pouvoir trans-
porter des paires de Cooper d’un contact supraconducteur à l’autre, il est nécessaire de
les décomposer dans la base des états propres du fil. Les états qui en résultent sont
des superpositions cohérentes de quasparticules de type électron et de type trou : ce
sont les états (ou paires) d’Andreev. Ce sont des états hybrides, qui héritent à la fois
des caractéristiques du métal normal mais aussi des caractéristiques supraconductrices.
Par exemple la longueur de cohérence ξ, qui mesure la taille d’une paire, est modifiée
quand on passe du supraconducteur au métal. Le fait le plus marquant est que les états
d’Andreev dépendent de la différence de phase ϕ pouvant exister entre les deux contacts
supraconducteur.

Lorsque la longueur de la jonction L est telle que L� ξ (on parle de « jonction courte
») ce sont surtout les propriétés supraconductrices qui dominent. Le courant critique est
alors déterminé par le gap ∆ et la conductance du fil GN . A l’inverse, lorsque L� ξ (on
parle de « jonction longue ») ce sont les propriétés du nanofil qui dominent : le courant
critique dépend toujours de GN mais l’échelle d’énergie ∆ doit être remplacée par l’energie
de Thouless εT = ~/τD où τD est le temps nécessaire pour faire traverser une paire d’un
contact à l’autre.

L’effet du champ magnétique est de déphaser les paires d’Andreev qui empruntent
des chemins différents. Cette différence de phase, d’origine orbitale, est égale à Φ0B/S
où S est l’aire entre les deux différents chemins vue par le champ B et Φ0 = h/2e est
le quantum de flux supraconducteur. Cela signifie que le champ magnétique déphase
d’autant plus deux paires qu’elles empruntent des chemins éloignés spatialement. Dans
le cas typique où la jonction est constituée d’un métal diffusif avec un grand nombre
de canaux comme l’Argent (N ' 104), la somme de toutes ces trajectoires déphasées va
résulter en des interférences déstructrices, dès que la valeur du champ magnétique dépasse
le champ caractéristique BC = St/Φ0, où St est l’aire du fil vue par le champ magnétique.

Experimentalement, dans le cas des nanofils d’Argent connectés avec du Tungstène3

ou du Niobium, nous observons effectivement une diminution de IC en fonction de B, et
une suppression de IC au delà de BC qui vaut à peine plus de 0.1T, ce qui correspond bien
à un quantum de flux dans la surface du fil. En revanche, dans le cas des nanofils Bismuth
connectés avec du Tungstène, le champ caractéristique dépasse systématiquement les 10T
(nous sommes alors limités par notre bobine supraconductrice), ce qui correspondrait à
une surface au moins 100 fois plus petite que celle du fil (fig 4A)! Ce résultat très fort
confirme que les états d’Andreev sont très peu nombreux et sont également très confinés.
De façon encore plus spectaculaire, au lieu d’observer une suppression de IC à partir de

3Le Tungstène utilisé est plutot un alliage désordonné contenant du Tungstène, du Carbone, de
l’Oxygène et du Gallium. Il a des propriétés supraconductrices bien meilleures de celles du Tungstène
pur : il a un gap ∆ et un champ critique H2

C beacoup plus élevés.
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B > BC , nous avons observé des oscillations du courant critique en fonction de B, avec
une période de BC (fig 4B). Ceci met en évidence des interférences de type SQUID entre
canaux situés de part et d’autre du fil.

Notons toutefois que le champ magnétique peut avoir d’autres conséqences que l’effet
orbital. Par exemple, lorsque nous avons connecté les nanofils d’Argent avec de l’Aluminium,
nous avons observé que le courant critique a tendence à d’abord augmenter en fonction du
champ magnétique avant d’etre supprimé, ce qui est très différent de l’effet orbital ! Nous
avons interprété ce résultat par un effet de chauffage : lorsque l’on injecte un courant dans
la jontion afin mesurer IC , une partie des électrons de la jonction devient plus chaude que
le bain de phonons du substrat. Le champ magnétique permet alors de les thermaliser en
créant de nombreuses quasiparticules dans les contacts, qui sont plus larges que le nanofil,
et donc mieux connectées thermiquement aux phonons du substrat. La jonction refroidit
alors quand on augmente le champ : IC augmente. Cet effet de chauffage n’a toutefois
été observé que pour des contacts en Aluminium, dont les quasiparticules ont des longs
temps de vie, mais pas pour les contacts en Tungstène ni en Niobium.

Finalement, en caricaturant, mesurer le courant critique d’une jonction à fort champ
magnétique (au delà de la limite BC habituelle), ce serait comme l’observer à travers un
filtre qui favorise les états se propageant à une seule dimension. Grace à cela, nous avons
pu mettre en évidence le caractère unidimensionnel des états qui portent le supercour-
ant dans les nanofils de Bismuth. Par ailleurs, nous avons pu mettre en évidence des
interférences entre ces canaux, dont la période en champ magnétique correspondrait à
des états situés sur les bords du nanofil. Ces états pourraient bien etre les états de bord
prédits par la théorie... Pour tester plus finement la prédiction, il nous faut aller plus
loin, et imaginer une expérience qui puisse distinguer clairement le type de transport :
ballistique ou diffusif.

La mesure de la relation courant-phase

Comme expliqué plus haut, les états d’Andreev héritent des propriétés supracon-
ductrices notamment grace à leur dépendence en phase ϕ, mais aussi des propriétés du
métal normal qui constitue la jonction. En particulier, les états d’Andreev sont beaucoup
plus sensibles à ϕ pour une jonction ballistique que pour une jonction diffusive. Il est
donc naturel que la dépendence en ϕ du courant passant dans la jonction, ce que l’on
appelle la « relation courant-phase » de la jonction, possède des signatures très claires du
régime de transport dans la jonction : ballistique ou diffusif. Il se trouve justement que
lorsque ϕ ' π, la relation courant-phase change de signe de façon très raide dans le cas
d’une jonction ballistique, et de façon arrondie dans le cas d’une jonction diffusive.

Afin de mesurer cette relation courant-phase, il faut donc pouvoir réussir à imposer
une différence de phase ϕ aux bornes de la jonction. Cela est impossible si l’on garde
une géométrie simplement connexe, car la phase ne peut alors pas etre manipulée par
un champ électromagnétique. Nous avons donc fabriqué un SQUID dont un des bras
est donné constitué par un nanofil de Bismuth déjà caractérisé, et l’autre bras par une
jonction dont le courant critique est connu (fig 4C). Si ce dernier est suffisamment grand
par rapport au IC du nanofil, alors la mesure du courant critique du SQUID en fonction
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du champ magnétique permet d’extraire la relation courant-phase de la jonction à base
de nanofil. C’est ce que nous avons appliqué, et nous avons alors observé la relation
courant-phase la plus raide jamais alors observée pour ce type de système (fig 4D). Les
états de bords sont donc bien ballistiques.

Conclusions, perspectives

Nous avons étendu numériquement la théorie de Murakami pour des géométrie de type
nanofil de Bismuth, qui prédit l’existence d’états de bords topologiques dans la bi-couche
de Bismuth. Le fait que ces états de bords vivent en parallèle avec beaucoup d’autres états,
qui sont diffusif à cause de la rugsoité de surface, empèche à priori de les distinguer dans
une expérience de transport à l’état normal. Nous avons donc utilisé la supraconductivité
par effet de proximité agit justement comme un filtre révélateur pour les états de bord
ballistiques unidimensionnels. Nous avons alors accumulé des preuves expérimentales
qui vont dans le sens de la prédiction d’états de bords unidimensionnels ballistiques :
observation d’un courant critique à très fort champ magnétiques, intérférences de type
SQUID, relation courant-phase en dent de scie.

Bien que ces preuves soient déjà très convaincantes, il nous faudra aller encore plus
loin pour savoir si ces états sont réellement topologiques, en particulier si il existe une
relation rigide entre le spin et la vitesse. L’un des tests possibles serait par exemple de
faire une mesure de temps de vie dans une expérience où l’on rajoute à la phase statique
ϕ une phase δϕ(t) qui oscille à haute fréquence. On detecte alors le courant à la meme
fréquence : la composante en phase donne la partie réactive, le composante hors phase
donne la partie dissipative. Si les états sont topologiques, la partie dissipative devrait
etre très piquée à ϕ ' π, et ce pic devrait croitre lorsque l’on diminue la température.
Un autre test serait de mesurer la différence de moment magnétique entre chaque bord
lorsqu’on polarise fortement un nanofil en courant, dans une expérience de gradiométrie,
par exemple en utilisant des SQUIDs ou des capteurs à magnétorésistance géante (GMR).

Un autre travail qu’il faudra mener sera de caractériser finement ces nanofils, pour
des orientations crystallographiques et des facettes différentes, ainsi que pour différentes
orientations de champ magnétiques, afin d’extraire les propriétés de ces états de bords :
extension spatiale, facteur g.

Ces expériences nous montrent que le Bismuth, qui est historiquement l’un des matéri-
aux les plus fascinants de l’histoire de la matière condensée, continue encore de nous
surprendre aujourd’hui. Ses propriétés topologiques combinées à la supraconductivité
par effet de proximité pourraient permettre de réaliser des qubits d’un genre nouveau en
émulant des particules égales à leur anti-particule : les fermions de Majorana.
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Figure 4: Signatures experimentales des états de bords dans les nanofils de Bismuth. A
: Le supercourant résiste aux forts champs magnétiques. Cela implique qu’il existe un
petit nombre d’états unidimensionnels dans les nanofils. B : En zoomant à bas champ
magnétique, on observe des interférences de type SQUID, dont la période correspond a
l’aire du fil vue par le champ magnétique. Les états sont donc localisés sur les bords. C
: Nous avons fabriqué un SQUID avec une constriction en Tungstène autour du nanfofil
pour mesurer sa relation courant-phase. D : La relation courant-phase est en dent de scie
: les états de bords sont ballistiques.
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Introduction

In this introduction, I give in the first place a general definition of mesoscopic physics, and
briefly describe the concepts and the context of this field. Then I detail specifically the
directions that lead to the work achieved during this thesis. I also give the introductory
references that I find important for the understanding of this rapidly moving field. I finish
by providing an overview of the structure of the manuscript.

The beginning of the 20th century was marked by great advances in the understanding
of the laws of physics, and in particular by the discovery of quantum mechanics, that is
the theory describing matter at very small distances, for example atom or even smaller
particles. It also describes the interaction between light and matter via exchange of quanta
of energy hν, ν being the frequency of the photon and h the Planck’s constant, and one of
its important early success was that it solved the ultraviolet catastrophe problem of the
blackbody radiation. However, it seems that we do need to apply the laws of quantum
mechanics to explain the physics of our everyday life : for example there is very little
probability of passing through a chair as we are sitting on it. Therefore a boundary must
exist between the macroscopic world which is governed by the laws of classical physics,
and the microscopic world which is governed by the laws of quantum mechanics. The field
of physics dealing with large objects that can still be described by quantum mechanics is
called mesoscopic physics (Imry, 2002).

The beginning of 20th was also marked by great advances in the experimental tech-
niques, among which the dawning field of cryogenics : the science of low temperatures.
Superconductivity, one of the greatest discovery of that century, was discovered in mer-
cury in 1911 by K.Onnes, in a celebrated experiment (fig 5A) initially motivated by the
understanding the resistivity of some metals at low temperatures (Tinkham, 2004). It
consists in the property of some metals to display a vanishing resistance below a given
temperature TC. A satisfactory theory by L.Landau and V.Ginzburg using a free en-
ergy functional describes most of the thermodynamical properties of superconductors,
but it was only in 1957 that a comprehensive microscopic theory developed by J.Bardeen
L.Cooper and J.Schrieffer (BCS) successfully explained the phenomenon at play. At low
temperatures, the attractive effective interaction between the electrons of a metal that
are mediated by phonon leads to a pairing between electrons having opposite spin and
opposite momentum. These so called Cooper pairs form a ground state that is described
by a single macroscopic wavefunction Ψ ≡ ∆eiϕ. For this reason, superconductors are
certainly the most striking examples of mesoscopic physics : they are macroscopic objects
governed by the laws of quantum mechanics. Furthermore, the BCS ground state breaks
the global gauge symmetry, which in practice implies that it will remain invariant with
respect to small changes in the electromagnetic potential in the static and long range limit
(ω → 0, q → 0). This property, termed “rigidity” of the wavefunction by F.London with
respect to these perturbations, implies that a superconductor is a perfect diamagnet : it
expels entirely a small, externally applied magnetic field : this is the Meissner effect. This
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effect was successfully predicted by BCS, and is related to the ability of superconductors
to carry a current without dissipation.

Many other macroscopic systems can be described by the laws of quantum mechanics :
cold atoms gases, quantum dots, tunnel junctions, Josephson junctions, entangled photons
over large distances, etc. Importantly, all these experimental systems are not isolated
systems. On the contrary, they are coupled to many external degrees of freedom, generally
termed the environment. For example solid state systems are coupled to phonons bath
at finite temperatures, to photons populating the electromagnetic environment, to the
fluctuations of the magnetic moment of nuclear spins, etc. By coupling the system to
these numerous degrees of freedom it exchanges energy by small amounts, thereby at
the same time mixing its wavefunction with the wavefunction of the environment. As
a result, the original wavefunction of the system soon becomes ill defined and loses its
quantumness. This latter property can be quantified by the timescale over which the
phase of the wavefunction of a subsystem becomes random : the phase coherence time
τϕ. Generally, this time gets smaller as the object gets larger, or the temperatures gets
higher (Akkermans & Montambaux, 2007).

At low temperatures, the electrons in circuits also behave quantum mechanically. The
sub-field of mesoscopic physics dealing with the electronic degree of freedom is called
quantum transport (Nazarov & Blanter, 2009). It extends the known concepts of elec-
tronic engineering to the realm of quantum mechanics, and in return aims at describing
the electronic components and circuits by the laws of quantum mechanics. The most cel-
ebrated demonstration of phase coherence in quantum transport is the Aharonov Bohm
effect. Similarly to a Michelson interferometer, where a laser beam splits and further
recombined interferes either constructively or destructively depending on the phase dif-
ference between the two paths depending on their relative lengths, split trajectories of
quantum coherent electrons also display interferences. The difference between the two
situations lies in the fact that in the latter, tuning of the phase difference is achieved by
changing the magnetic flux encircled by the loop (fig 5B).

Moreover one usually probes these systems similarly to classical circuits, that is via
the measurement of resistances, inductances, capacitances, phase shifts, frequency shifts,
power spectral densities (of e.g. the noise), etc. This is interesting technologically because
standard techniques and apparatus are developed to measure e.g. voltages with high
sensitivity, but also in the time domain and especially for frequencies in the microwave
range. Importantly, a way to access the quantum dynamics of a mesoscopic system, and
to measure its phase coherence time, is to perform quantum interference experiments
in the time domain. The microscopic description of interaction between a mesoscopic
system with resolved energy levels and a time dependent perturbation is done through the
coherent exchange of energy between the states of the mesoscopic system and the photon
states. This is analogous to the quantum interaction of light and matter at the atomic
scale, described by the theory of quantum electrodynamics (QED). Therefore mesoscopic
circuits can mimic atomic physics, although they can themselves be composed by a few
1015 atoms or even more. In order for quantum coherence of a circuit not to be lost in
the electromagnetic environment, it is necessary to control it, for example by confining
the circuit within a cavity that can be made on a chip (Schuster, 2007).

In parallel, the physics of condensed matter was the stage of important developments
during the last two decades, both experimentally and theoretically. The discovery in 2004
by K.Novoselov and A.Geim of the mechanical exfoliation technique applied to produce
graphene, which is an atomically thin crystal of carbon atoms ordered in a honeycomb
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A B

Figure 5: Measurements of two different systems displaying phase coherence on a macro-
scopic scale. A : Temperature dependence of the resistance of Hg, showing a supercon-
ducting phase transition at 4.2 K. This is the historic curve of the discovery of supercon-
ductivity by K.Onnes in 1911. B : Measurement of the Aharonov Bohm effect in a Au
ring at 10 mK. Top : Magnetic field dependence of the resistance at low temperatures
of the ring. The signal displays clear oscillations, periodic in the flux thread in the ring,
with period φ0 = h/e. Bottom : Fourier transform. Inset : SEM image of the device.
Taken from (Webb et. al., 1985)
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lattice, has enabled the production and study of a variety of other two dimensional systems
: hBN, MoS2, WS2, NbSe2, etc. Using this technique, one can even produce hybrid
structures by stacking two dimensional materials (Geim & Grigorieva, 2013), thereby
extending the existing techniques of nano-fabrication ranging from electronic lithography
to chemical vapor deposition of carbon nanotubes. Importantly, the electrons in graphene
behave relativistically as their dispersion relation is linear, hence they are termed Dirac
fermions. Subsequently, topological insulators were predicted : they consist in band
insulators with strong spin-orbit interaction having the property to conduct through edges,
which are Dirac fermions propagating on the surface (Hasan & Kane, 2010). Moreover,
these edge states are helical, meaning that their spin and momentum are locked, and their
number depends only on the topology of the sample.

With this in mind, mesoscopic physics has now the ability to shed a new light on
old problems of condensed matter, such as the Kondo effect (Basset, 2011), (Delagrange,
2016), (Iftikhar, 2017), but also new ones such as topological insulators : this is the object
of the present thesis.

1 Phase coherent electronic transport
As previously stated, phase coherent electronic transport deals with the physics of elec-
trons in metals or other condensed matter systems that maintain quantum coherence. On
the other hand, the system will unavoidably couple to an external bath, consisting in a
system at thermal equilibrium with infinitely many degrees of freedom such as thermal
photons, phonons or magnetic impurities to a bath, which will lead to an irreversible loss
of coherence.

I now give an overview on some active problematics in this field.

1.1 Disorder and dissipation in mesoscopic physics
Mesoscopic conductors fabricated by lithography are generally disordered systems because
the metals are formed by individual grains that can be very small, and therefore scatter
at relatively short distances. However, for static disorder, the processes of exchanging
momentum between electrons and scatterers are elastic : they only affect trajectories but
do not affect phase coherence. For this to be valid, the length L of the conductor should
be smaller than the coherence length Lϕ, which is the scale over which phase coherence
is lost. L should also be smaller than the thermal length LT, which is the characteristic
length after which an initial (non thermal) energy distribution is lost. For weak disorder,
there is a quantum correction of the conductance of the order of 2e2/h ' 7.74 ·10−5 S, due
to quantum interferences between unscattered trajectories and backscattered trajectories
: this is weak localization. This effect is washed out as one applies a magnetic field such
that the flux across the area of the sample is greater than φN

0 ≡ h/e ' 4 · 10−15 Wb,
because the interferences corresponding to the different trajectories across the sample are
averaged out. In the limit of strong disorder kFle ' 1, where kF is the wavevector and le is
the mean free path, transport can be strongly modified and even completely suppressed,
a phenomenon termed Anderson localization (Imry, 2002).

On the contrary, if no disorder is present in a wire, and if the transmission is perfect,
then the conductance is necessarily quantized, equal to 2e2/h per conducting channel,
where the factor 2 comes from spin degeneracy. For an arbitrary conductor, the conduct-
ance is given by
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G = 2e2

h
Tr
(
t†t
)

(1)

where t is the transmission matrix of the conductor. This is the celebrated formula of
Landauer and Buttiker (Imry, 2002). A very important point in this description is that
while phase coherence is preserved along the wire, the dissipation necessarily happens in
the reservoirs (fig 6A).

The presence of phase breaking mechanisms in these reservoirs is thus crucial for
this description of quantum transport. In fact, this description can break in some cases
e.g. with several quantum conductors connected in a network. Due to the presence of
plasmons, which are low frequency collective modes with the restoring force given by the
screened electron-electron interaction, some correlations take place between the coherent
quantum conductors, resulting in important corrections to the conductance, and the noise
(Altimiras, Portier & Joyez, 2016), (Fevrier, 2017).

An other case where the Landauer Buttiker description fails is when the reservoirs
are superconductors and the normal metal in between is phase coherent. Then the su-
perconducting correlations are transmitted from the superconductor to the normal metal,
which therefore inherits superconducting properties, and in particular a zero resistance.
This effect is called the superconducting proximity effect. The critical current, that is the
maximal current one can apply before the junction switches to a resistive state, cannot
directly be expressed using the transmission matrix of the conductor in the most general
cases, but only if the length of the junction is small enough.

1.2 Superconducting proximity effect
In 1962, B.D. Josepshon made the following prediction : when two superconductors are
separated by a thin insulating barrier then the voltage across the barrier and the current
are related to the phase difference ϕ between the superconductors throughV (t) = ~

2e
∂ϕ

∂t
I(t) = I0 sinϕ

(2)

where I0 is the critical current of the junction which depends on the gaps of the super-
conductors (that I assume to be equal in the rest of the manuscript) and the resistance
of the junction in the normal state. The first equation result from Maxwell equations,
relating the scalar potential and the vector potential, while the second results from the
coupling of the two superconductors by Cooper pair tunneling. A consequence of these
equations is that if one applies an external bias current on the SIS junction, one measures
a zero resistance as long as the phase difference is constant, that is for I < I0, and one
recovers a finite resistance for I > I0. This is the DC Josephson effect. It was confirmed
experimentally by Anderson and Rowell short after the prediction (Anderson & Rowell,
1963).

If one replaces the oxyde barrier by a normal metal, a similar effect takes place if
L � Lϕ, LT, where LT is the thermal length that measures the loss of coherence due to
the finite energy width of the Fermi occupation function, but in this case the Cooper pair
have to be decomposed on the states of the normal metal. From the perspective of an
electron in the normal metal, a new reflection process can occur at the interface with the
superconductor (the NS interface) by reflecting it as a hole of opposite spin and velocity
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thereby creating a Cooper pair solution inside the superconductor. If this process, called
Andreev reflection, is performed a second time on the second NS interface converting the
hole back into an electron, then a bound state can exist at the condition that the total
accumulated phase is an integer multiple of 2π (fig 6E)

2 εL
~vF

+ 2 arccos
(
ε

∆

)
± ϕ = 2nπ (3)

where vF is the Fermi velocity and ε is the energy of the bound state. When the
first term dominates (resp. is negligible), the junction is said to be long (resp. short).
As a result, the superconducting pair correlations can propagate through a normal metal
thanks to the formation of bound states called the Andreev bound states (ABS), leading
to a zero resistance state at small bias currents. For a junction with few electronic states,
the ABS spectrum is discrete (fig 6F). On the contrary, for a long junction that has many
channels and a lot of disorder, the spectrum is continuous (fig 6G). In general, the sub-gap
structure can be very rich and a more complicated description than (3) is necessary. This
will be described in more details in chapter 3.

The simplest Andreev spectrum is the one of a junction in the atomic limit and
can be realized experimentally in break junctions, where the number of channels can be
controlled by mechanically stretching an Al wire just before it breaks. In this system, only
two ABS exist, and the supercurrent is simply given by the sum of the current carried by
each individual level. However, as one allows many-body occupation of these states, the
supercurrent can vanish as soon as the parity of the occupation is odd (Bretheau, 2013).
This phenomenon termed poisoning is general, and result from the coupling of ABS to
the reservoirs, which may contain quasiparticles not belonging to the superconducting
condensate, that exist even at zero temperature (about 10 per µm3 in Al). Poisoning is
thus a form of dissipation resulting from the coupling to reservoirs, that complicates the
physics of superconducting proximity effect.

1.3 Orbital and Zeeman dephasing
It is a known fact that a s wave superconductor is weakened as one applies a magnetic
field. However, there are two possible causes responsible for this. Indeed, Cooper pairs
are formed by pairing electrons of opposite spin and opposite momenta with respect to the
frame of the condensate’s center of mass. This provides two ways to break a Cooper pair :
one can either split the pair apart in spin space or in momentum space. A magnetic field
does both as it splits the spin through the Zeeman effect, and splits momenta through
the Lorentz force. These effects are termed paramagnetic and orbital respectively. In
general, the orbital effect is the main cause of destruction of superconductivity. This can
be understood by a simple scaling argument : the Lorentz force acts on a lengthscale of
the order of the size of a Cooper pair ξS = ~vF/π∆, which has a velocity of the order of
vF.

Therefore applying a magnetic field B costs the Cooper pair an energy

Eorb ∼ 2evFBξS ∼ 2∆2πBξ2
S

φ0
(4)

On the other hand, the Zeeman energy will scale as

EZ ∼ 2~eB/m ∼ 2∆BλF ξS

φ0
(5)
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Figure 6: The physics of transport in some mesoscopic devices. A : Cartoon of a thin
metallic nanowire transporting electrical current, where the dissipation occurs inside the
large reservoirs. B : Cartoon of a SIS junction. The wavefunction of the superconduct-
ing reservoirs penetrates inside the insulator by tunneling (black dotted lines), allowing
a supercurrent to propagate through the junction. C Differential resistance versus bias
current in a superconducting tunnel junction. The junction switches from a supercon-
ducting state at low bias current to a resistive state at higher bias current. One defines the
critical current by the maximal current at which the junction displays a zero resistance.
D : Cartoon of a SNS junction. The superconducting reservoirs are coupled through the
normal metal junction. Bound states are formed in the junction from the coherent super-
position of counterpropagating electrons and holes. E : Semiconductor picture showing
the formation of an ABS inside an SNS junction. The curves represent the density of
states : which displays a gap in the superconductors. F : Sub-gap structure of a SNS
junction with few states, forming a discrete ABS spectrum (orange lines). Solid blue curve
: normalized BCS superconducting density of state composing the spectrum at energies
ε > ∆. G : Sub-gap structure in the case of a long, disordered SNS junction with many
channels (purple). In this case, a smaller gap arises, termed the minigap. Dashed blue :
normalized BCS density of states, which is not part of the spectrum here.
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where I have used λFvF = h/m and a g-factor g = 2.
For clarity, I should stress two points : first, although the work done by the Lorentz

force on a charge particle is locally zero, its work done on a closed trajectory can be
finite. Second, although the externally applied magnetic field should be screened in a
bulk superconductor due to the Meissner effect, it is not screened for films that are much
thinner than the London penetration length λL, which is the case we have in mind. In
any case, the magnetic field seen by a Cooper pair is the same for both contributions.

As a result

EZ/Eorb ∼ (kFξS)−1 ∼ ∆/EF � 1 (6)
which is a small quantity for most superconductors.
In the realm of proximity effect as well, the Andreev bound states are dephased due

to both the orbital and Zeeman effect. However, the orbital dephasing dominates even
more in the proximity effect compared to a superconductor, while the Zeeman effect is
unchanged. Indeed, because there is no Meissner screening in the normal metal, the
gauge potential A is a varying quantity of space in the normal metal. This means that
two Andreev pairs following different trajectories in real space sense a difference in A.
This results in a difference in the total accumulated phase generating an interference
pattern. As one integrates on all the possible trajectories, scrambling interferences will
occur, resulting in a destruction of the supercurrent. In other words, the scale Eorb will
now given by

Eorb = 2min(∆, ET)BS
φ0

(7)

where S is the surface of the normal metal. Therefore, a typical magnetic field scale
is set by B ∼ φ0/S, that is one flux quantum per unit area, after which no supercurrent
is expected.

However, the precise dependence of the decay of the supercurrent resulting from this
orbital dephasing depends on several factors. The resulting interference pattern depends
in particular on the geometry (Montambaux, 2007)

I(B) =



I0

π√
3
φ
φ0

sinh
(
π√
3
φ
φ0

) w � L

I0

∣∣∣∣∣∣
sin

(
π φ
φ0

)
π φ
φ0

∣∣∣∣∣∣ w � L

(8)

This has been recently demonstrated experimentally in Au junctions (Chiodi et al.,
2012). The oscillatory behaviour in the regime w � L is closely related to the appearance
of vortices inside the N part (Cuevas & Bergeret, 2007), a fact that has been recently
observed with STM (Roditchev et al., 2015).

It is therefore interesting to measure the critical current of a SNS junction as a function
of magnetic field because it can give information on Andreev trajectories through the
mechanism of orbital dephasing.

1.4 Towards measurements without contacts
Measuring of the critical current as a function of an applied magnetic field can therefore
reveal some interesting information on the ABS. However, in this two wires setup (fig 7C),
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the phase difference ϕ between the superconductors is not controlled. It turns out that
the ABS depend crucially on ϕ, and so does the supercurrent. The resulting current-phase
relation (CPR) is characteristic of the propagation and reflection of Andreev bound states
: for example it is a sine for the case of tunnel junctions or SNS junctions with disorder
or bad transmission. To measure such a relation, one can insert the junction inside a
superconducting loop (fig 7C) thereby realizing a SQUID. By making a suitable gauge
choice, it can be shown that the electron-hole superposition is described by a wavefunction
living on a periodic ring of size 2L verifying twisted boundary conditions :

Ψ(x+ 2L) = Ψ(x)e2iπ φ
φ0 (9)

where φ0 = h/2e is th superconducting flux quantum. The space on which the system
lives being periodic, the phase should only differ from the phase of Bloch wavefunction
by a integer multiple of 2π, thus defining a quasi-momentum

kn = π

L

(
n+ φ

φ0

)
(10)

The application of an Aharonov Bohm flux inside the loop thus realizes an analogue
to the crystal momentum in solids.

Some very interesting physics lies in the dynamics of the ABS. It was recently shown
that although DC transport is dissipationless, AC transport has a dissipative compon-
ent resulting from the finite relaxation time of ABS if they are excited (Chiodi, 2010),
(Dassonneville, 2013). In order to achieve a measurement at finite frequency, a possibility
is to insert it inside a superconducting resonator, that acts as a frequency filter. By pla-
cing an NS loop at the magnetic field antinode of the resonator, one can add an AC flux
component δφAC ∝ eiωt to the DC flux that phase biases the SNS junction (fig 7C,D).
The reflection coefficient of the cavity thus measures a response function that is nothing
but a magnetic susceptibility

χ(ϕ, ω) ≡ δi

δφAC
(11)

which is complex, the imaginary part describing to dissipation and the real part the
reaction. The information contained in χ(ϕ, ω) being phase and frequency resolved is
well suited to probe the properties of the Andreev spectrum, likewise the energy and
momentum resolved response function χ(q, ω) routinely measured in solids with ARPES
probes their band dispersion.

2 Topologically protected transport

2.1 Spin-orbit coupling
In metals, the positively charged ions exert an attractive electric force on the free con-
duction electrons gaz due to Coulomb interaction. Moreover, these electrons move with
a velocity vF ' 106 m.s−1 ' αc, where α ' 1/137 is the fine structure constant and
c ' 3 · 108 m.s−1 is the speed of light. As a result, one expects relativistic terms in the
hamiltonian of the order of α. However, we know from special relativity that an electric
field in a moving referential will also produce a magnetic field B = v × E. Since the
electrons have a definite spin, they interact with a magnetic field according to
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Figure 7: Insertion of a NS loop inside a resonator. A : SNS junction with multiple
channels. The ABS trajectories enclose different fluxes, leading to scrambling interferences
in a finite magnetic field. B : Supercurrent vs magnetic flux penetrating a SNS junction
with many channels, for different geometries. In any case, the supercurrent is significantly
reduced as soon as φ > φ0 C : Cartoon of the insertion. Top : In DC one can only measure
the critical current, that is the maximal value of the supercurrent. Middle : In order to
fix the superconducting phase, one way is to build a loop, thereby making a SQUID (an
RF-SQUID here). The phase difference is tunable through the DC flux bias φDC. Bottom
: In order to probe the dynamics, one can insert the SQUID inside a superconducting
resonator. D : Optical image of a bifilar resonator, similar to those used and developed
in this thesis
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HSO ≡
~

2m2c2 (p×∇V ) · σ (12)

where m is the electronic mass, p is the momentum, σ is the spin, V is the attractive
potential. This is the spin-orbit interaction.

Depending on the symmetries of a given crystal, the spin-orbit can take different forms.
In particular, one distinguishes two kinds of spin-orbit interaction : the Rashba spin orbit
that occurs if inversion symmetry is broken and the Dresselhaus spin orbit, which is of
lower symmetry.

2.2 From Integer quantum Hall effect to Quantum Spin Hall
Effect

As one applies a strong magnetic field on a clean conducting 2D electron gaz, it be-
comes insulating with conduction occurring only at the edges (fig 8A) : this is the integer
quantum Hall effect (IQHE). An interesting question is raised from this observation : can
similar physics exist without the application of a magnetic field, that inherently breaks
time reversal symmetry ?

The answer is yes. The idea is to take one copy of the QHE system for each spin,
with a different direction of the external magnetic field in each copy (fig 8B) : this is the
quantum spin Hall effect (QSHE). In the seminal work of Kane and Mele (Kane & Mele,
2005), an elementary model was made by adding spin orbit interaction terms to the tight
binding model of graphene (fig 8C)

H ≡ t
∑
〈i,j〉α,β

ĉ†i,αĉj,β

+iλSO

2
∑

〈〈i,j〉〉α,β
νi,jσ

z
α,β ĉ

†
i,αĉj,β

+iλR
∑
〈i,j〉α,β

νi,j ((σα,β × d) · ez) ĉ†i,αĉj,β

(13)

where νi,j = ±1 depending on the orientation of the link being clockwise (+1) or
anticlockwise (-1), d is the vector corresponding to the bond considered in the sum. The
indices i, j denotes the summation on cells, while the indices α, β denotes the atom type
(A or B). The first term is the hopping term of graphene, the second term is the intrinsic
spin-orbit coupling term, and the third term is the Rashba interaction. In the continuous
limit, this spin-orbit interaction yields the intrinsic spin orbit mentioned above, which
takes the form HSO → λSOψ

†τzσzszψ. Under the condition that λR < λSO and λSO > 0,
chiral edge states are indeed found (fig 8C,D). Importantly this topological phase is also
found for λR = 0 and λSO 6= 0, which signifies that the QSH is likely to be found in
materials with a strong intrinsic spin orbit coupling (and comparatively small Rashba
interaction).

As a matter of fact, Bismuth bilayer was soon after predicted to be in the topological
phase (Murakami, 2006). Later, an STM experiment from the Yazdani group (Drozdov
et al., 2014) demonstrated the existence of one dimensional states at the edges of (111)
bismuth, located in a mesa (fig 8E). However, only one edge state on two was found
to exist. The reason for this is that Bismuth bilayer contains next-nearest neighbors in
different atomic planes, therefore a bilayer coupled to bulk Bi, will have only half of edges
protected. Depending on the termination of the edge, it will remain uncoupled from the
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Figure 8: Two dimensional topological systems. A : Cartoon of the IQHE effect : a clean
2D electron gas under a strong magnetic field has some conduction through the edges B :
In the QSHE, two copies of the IQHE system for each spin with an opposite magnetic field
are combined into a single one. This results in the existence of two counterpropagating
edge states. C : Graphene lattice with intrinsic spin orbit coupling, as computed by Kane
and Mele. This model displays edge states. D : Energy dispersion at one edge. The
gap closes thanks to two chiral edge modes. E : STM measurement of the LDOS on a
surface depression of a (111) Bi surface, displaying 1D edge states. F : Schematics of the
Bi lattice. The zigzag termination of the edges can lead to two types of behaviour : in
the zigzag type A edge the top atom terminates the edge and the edge states is decoupled
from the edge, contrarily to the zigzag type B edge.
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bulk if it is terminated from the top atom, whereas the edge state can hybridize with the
bulk in the opposite case (fig 8F).

2.3 Predictions for the proximity effect
In the superconducting proximity in the most common case the electrodes have the s wave
pairing : Cooper pairs are formed by electrons of opposite spin. In presence of spin-orbit
interaction, the spin is however not a good quantum number : it is not generically con-
served along time evolution. This implies that the original s wave pairing of Cooper pairs
will mix into a triplet component. As a result, the usual conversion of phase difference
ϕ into an electrical supercurrent can now be supplemented by a conversion into spin cur-
rent : this is the Edelstein effect. An inverse Edelstein effect exists as well : applying a
magnetic field can result in a phase shift ϕ0 of the CPR (Konschelle, Tokatly & Bergeret,
2015). Another effect can happen in materials that are very sensitive to magnetic field :
the ABS can cross, thereby changing the sign of the supercurrent, or equivalently shifting
the CPR by π.

If the junction is made of a material with topological protection, then one should
measure ballistic transport because of the spin-momentum locking. This simple statement
was not verified experimentally to our knowledge. Moreover, the spin-momentum locking
implies that Andreev reflection should not mix with normal electron-electron reflection,
therefore the CPR should be very sharp at ϕ = π, regardless whether the junction is in
the long or the short regime.

Additionally, in this case an interesting prediction is that the current-phase relation
should be 4π periodic, which is related to the existence of Majorana fermions (Fu & Kane,
2009). These are special ABS that are made of a delocalized fermion of the junction and
are very interesting to observe because they should obey anyonic statistics (Kitaev, 2001).
A signature of these excitations has been recently observed in non topological semicon-
ducting nanowires with Rashba spin spin orbit coupling using tunnel spectroscopy exper-
iments (Mourik et al., 2012) , (Albrecht et al., 2016). However, the 4π periodicity should
be difficult to observe in a DC experiment due to quasiparticle poisoning (Beenakker,
Pikulin, Hyart, Schomerus & Dahlhaus, 2013). A way to circumvent this is to work at
finite frequencies for example by using AC Josephson effect (Bocquillon et al., 2016), or
in the linear response regime by using a detection setup with a superconducting cavity as
described above.

3 Organisation of the thesis
In chapter 1, I present the measurement of Ag nanowires. I could observe the crossover
from long to short junction, with a systematic reduction of the RNIC product as com-
pared to the theoretical predictions. A reentrance phenomenon of the supercurrent vs
magnetic field was also observed for Ag connected with Al electrodes, that I attribute
to a competition between heating and magnetic field suppression of the order parameter
inside the contacts.

The chapter 2 is devoted to the measurement of DC transport properties of Bismuth
nanowires, in the normal state and in the superconducting proximity regime. In the
normal state, I show that the transport from the surfaces can be discriminated from the
bulk via Shubnikov - de Haas measurements. Importantly, I show that it is diffusive in
both cases. I also show a linear magnetoresistance found in a cleaved sample. I then
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show measurement of the supercurrent-flux dependence for different types of wires, which
shows that few ABS carry the supercurrent and moreover that are confined to very narrow
channels. This interpretation is corroborated by numerical simulations. I finally show a
very special case of induced superconductivity by local alloying at the vicinity of sputtered
Pd contact.

The CPR of Bi based Josephson junctions is shown in chapter 3. I start by recalling
the cases of ideal junction, then I present the fabrication technique and measurement
setup. The result confirm the interpretation of the previous chapter, and shows that the
supercurrent is carried by two channels located on the edge of the nanowire. Besides, the
application of an in plane magnetic field could help to resolve 0−π transitions, as well as
signatures of ϕ junctions. Some measurements of the switching probability as a function
of the magnetic field are also shown at the end of the chapter.



Chapter 1

Induced proximity effect in
monocrystalline Ag nanowires

1 Introduction
The advances in growth techniques allows mesoscopic physics to encounter a new object
: monocrystalline nanowires. These nanowires are mainly studied for their potential ap-
plications, ranging from plasmonics (Oulton et al., 2009) to transparent, flexible metallic
electrodes (Langley et al., 2013), or polarization selective electronics (Park, Bae & Huh,
2016). They can be interesting from a low energy electronic transport point of view as
well. First, nanowires are interesting because they have a well defined one-dimensional
geometry. By further inheriting the properties of the Fermi surface of bulk crystals, they
can additionally display characteristics which would be averaged out in presence of dis-
order, such as anisotropy of the mass tensor. Therefore, crystalline nanowires should in
principle lead to the possibility of bringing the projection of the ideal bulk system along
the growth axis. I will demonstrate in the following how the importance of surfaces un-
dermines this idea. Second, thanks to their crystalline nature, one can hope to access
ballistic transport. In particular, disorder free systems could be interesting in order to
observe low dissipation electronic transport, and non-local in the phase coherent regime
as well as interference effects. For the case of Ag nanowires studied in this chapter, I will
demonstrate again that the role of disorder at the surface generally reduces the mean free
path and prevents the observation of ballistic transport.

This chapter is organized in three sections. In the first section I describe the well known
bulk properties of Ag, along with the growth and characterization of the Ag nanowires.
In the second part I describe a comprehensive set of measurements of the superconducting
proximity effect in Ag nanowires, over the entire range from short to long junction regimes.
These data show a smaller value than predicted value of the RNIC product.

In the third part, I explore the effect of applying an external magnetic field in particular
a reentrance of the switching current, which illustrates the importance of nonequilibrium
physics in SNS junctions.

2 Band structure and bulk properties
Ag crystallizes in a face centered cubic structure. It is a noble metal, and as such it has an
half filled s (5s1) conduction band. This band is almost spherical, however it has “necks”
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BA

Ag nanowire

Figure 1.1: Growth and characterization of Ag nanowires. A : SEM image of a random
network of Ag nanowires similar to those studied in this chapter. Inset : Schematics of the
nanowire with pentagonal section, (111) growth axis and (100) facets. B : High resolution
TEM of an Ag nanowire deposited on a TEM grid. Inset : Bragg peaks in reciprocal space
showing the good crystallinity of the nanowires all along their length. The contrast could
result from interferences patterns that are attributed to strain induced by the fivefold
symmetry.

at the eight L points in the Brillouin zone. This feature implies that electrons can have
non closed orbits as one applies a magnetic field and therefore its magnetoresistance is
strongly anisotropic in the bulk (Ashcroft & Mermin, 1976).

Similarly to (111) surface of Au, the (111) surface of Ag should have a noticeable
Rashba spin-orbit splitting, predicted to be only about 4 times smaller, which would yield
a splitting in momentum space kSO ' 0.063 nm−1. This spin splitting has not yet been
observed in inverse photoemission (Nicolay, Reinert, Hüfner & Blaha, 2001), as it would
require a very high resolution in energy. However, the (111) surfaces of the Bi/Ag, Au/Ag
have been determined to have a large spin-orbit gap, with respectively kSO ' 1.3 nm−1

and kSO ' 0.23 nm−1 (Ast et al., 2007), (Popović et al., 2005). There are two interesting
remarks to be made on these results. The first one is that these intermetallic alloys mostly
involve Ag atoms (two atoms on three). The second is that the spin splitting of the (111)
surface of the Bi/Ag alloy which is the largest ever observed kSO ' 1.3 nm−1, not only
overweighs the splitting in (111) Ag, but also the one in (111) Bi which is around two
times smaller kSO ' 0.7 nm−1 (Koroteev et al., 2004).

3 Growth and characterization
The growth of the nanowires has been done in CEA Grenoble by the team of J.P. Simonato
(Langley et al., 2013). They are of typical diameter t ' 50 nm.

To fabricate our devices, a drop of solution containing nanowires is deposited on a
Si/SiO2 substrate. The nanowires are searched for with an optical microscope, equiped
with a polarizer to enhance the contrast. The contacts are defined by e-beam litho-
graphy followed by deposition of superconducting contacts either by evaporation (Ti/Al
(5nm/100nm)) or sputtering (Pd/Nb (6nm/100nm)), (Pd/ReW (6nm/100nm)) or FIB
deposition (W (50-100nm)). In the case of evaporation and sputtering, an Ar+ ion etch-
ing step is performed in order to remove the oxyde or residues on the nanowires surface.
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The nanowires deposited on a TEM grid were characterized using high resolution TEM
with Mathieu Kociak. The data performed on 12 Ag nanowires show monocrystallinity
over their entire length (25µm) with identical (111) growth axis.

4 Transport in the normal state

4.1 Length dependence of the resistance
Similarly to the case of an optical waveguide, the Dirichlet boundary conditions for the
wavefunction at the surface of a nanowire implies that only a finite number of modes
can propagate through it. The number M of conducting channels depends only on the
geometry and can be computed according to :

M = k2
FS

4π (1.1)

where S is the area of the nanowire’s section, and kF is the Fermi wavevector. The
resistance Rb that would be measured in this situation if transport is ballistic is

Rb = RQ/M (1.2)
where RQ is the quantum of resistance. Therefore, the resistance of a ballistic nanowire

does not depend on its length. For an Ag nanowire of diameter 50 nm, Fermi wavelength
λF = 1

2
hvF
EF

= 0.49 nm (vF = 1.36 · 106m/s, EF = 5.49 eV), we find M = 8
3
πS
λ2

F
= 8

3π ×
π(50 nm)2/(0.49 nm)2 = 2.7 · 105 channels.

Disorder leads to an increase of the resistance, scaling linearly with the length of the
nanowire.

R(L) = Rb(1 + L/le) (1.3)
where le is the mean free path. It should be noted that this equation is valid only

if kF le � 1. In the opposite limit kF le � 1, the conducting modes become localized in
the phase coherent regime L� Lϕ, LT and the resistance diverges (Abrahams, Anderson,
Licciardello & Ramakrishnan, 1979).

In addition to bringing about disorder, experimental reality adds an other turmoil to
this picture. The measurement of the resistance of a sample traditionally implies making
an electrical contact with some metallic leads, and as a result an extra contact resistance
Rc must be added

R(L) = RC +Rb(1 + L/le) ' RC +RbL/le (1.4)
Moreover, the quality of this interface may vary from sample to sample since they

depend on the fabrication conditions, therefore RC can not be taken constant in general
for samples made differently.

We measured the length dependence of the resistance for different nanowires connected
with different types of contacts at low temperatures T = 100 mK (fig 1.2). The length of
the sections were determined by SEM observation. The value of the resistances of each of
these segments was determined from the jump of the resistance as the current is increased
above the critical current of each section (see next part).

The data of Ag nanowires connected with Al contacts display a linear behavior (1.4)
characteristic of a diffusive behavior for all the samples with a linear coefficient 1.4 Ω/µm



34 Induced prox imity eff ect in monocry stalline Ag nanow ires

strikingly constant for all the samples. Given that the ballistic resistance Rb = RQ/M =
0.095 Ω for the nanowires studied here, one can extract le ' 70 nm. This result may be
surprising given the good crystallinity of the nanowires, and illustrates the importance
of finite size effects : by scattering multiple times at the surface of the nanowire, the
electrons longitudinal momentum is randomized. The offset RC corresponding to the
contact resistance, vary from 0− 10Ω depending on the material of the electrodes.

1 µm

5 µm

0.9 µm

D

U

Z

X

W

2 µm

Ag6

A B

Figure 1.2: Resistance vs length for Ag nanowires connected with Al electrodes. A : SEM
image of Ag6. B : R vs L for 13 nanowires connected with Ti/Al contacts.

4. 2 Temperature dependance of the resistance

As the temperature decreases, the resistance of a sample may vary depending on the
dominant scattering mechanisms.

Recalling Mathiessen’s rule for the transport time :

τ−1 = τ−1
ee + τ−1

e−ph + τ−1
el + . . . (1.5)

then one sees that the equation for the longitudinal resistivity

ρ = mτ−1/ne2 (1.6)

can be interpreted as the equivalent serie resistance corresponding to each individual
process.

If the dominant mechanism is electron-phonon scattering, then at temperatures lower
than the Bloch-Gruneisen temperature TBG, the resistivity scales as ρ = ρ0 + βT 5. We
could measure the temperature dependence of the sample Ag8 of length L = 3µm con-
tacted with FIB deposited W electrodes, and sample Ag6 of length L = 5µm contacted
with Al electrodes. Both samples displayed a T 5 law at low temperatures (fig 1.3). This
means that the dominant inelastic scattering mechanism above 4K is the electron-phonon
interaction.
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Figure 1.3: A: SEM image of the Ag nanowire connected with FIB electrodes. B: Tem-
perature dependence of the resistance, measured in four probe configuration. A resistance
jump of 85 Ω at 10 K indicates the superconducting transition of the contact region. The
second jump of 25 Ω at 4 K is related to the induced proximity effect in the nanowire.
C: Temperature dependence of the resistance for the sample Ag8. The resistance is sub-
tracted from the value of the resistance of the contact R0 taken just before the transition
to the superconducting state (inset). The result is plotted in log-log-scale. A T 5 law is
represented for T < 20K in green dotted lines. A T 3 law for T > 20K is represented in
red dotted lines. The latter is possibly an artefact resulting from a bad calibration of the
thermometer at too high temperatures.
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L� le L� le
L� ξS πM ∆

h
∼ 1 2.07M ∆

h
le
L
∼ 1/L

L� ξS 2M evF
L
∼ 1/L 1.15M evF

L

(
le
L

)2
∼ 1/L3

Table 1.1: Scaling of IC(L) for the short and the long junction limit for the diffusive and
ballistic regimes.

A B

experiment
theory

1/L2

1/L3

Figure 1.4: Crossover from short to long junction. A: IC(L) measured in two probes
configuration at 100 mK. B: RNIC product for different lengths. Dashed blue lines :
Theoretical fit corresponding to the short diffusive junction limit RNIC = ∆Al = 165µV
and long diffusive junction limit RNIC = 10.82ETh.

5 Superconducting prox imity eff ect

5. 1 Full range of prox imity eff ect from short to long junction
We have induced superconductivity by proximity effect in a total of 27 Ag nanowires
based junctions that we connected with superconducting electrodes of different materials.
I will now focus on the 17 junctions connected with Ti/Al electrodes. The measured
supercurrents range from 100 nA to 50µA for junction of lengths ranging from 5µm to
190nm. Thanks to this wide range of parameters, we could compare the value of the
supercurrent to theoretical predictions.

Two regimes can be distinguished : the short junction limit where the energy scale
of Andreev bound states is given by the order parameter ∆, and the long junction limit,
where it is given by the Thouless energy εT = �vF/L for clean junctions and εT =
�DN/L

2 for diffusive ones. The characteristic length scale separating the two regimes is the
superconducting coherence length ξS = �vF/∆ for the ballistic regime and ξS =

√
�DN/∆

for the diffusive one. Depending on how the length L of the junction compares with
ξS and the mean free path le, one has different scaling laws for the supercurrent IC(L).
Importantly, in the diffusive regime (which is the case of our Ag nanowires), this scaling
is IC ∼ 1/L for the short junction limit and IC ∼ 1/L3 for the long junction limit as
shown in the following table.

We could observe the crossover from the short junction limit to the long junction limit
by measuring the critical current as a function of the junctions lengths (figure). From the
crossover located at LCr = 1µm that is theoretically given by

√
10.82�DN/2.07∆, one can
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extract the coherence length ξN
S = 0.43µm which is close to the estimated diffusive value

ξN
S =

√
~DN/∆ = 0.36µm, with DN = vFle/3 = 0.032 m2/s. However, the value of the

supercurrent per channel, measured by the RNIC product was significantly lower than the
predicted values. This reduction could be explained by a weakly induced superconduct-
ivity by our Al contacts of size w ' 150 nm comparable to the coherence length inside
the superconducting electrodes ξAl =

√
ξ0,Alle ' 100 nm. To conclude, let us mention that

a systematic reduction of the RNIC product has also been observed in graphene (C. Li,
Guéron, Chepelianskii & Bouchiat, 2016), although it could not been explained by an
inverse proximity effect in that case.

5.2 Reentrant proximity effect in Ag nanowires
We have measured the magnetic field dependence of the switching current in four probes
and two probes geometry. A first difference between the two probes and four probes
geometry is trivial : the two probes geometry includes the behavior of the entire su-
perconducting electrodes leading to the sample. This is shown in (fig 1.6) where an
abrupt jump is observed at 50 G which corresponds to the critical field of the large area
300µm× 300µm Al pads. The critical field B0 = 300 G of the Al electrode closest to the
Ag wire is larger by a factor ξ/w. This is the relevant magnetic field limiting the induced
supercurrent in these narrow Ag wires. The second difference is more unexpected : in the
four probes geometry the switching current does not decay monotonously with magnetic
field as expected and observed in the two probes geometry. Surprisingly, it first increases
with field up to about 200 G before decreasing again.

This non monotonous behvior is also observed for the retrapping current (from the
normal to the superconducting state) both in 2 probe and 4 probe measurements. The
difference between the switching and the retrapping current is known to be due to Joule
heating that prevents hot quasiparticles from cooling and thus prevents the junction from
returning to the superconducting state. This therefore suggests that non equilibrium
effects may cause this non monotonous field dependence. More specifically, we relate this
effect to the well known enhancement of pair breaking processes in superconductors by a
magnetic field.

We assume that a small normal part exist at the vicinity of the contact, leading to
Joule heating Rqpi

2. We identify the corresponding energy Rqpi
2τR lost on a timescale

τR to the reduction of Josephson energy φ0 (i0 − i), where τR is the characteristic time
conversion of quasiparticles into Cooper pairs inside the junction (fig 1.7). Besides, we
also suspect that the Joule effect depends on the length of the normal section in series
with the Josephson junction considered.

Therefore, the switching current is solution of a balance equation

Rqpi
2τR = φ0 (i0 − i) (1.7)

yielding

i(B) = i0(B)
−1 +

√
1 + 4κ2τ̃R(B)

2κ2τ̃R(B)

 (1.8)

where I introduce the dimensionless magnetic field dependent recombination time τ̃R(B) =
τR(B)/τR(0), and the dimensionless quantity κ2 = RqpτR(0)i0/φ0. The magnetic field de-
pendent critical current i0(B) corresponds to the the one that would be measured without
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Joule effect. A very simple choice for i0(B) modelling the decay of the supercurrent due
to the depairing field induced inside the contact is

i0(B) = i0(0)
(

1−
(
B

B0

)2)
(1.9)

where B0 is the characteristic magnetic field of the decay. On the other hand, the B
dependence of τR(B) is given by

τR(B)−1 = τR(0)−1
(

1 +
(
B

B1

)2)
(1.10)

which means that τR gets shorter as the magnetic field gets higher. The zero field recom-
bination time τR(0) is about 1− 10 · 10−9 s in Al (Quay, Weideneder, Chiffaudel, Strunk
& Aprili, 2015). There are three adjustable parameters in this fit. The magnetic field
scale B0 is adjusted independently from the decay of the supercurrent at large fields. On
the other hand B1 represents the dependence of the recombination time on the magnetic
field and is adjusted from the reentrant part of the curve (positive i(B) slope). Finally,
the remaining parameter κ2 measures the strength of the reentrance effect. This the-
ory agrees qualitatively with the data (fig 1.7), leading to B0 ' 350 G, B1 = 0.14B0
and κ2 = 2.5. This leads to Rqp ' 0.1 Ω. The characteristic field B0 is understood as
the enhancement of the critical field of the contact of width w due to finite size effect
B0 ' B0,bulkξ/w ' 200 G. On the other hand, the charactetistic field B1 = 50 G of the
reentrance rather matches the bulk value, without the enhancement effect mentionned
above. This could signify that the area over which the recombination takes place actually
goes up to the large contact pad, which is probably the only part of the Al contacts that
is well thermalized to the phonons of the substrate, given its large area.

A systematic study on all the sections of Ag10 as well as a more accurate description
is under development.

5.3 Conclusion
We measured the electronic transport properties of crystalline Ag nanowires junctions
connected with Al contacts. In the normal state, from the length dependence of the
resistance, we showed that these junction are diffusive, with a mean free path le ' 70 nm,
of the order of the nanowires diameter ø ' 50 nm, indicating a finite size limited diffusion.
This result, which seems surprising given the high purity and crystallinity of the bulk of the
nanowires, stresses the importance of surface scattering in nanowires of small dimensions.

In the superconducting proximity effect regime, we observed the crossover between
the short and the long junction from the measurement of the critical current, and deduce
ξN

S ' 0.4µm. However, a significant reduction of the RNIC product compared to the
theory is observed similarly in both regimes, an effect that was observed in other systems
such as graphene, and whose interpretation is yet still debated.

Additionally, we observed a surprising reentrance of the critical current as a function
of the magnetic field in four probes geometry. We modelled this magnetic field reentrance
behaviour by a Joule effect that is compensated by quasiparticle recombination whose
rates increases as a function of the magnetic field. This model actually states that a
superconductor gets weaker in presence of a bias current, due to the Joule effect. A more
quantitative analysis is under development.
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Figure 1.5: Reentrance of the supercurrent in a magnetic field for sample Ag10. A : SEM
image of the nanowire Ag10 contacted with Ti/Al electrodes along with the sections and
the contacts names. The junction and contact marked with a cross were not connected.
B-H : Colorplot of the dv/di of the different sections 1-7 marked on the SEM image as a
function of the magnetic field B and the bias current IDC.
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A B

Figure 1.6: Critical current of Ag106 vs bias current and magnetic field for the two probes
and four probes geometry. A : Four probes measurement B : Two probes measurement.
The jump of critical current at 50 G is attributed to the superconducting transition of
the large contact pad. Inset : optical image showing the large contacts (300µm× 300µm)
pads used for bonding to the sample holder of the dilution fridge.
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Figure 1.7: Model for the reentrance. A : Magnetic field dependence of the switching
current for the different sections of Ag10. The larger current correspond to smaller sections
lengths. Note that Ag101 and Ag107 are measured in a 3 probes setup whereas all the other
are measured in a 4 probes setup. B : Schematics of a measured section in four probes
geometry. The injected quasiparticules flow is recombined into Cooper pairs inside the
contact. C : Tilted washboard potential model for the current biased Josephson junction.
The energy is measured in the units of the Josephson energy φ0i0 of the junction. D : Fit
of the field dependent critical current on Ag104 assuming a field dependent recombination
time of quasiparticles into Cooper pairs (see text).
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Chapter 2

Transport properties of Bi nanowires
in the normal and induced
superconducting state.

In this chapter, I describe DC transport measurements of Bi nanowires in the normal
state and the proximity effect regime, starting with a review of the electronic properties
of Bi along with the description of the growth and characterization of the nanowires.

1 Introduction
The route towards the control and manipulation of the spin degree of freedom in electronic
circuits has naturally led research to focus on metals and semiconductors with strong spin
orbit interactions such as (In,Ga)As 2DEGs (Kato, Myers, Gossard & Awschalom, 2004)
or Pt (Edwards, Ulrichs, Demidov, Demokritov & Urazhdin, 2012). In a subsequent effort
to obtain an all electric quantum coherent control of the spin, nanowires quantum dots
with strong spin orbit were proposed (Trif, Golovach & Loss, 2008). One dimensional
systems such as nanowires can indeed prove to be interesting due to the importance of
quantum effects, as strikingly observed for example through conductance quantization.
The addition of superconducting proximity effect on these systems has also drawn a lot
of attention due to the prediction that they could host anyonic quasiparticles near the
contacts as one apply a magnetic field parallel to the nanowire, which are called Majorana
fermions (Kitaev, 2001). A lot of efforts have been devoted to this search, focusing mainly
on InAs and InSb semiconducting nanowires as potential candidates (Mourik et al., 2012).
Bi nanowires could prove to be ideal candidates as well, due to their exceptional properties
in addition to the presence of a very large spin orbit coupling.

Bismuth is one of the most studied compounds and is yet still not fully understood.
It was the material where were first discovered diamagnetism, the Seebeck effect, the
Nernst effect, Shunikov de Haas oscillations, and de Haas - van Alphen oscillations (Fu-
seya, Ogata & Fukuyama, 2015). Recently, a nematic phase was observed in Bi using
magnetoresistance measurements (Zhu, Collaudin, Fauqué, Kang & Behnia, 2012) and
was directly imaged through the observation of the Landau levels wavefunctions in STM
(Feldman et al., 2016).

Bi nanowires were first studied due to their potential applications in thermoelectricity
(Heremans & Thrush, 1999), although they may have now been supplanted Bi2Te3 (Zhou,
Jin, Seol, Li & Shi, 2005) or even Si nanowires (Boukai et al., 2008). A measurement of
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the resistance in a magnetic field parallel to the nanowire displayed oscillations, indicat-
ive of a surface dominated transport (Konopko, Huber, Nikolaeva & Burceacov, 2013).
The presence of strong spin orbit interactions has been observed experimentally through
weak localization measurements (Kim et al., 2014). Finally, many studies displayed su-
perconductivity in disordered Bismuth nanowires (Tian et al., 2006), which reinforce the
conception that small modification of the structure of Bi can lead to a superconducting
behavior.

On the other hand, little attention has been paid to crystalline Bi nanowires in the re-
gime of superconducting proximity effect. This study is therefore interesting first to check
the possibility that Bi nanowires are not intrinsically superconducting at zero magnetic
field and low temperatures. Second, proximity effect can be used as a complementary tool
in transport to reveal some information on the states carrying the supercurrent. Finally
the presence of strong spin orbit is predicted to induce triplet superconducting correla-
tions that could have strong consequences in transport such as very long spin lifetimes
(Linder & Robinson, 2015).

This chapter is organized in five sections. I summarize the known properties of the
bulk in the first section. I will also introduce the surface states of Bi, that are of great
importance for the study of Bi nanowires. In the second section, I describe the growth and
characterization of the nanowires. In the third section I describe how the measurement
of the magnetoresistance in the normal state can reveal transport properties such as
transport time, the effective masses, and finally the effective dimensionality of the system.
In the fourth section I describe an experiment showing that superconductivity can be fully
induced in Bi using normal metallic electrodes made of Pd thanks to local alloying at the
interface between Pd and Bi. Finally, I will show a striking superconducting proximity
effect in magnetic field along with different interpretations.

2 Crystal and band structures

2.1 Bi bulk

Bi crystallizes in rhombohedral structure (fig 2.1A) with the space group R3̄m. It belongs
to the group V semi-metals and thus has an odd number of electrons in its outer shell
(6s26p3) and therefore should be metallic. A Peierls distortion of the lattice leads to a
halving of the first Brillouin zone and an opening of a gap occurs, which would therefore
result in an insulating behaviour (Fuseya, Ogata & Fukuyama, 2015). However, because
this distortion is very weak, the band structure is that of a semi-metal. This means
that it has pockets of electrons and holes which are close to compensation (fig 2.1C).
This semi-metal behavior implies unusual bulk properties : a very low carrier density :
n = p = 2.7 ·1017 cm−3, a very low anisotropic effective mass. Moreover it has a very large
g factor. Furthermore, the closeness of its bands leads to a very strong diamagnetism
(Fukuyama & Kubo, 1970) that I will not discuss here.

• Fermi surface properties The effective mass tensor is very anisotropic and depend
strongly on the band. They have been determined experimentally (Smith, Baraff &
Rowell, 1964) using Shubnikov-de Haas oscillations measurements, and are given in
the binary, bisectrix, trigonal coordinate system (fig 2.1A,B) by
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Figure 2.1: Atomic structure of Bi and cartoon of the band structure. A: Atomic structure
of Bi in the hexagonal cell (pink dotted lines) and the rhombohedric cell (green dotted
lines). Taken from (Hofmann, 2006). B : Electron pockets ellipsoids represented with
respect to the symmetry axis. The pink pockets designates electron pockets, and the blue
pocket is the hole pocket. C : Schematic view of the dispersion relation near the T point
and the L point of the Brillouin zone.

Table 2.1: Fermi velocity for the different axes

(106m/s) vF,1 vF,2 vF,3 〈vF〉
Electrons 0.089 1.000 0.750 0.613

Holes 0.252 0.838 0.838 0.643

m∗e,1 =

0.00521 0 0
0 1.20 −0.09
0 −0.09 0.0204

 ,

m∗e,2 =

 0.901 −0.517 0
−0.517 0.304 −0.09

0 −0.09 0.0204

 , m∗e,3 =

0.901 0.517 0
0.517 0.304 −0.09

0 −0.09 0.0204


(2.1)

where 1, 2, 3 label the electron pockets (fig 2.1B). For the hole band :

m∗h =

0.064 0 0
0 0.064 0
0 0 0.69

 (2.2)

The components of the Fermi velocities are given by (Édel’man, 1977)
This anisotropy of masses and velocities implies that there is a large variety of
carriers in Bi, each of them having different Fermi wavelengths λF, given by

λFvF = h

mem∗
= 7.12

m∗
10−4 m2/s (2.3)

In Bi, one has typically λF is 50 nm. This can lead to a finite size driven semimetal
insulator transition for su�ciently thin nanowires whose transverse dimensions are
smaller than λF.
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The mobility tensor, on the other hand has been measured from quantum oscillations
in magnetoresistance measurements in a single crystal at 20 K, and yields (Collaudin,
2014)

µe,1 =

550 0 0
0 10 −34
0 −34 300

 (2.4)

in m2/V/s units, for the electron pocket 1, the other being deduced by ±2π/3
rotations with respect to the trigonal axis, and

µh =

11 0 0
0 11 0
0 0 20

 (2.5)

for the hole pocket.
From this tensor, and the effective mass tensor, one can obtain the diffusion time
tensor

τ = 1
e

µ ·m∗ (2.6)

which is anistropic as well. Interestingly, the mean free path le = vFτ is isotrope and
nearly constant for all the bands. This means that regardless the type of carrier,
the diffusion mechanisms acts the same way on them.

• g-factor
The g tensor is related to the effective mass as

g = m
det(m∗) (2.7)

It can yield g factors as high as 1000 (Fuseya, Zhu et al., 2015). This expression is
only valid in the presence of strong spin orbit interaction, contrarily to the case of
graphene which has g ' 2 but a vanishing mass at the Dirac point.

• Atomic and bulk spin orbit coupling
Being a heavy element, Bi has a strong spin-orbit coupling. Indeed, the atomic
spin-orbit lifts the spin degeneracy of the last orbitals into two levels 6p1/2 − 6p3/2,
with a large energy difference. Assuming the amplitude of the atomic spin-orbit
coupling (Claude Cohen-Tannoudji, 1973)

WSO = 1
2m2

ec
2
∂rU

r
L · S

= 1
2m2

ec
2
Zeffe

2

4πε0r3 L · S

= α2ZeffRy
(
a3

0
r3

)(L · S
~2

) (2.8)
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where α ' 1/137 is the fine structure constant, Ry ' 13.6 eV is the Rydberg con-
stant, a0 ' 0.5 Å is the Bohr radius, Zeff = 13.84 is the effective nuclear charge for
the 6p shell of Bi, then one has an energy difference

∆E ∼ α2Z4
eff

( 2
n

)3
Ry (2.9)

where n = 6 is the principal quantum number, and I estimated
〈

1
r3

〉
'
(

2Zeff
na0

)3
.

This would yield ∆E ' 0.98 eV, that is the same order of magnitude with the
experimentally determined value ∆E ' 1.5 eV (Hofmann, 2006).
However, the Bi crystal is centro-symmetric, therefore in absence of any process
that breaks time-reversal symmetry such as a magnetic field, the hamiltonian H for
conduction electrons in Bi verifies

HT = TH

HP = PH
(2.10)

where P and T are the inversion operator and time reversal operator respectively.
Therefore if εk↑ is an eigenvalue of H, then by applying T then P, one has

εk↑
T= ε−k↓

P= εk↓ (2.11)

which means that no spin-splitting of the bands should occur in absence of an
external magnetic field, a property termed Kramers degeneracy.
Nevertheless, spin orbit interactions strongly affect the band structure (Liu & Allen,
1995) even though the bands are spin-degenerate.

2.2 Bi surface states
At a surface, inversion symmetry is broken and therefore a spin splitting of bands can
occur. This can be understood microscopically by the appearance of an electric field on
the surface, which then acts as a magnetic field in the referential frame of conduction
electrons, and couples with the spin. Surface states of Bi are known to be strongly spin-
split (Hofmann, 2006), as measured by ARPES (Koroteev et al., 2004), or directly by spin
resolved ARPES (Hirahara et al., 2007).

Bismuth surfaces are in general metallic, with a larger effective mass, that is closer
to the bare electron mass. The (111) surface which is perpendicular to the trigonal axis
and is the surface of natural cleavage, the effective mass for electrons is m∗ ' 0.16 and
for holes m∗ ' 0.2. This surface is of particular interest for quantum transport as it may
host edge states.

2.3 Bi edge states
Following the observation that Bi has a strong spin-orbit coupling and has a lattice similar
to the one studied by Kane and Mele, it was predicted by Murakami that the (111) surface
of Bi hosts topological edge states, making it a QSH system (Murakami, 2006), which
means that these edge states are protected against disorder. This was done using the
tight-binding hamiltonian derived by Liu and Allen (Liu & Allen, 1995), restricted to a
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zigzag edges terminated bilayer, that is infinite in the bisectrix direction. This model
was obtained by fitting experimental data (electron density, anistotropic effective mass
tensor, Fermi energy and momenta) to those obtained from a tight binding model with
sp3 orbital configuration. From this simulation, it was found that there are three energy
level crossing at the Fermi energy, which is a consequence of the existence of three outer
orbitals px, py, pz in Bi. In a subsequent refinement using ab-initio based simulations,
Murakami found edge states also for the Γ̄ − M̄ direction, that is for armchair edges
(Wada, Murakami, Freimuth & Bihlmayer, 2011). The group velocity of each of these
states can vary by a factor 4 depending on the crossing considered.

An STM measurement performed by the Yazdani group showed distinctive 1D features
of the local density of states (LDOS) situated on the atomically defined edges of a local
depression of a (111) Bi surface. Besides, the energy dispersion of the DOS at these
edges follows a 1/

√
ε law, characteristic of a 1D system. Furthermore, the improvements

in energy resolution in ARPES allowed to resolve a linear crossing of energy levels in
the Γ̄ − K̄ direction, that do not disperse in the perpendicular direction and can thus
be interpreted as 1D (Takayama, Sato, Souma, Oguchi & Takahashi, 2015). From this
measurement, we can extract a Fermi velocity vF ' 2 · 105 m/s, which corresponds to the
least steep energy dispersion at the Fermi level found in numerical simulations. In the
rest of the manuscript, we take vF = 6± 2 · 105 m/s.

In order to understand whether these edge states can also exist in a nanowire, one
can performed numerical tight binding simulations on a 3D ribbon-like system. To do so,
I used the Liu-Allen tight-binding hamiltonian, as originally studied by Murakami, on a
system that is finite in two directions and infinite in the third direction. By making use
of twisted boundary conditions, one can therefore study the energy dispersion relation of
a ribbon-like system. This was done using the Kwant package (?). The local density of
states (LDOS) is then computed by summing the space-dependent spectral weights on an
energy window situated ±100mV around the Fermi level. Beforehand, I reproduced the
result of Murakami and mapped the LDOS, showing that it is strongly enhanced on the
outer atoms of the Bi bilayer (fig 2.2).

I then studied a particular geometry of nanowire with (111) top surface, similar those
studied in this thesis. The growth axis was taken to be the bisectrix axis, and with rhombic
transverse shape, similarly to what can be hinted from SEM and EBSD measurement (see
further). This choice implies that the lateral surface has the (100) direction, which is a
natural choice for a growing nanowire because it minimizes the number of dangling bonds.
For this type of simulated nanowire, the LDOS also shows the existence of edge states,
located at the outer edges of the nanowire, which confirms our intuition. However in this
case, the spectrum is much more complicated than in the bilayer case, due to the presence
of surface states that coexist with the edge states on the (100) surface, whereas they are
fully localized at the (111) surface. The dependence of the LDOS with the number of
bilayers in the 3D ribbon (fig 2.2) can be fitted according to

ρ(x) = C
(
α + e−x/0.85

)
(2.12)

where x is the distance from the edge state measured in bilayer number, C is a nor-
malization factor, and α = 0.7. This means that on the (100) surface, edges states are
localized within about 0.85 unit cell (which is about 0.5 nm long) and coexist with the
remaining surface states that are delocalized, and possibly diffusive in an actual nanowire.
However, the local spin density shows a strong signature of spin-momentum locking all
along the (100) surface (fig 2.2G), which implies that the elastic scattering for these states
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could be strongly reduced. Therefore, even though the reminiscent topological edge states
are localized within a few atomic length, the extended states may also be in the ballistic
regime.

3 Growth, preparation, connections and characteriz-
ation

3.1 Growth techniques
The nanowires studied during this thesis were grown using two different techniques :
electrodeposition through a polycarbonate template and sputtering on a hot surface.
Other growth techniques are possible such as the so called Taylor-Ulitovsky method which
consist in rapid quenching of material in the melted state (Gitsu, Konopko, Nikolaeva &
Huber, 2005), aqueous chemical reduction of BiCl3 guided by PVP reagent (Y. Li, Zhao,
Wu & Zhao, 2016), or laser ablation through superfluid helium (Kasumov, 2016).

Polycarbonate templating
This technique makes use of a template made of polycarbonate containing pores with

small diameter ø ' 100 nm (fig 2.3A) (Huang & Fung, 2006). An electrodeposition is
done through the template by applying a voltage difference between an electrode placed
at the bottom of the template and an electrode placed inside the solution. The solution
is prepared by dissolving Bi nitrate in water in addition to an other electrolyte. The
nanowires were fabricated by G.Tsirlina and coworkers from Moscow State University.
This technique has the advantage that it can make a large number of nanowires of small
diameter < 90 nm. However, this technique has a few drawbacks. First, the surface
characterization as well as high resolution TEM imaging can prove to be difficult because
of the presence of the polymer coating surrounding the nanowire. Second, some cavities
can occur during the growth process (fig 2.3B).
• Sputtering on hot surface

Using sputtering, one first grows a wetting layer of Bi, then heats the substrate at a
temperature chosen close to the melting point of Bi (271.3oC). Vanadium can also
be used as a base wetting layer as well as Iron. Some nanowires can then grow in
some parts of the substrate. The mechanism of growth is not clear, but could be
related to the release of stress caused by the mismatch in thermal expansion of SiO2
and the wetting layer of Bi, similarly to the ON-OFF method (Kim et al., 2014),
(Shim et al., 2009).
The Bi target used for sputtering is of very high purity (99.9999%). This is import-
ant because being a semi-metal, the number of conduction electrons per atom of the
crystal is small (less than one conducting electron per 105 atom), which explains
why such a high purity is desirable. The nanowires grown by this technique are
single crystals (fig 2.4).

• Deposition on substrate
The nanowires are then dry deposited on a substrate of Si/SiO2 (500 nm of thermal
oxide) for optical imaging. Due to their small dimension as well as the low plasma
frequency of Bi, a lot of variation was observed in the reflected color of the nanowire
when exposed to white light. We could not however completely rely on this inform-
ation to characterize their thickness or their orientation.
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Figure 2.2: Numerical simulations on Bi nanowires. A Energy dispersion relation for a
bilayer Bi. This is the same spectrum as the one calculated by Murakami. B Spectrum
of the Bi nanowire obtained by stacking 5 Bi bilayers that are 7 atoms wide. C LDOS of
the bilayer Bi.D : LDOS for the Bi nanowire. The units are arbitrary. E Non normalized
LDOS at the (100) surface as a function of the distance from the edge, calculated on
nanowires obtained by stacking an increasing number of bilayers. Orange dashed line :
numerical fit yielding ρ(x) ∝

(
0.7 + e−x/0.85

)
. F, G : z component of the local spin density

〈σz〉 restricted for 0 < k < π/a (F) and −π/a < k < 0 (G). In blue are the negative value
and in red are the positive values in arbitrary units.
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Figure 2.3: Fabrication of Bi nanowires using polycabonate templating. A: SEM image of
the pores in the polycarbonate film used for the growth. B : High resolution TEM image
of a typical nanowire grown by this technique. The white arrows indicate the crystal
orientation, the black arrows indicate a cavity type malformations.
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Figure 2.4: Fabrication of nanowires grown by sputtering on hot surface technique. A:
TEM image of the nanowire directly after the growth process. The width of the nanowires
is typically between 100 nm and 300 nm. B : High resolution TEM image of the nanowires
showing their remarkable crystallinity. A thin oxide layer of less than 3 nm is visible,
impeding direct electrical connection. C : TEM image of Bi nanowires deposited nanowires
on a Si/SiO2 substrate forming a cross.
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BA

Figure 2.5: Principle of the EBSD technique. A: Schematics of the setup for EBSD
detection. The sample is tilted 70o from the incident electron beam. The large detector
catches backscattered electron in Bragg condition in the crystal. B: Typical diffraction
pattern measured directly on a Bi nanowire, on a single image at 60µA and 5 keV.

3.2 Characterization with EBSD
Besides the high resolution TEM that is used to check the crystallinity as well as the
potential surface oxidation, we used an electronic diffraction technique to determine the
crystalline orientation of the nanowires perpendicular to the substrate. This information
can be crucial as different surfaces of Bi have very different electronic properties.

The technique uses a wide angle detector that is placed in a commercial SEM to
collect the electrons that are diffracted from a sample, being in Bragg conditions with
respect to the crystallographic planes. The resulting pattern, which depends on the precise
position of the detector, results of the superposition of signals coming from different
Kikuchi bands. In the usual case of a detector sufficiently off-centered from the beam,
this pattern is formed by close parallel lines called Kikuchi lines. By fitting the pattern
with the experimental data taken on a crystal with known orientation, one can recover the
orientation of the surface of the sample perpendicular to the substrate. This technique
was performed in collaboration with François Brisset.

3.3 Connection to electrodes
Due to the thin oxyde layer present at the surface, it is impossible to connect the nanowires
without a preliminary etching step. Two techniques were employed : focused ion beam
(FIB) milling followed by FIB induced CVD growth of the metal contacts, and Argon ion
beam etching (IBE) in the same vacuum as the sputtering deposition. Both techniques
proved to work.

• FIB deposited Tungsten
The contacts made with FIB source used Ga+ ions. The electrodes deposited with
this technique were FIB induced CVD growth of tungsten carbide. The process
results from the decomposition of W(CO)6 molecule under ionic flow. The resulting
superconductor has a very high critical field H2

C ' 12 T and TC = 5.5 − 6 K. For
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all the measured nanowires, the distances between the W lines were chosen to be
greater than 1µm in order to avoid any shorting by superconducting contamination.
Indeed, when the precursor gas is decomposed by the Ga+ beam, the major part
is adsorbed on the substrate directly under the beam, but a small part can diffuse
away from the spot. This can lead to a layer of aggregated materials such as W,
C, Ga, O, which is termed contamination. If this contamination is conducting,
there is a chance that it can become superconducting at low temperatures either
intrinsically or by proximity effect. A previous characterization study done by Alik
Kasumov shows that this can be the case if the distance between the FIB deposited
W contacts is smaller than 200 nm. Away from this distance the contamination
contains mainly C, and is of similar nature than the contamination that can be
induced by the electron beam of a SEM. It is therefore highly resistive and does not
short the connected device (fig 2.6A).

• Ion beam etching (IBE) and sputtering
For the other technique, the contacts are defined by e-beam lithography, and then
etched with IBE. The Ar etching rate for Bi was calibrated and found to be around 2
nm/s at an acceleration voltage of 200 V and 4 ·10−4 mTorr. This rather large value
could be related to the low melting point of Bi compared to other materials in similar
conditions. Furthermore, given the appreciable diameter of the nanowires (100 −
200 nm), an e-beam evaporation would not be suitable. Indeed, e-beam evaporation
being directional, the metal can be missing in some parts of the nanowire’s contact
and thus can lead to a bad electrical contact. Therefore sputtering is preferred, as
it is not directional and can thus cover the whole perimeter of the nanowires.
After this connection process, the electronic properties of Bi at the contact region
are certainly strongly modified. This can have dramatic consequences, for example
by locally forming an alloy, as will be described further.

3.4 Length dependence of the resistance
The measurement of the length dependence of the resistance at low temperatures can be
instructive and help to determine the type of carrier dominating the transport. When
a nanowire is diffusive, one can estimate the mean free path using the formula of the
resistance in the diffusive case that was derived in the previous chapter

R(L) = RQ

M

L

le
(2.13)

Contrarily to Ag, Bi bulk is semi-metallic and hence has a large Fermi wavelength
λF ' 50 nm. On the surface however, the Fermi wavelength is smaller λF ' 4 nm. As
a result, for a Bi nanowire, the number of surface conducting channels MS ≡ P

(λS
F/2)

outweighs the number of bulk conducting channels MB ≡ S
(λB

F/2)2 , where P and S are the
perimeter and the section’s area of the nanowire, respectively. More quantitatively, one
has

MB

MS
= 2λS

F
(λB

F)2
S

P
.

2√
4π

λS
F

(λB
F)2

√
S (2.14)

where I made use of the inequality 4πS ≤ P 2. Consequently, in Bi nanowires of
diameter

√
S . 150 nm, the transport is dominated by surfaces by a factor & 10.
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Figure 2.6: SEM image of a connected Bi nanowire and resistance vs length curve. A
: SEM image using two different detectors. The blue shaded region of 200 nm around
the contact corresponds to the possible superconducting contamination, as determined by
previous characterization studies of W lines grown in the same conditions. The brown
shaded region corresponds to the carbon contamination, which is very resistive. B :
Resistance v.s. length for different sections of three crystalline Bi nanowires connected
with FIB deposited W electrodes.

Furthermore, some surfaces of Bi, and in particular the (111) surface, may host only
edge states but not surface states. Consequently, P can be reduced and so does the ratio
MB/MS. Moreover, it can strongly depend on the aspect ratio of the nanowire.

We connected several nanowires with FIB deposited W, all of them having a (111)
direction perpendicular to their substrate. The measurement was performed at low tem-
perature (120 mK). For all three nanowires, the length dependence of the resistance is
linear (fig 2.6) which indicates a diffusive behaviour. From these measurement, we extract
le ' 200 nm for Bi32, Bi33 and Bi34.

4 Magnetic fi eld behaviour in the normal state

4. 1 Classical B2 contribution
As one applies a magnetic field in addition to a voltage difference to measure the con-
ductance of a sample, the classical trajectories of electrons deviate from straight lines,
displaying a finite curvature thereby decreasing its conductance. This effect is weaker
in presence of disorder, as the bending of the trajectories by a magnetic field is only
meaningful for length below le.

If the magnetic field is small enough, one can treat it classically. The equation of
motion for an electron under a magnetic field B and an electric field E is

∂p
∂t

= −e
(

E + p
m
×B

)
− p
τe

(2.15)

where τe is the elastic lifetime. In the steady state this leads to the conductance tensor
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defined through E = ρj :

ρ = ρ0

(
1 −ωCτe

ωCτe 1

)
(2.16)

where ωC = eB/mem
∗ is the cyclotron frequency. The conductivity tensor follows

from [σ] = [ρ]−1

σ = σ0

1 + (ωτe)2

(
1 ωCτe

−ωCτe 1

)
(2.17)

For a 2D sample, the resistivity ρ that comes into the resistance R = ρL/S finally
measured, is related to ρ through a relation that depends exclusively on the geometry of
the sample. As a result, a mixing of the longitudinal and transverse components in the
resistivity tensor occurs. For example, in a square geometry, one has ρ =

√
ρ2

xx + ρ2
yy '

1 + 1
2(ωτe)2. For a sample with typically L < w, one will have generally

R(B)−R(0)
R(0) ∼ (ωCτe)2 (2.18)

Therefore the measurement of the low field magnetoresistance provides information
on the elastic time.

On the contrary, if the sample is purely 1D then no mixing occurs and one measures
the component of ρxx without mixing with ρxy. Therefore no change is expected in the
longitudinal magnetoresistance.

The interesting intermediate case can be treated with a multicomponent model, in-
volving a surface and a bulk components. The equivalent resistances being in parallel,
one has to compute the tensor

ρ =
(
ρ1
−1 + ρ2

−1
)−1

(2.19)

A mixing of the components will thus occur through this equation and a magnetic field
dependence is obtained for the resulting ρxx. The result can be expressed in terms of the
mobilities and electron densities (van Houten, Williamson, Broekaart, Foxon & Harris,
1988)

∆R(B)
R(0) = σ1σ2(µ1 − µ2)2B2

σ2 + (µ1µ2e(n1 − n2)B)2 (2.20)

This calculation shows that the magnetic field dependence results from the presence
of a two component fluid, and it becomes constant if one takes µ1 = µ2 and n1 = n2. For
low magnetic fields, one can neglect the B dependent term in the denominator.

As a result, one has

∆R(B)
R(0) = B2(µb − µs)2σbσs

σ2 (2.21)

where the s and b indices are relative to the bulk and surface components. For the case
of Bi, the surface density is much higher than the bulk density and the surface resistivity
is smaller than for the bulk.

Moreover, for a 1 micron long wire of width 200 nm and height 100 nm, the two non-
topological (100) surfaces contain roughly 100 times more carriers than the bulk. Thus
we can assume that the greatest contribution to normal state conductance comes from
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A B

Figure 2.7: Magnetoresistance of the different sections measured in Bi32 (orange), Bi33
(green) and Bi34 (blue). A : Normalized resistances as a function of B2. B : Extracted
transport time as a function of the junctions lengths.

the surfaces, GN = Gs + Gb ∼ Gs. The mean free path on the surfaces is then deduced
from the 300 Ω resistance of a 1 micron by 200 nm surface, via σS = GQkFls = GL/W =
1.7 10−2 Ω−1, from which we deduce a surface-state mean free path ls ' 300 nm, and
transport time τs ' 3 ps.

Since the surface conductivity is greater than the bulk conductivity, equation (2.21)
becomes

δρ(B)
ρ

= e2B2
(
τb

mb
− τs

ms

)2 τb

τs

Nb

Ns

ms

mb

∼ e2B2 τ
2
b
m2

b

(2.22)

where mb ' 0.065, ms ' 0.2, Ns/Nb = 100.
The low field magnetoresistance has been measured for similar nanowires having the

(111) top surface crystalline orientation (nanowires Bi32, Bi33, Bi34) (fig 2.7). The data
are plotted against B2 and show a linear regime for B in the range 0 − 3 T. The mag-
netoresistivity coe�cient is nearly sample independent and yields

∆R(B)
R(0) '

(
(2 ps)eB

me

)2
(2.23)

This means that τb ' 2 ps or equivalently lb ' 200 nm, in agreement with the value
determined with the measurement of the resistance vs length.

Thus the mobility of the bulk states is two times larger than the mobility of the surface
states.

4. 2 Shubnikov de Haas oscillations
When the magnetic field is strong enough, the cyclotron radius will decrease : rC = vF/ωC
where ωC = eB/m is the cyclotron frequency. For a bare electron with vF = 106 ms−1,
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one has rC ' 75nm/B[T]. Standing waves will exist at the condition that kFrC = 2πn,
therefore, one expects a quantization of the energy En = n~ωC. However, a quantum
mechanical calculation for a massive band gives

En = (n+ γ)~ωC (2.24)
where γ is a shift, which depends on the band structure (Fuchs, Piechon, Goerbig &

Montambaux, 2010). These resonances are called the Landau levels. For an uncoupled
quadratic band ε = ~2k2/2m one has γ = 1/2. For two strongly coupled bands which is
the case of of the electron band at the T point of Bi then one has γ = 0. In general, this
extra shift is related to the Berry phase Γ

γ = 1
2 −

Γ
2π (2.25)

The consequence of the formation of Landau levels in electronic transport is a higher
concentration of the density of states around these levels (Goerbig, 2009). As one increases
the magnetic field, the energy of the Landau levels will increase, and one of them will
eventually cross the Fermi level, which remains fixed. As a result, the resistance oscillates
as a function of εF/~ωC. These oscillations are called the Shubnikov de Haas oscillations.

The orbits are less well defined by the presence of disorder, and therefore there is a
lifetime τq associated to the Landau levels. This time is in principle different (shorter)
than the transport time defined above. Thus, disorder will smooth the density of states
as well as the oscillations.

The change of longitudinal and transverse resistivity with respect to the classical
magnetoresistance is given by (Coleridge, Stoner & Fletcher, 1989)

1
2

∆ρxx

ρ0
= −ωCτq

∆ρxy

ρ0
=
∞∑
s=1

D

(
2π2skBT

~ωC

)
exp

(
− πs

ωCτq

)
cos

(2πsεF
~ωC

− sπ + 2πγ
)

(2.26)
where τq is the quantum time modelizing the damping of plane waves in momentum

space, D(x) ≡ x/ sinh(x) is the Dingle function. The index s denotes anharmonicity of
the oscillations that can exist in case of ballistic transport. It is discarded in the following.

The resistance of the sample Bi4 (section 2) was measured in four wires as a function of
the perpendicular magnetic field, for different temperatures (fig 2.8A). Clear oscillations
as a function of 1/B can be observed in the range of B between 0.6 T and 3 T, with a
period 1/Bp of 0.34 T−1. One can relate Bp to kF through

φ0

Bp
k2

F = 2π (2.27)

Therefore, λF = 2π/kF = 65 nm. The oscillation pattern was then high pass filtered
to isolate the contribution of this mode (fig 2.8D). The remaining low frequency part also
displayed some oscillations features with period 1/Bp = 0.16 T−1 however with only two
clearly visible periods. The corresponding Fermi wavelength is λF = 45 nm.

It is interesting to observe that the Shubnikov de Haas oscillation for this bulk mode
has a phase shift of 1/2 in the oscillations (fig 2.8A,B). This corresponds to a Berry phase
of π, and thus shows that the mode λ = 45 nm has a Dirac-like dispersion relation.

At low temperature, the Dingle factor is equal to 1, and the exponential decay of the
oscillations exp(−B/Bd) = exp(−π/ωCτq) provides the information on the mobility of
these carriers, or alternatively on the mean free path le = vFτq. One has :
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Figure 2.8: Shubnikov de Haas oscillations of the four wire magnetoresistance for Bi-Pd
sample (section 2). A: Resistance subtracted from the resistance at the highest temper-
ature for different temperatures ranging from 5 K to 80 K. The data was filtered to select
the higher frequency contribution as explained in the text. Dashed line : exponential
envelope functions ±13.6 exp(−2.5/B). B : Phase of the oscillations as a function of their
index, displaying a linear behaviour. Triangle : extracted phase, fine dotted line : ex-
trapolation. The extrapolated curve crosses 0 at n = 0 indicating a Berry phase of π.
C : Magnetoresistance. The shaded area corresponds to the extreme quantum limit. D
: Low frequency (pink) - high frequency (blue) separation. The half periodicity of the
oscillations were shown.
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le = φ0kF

Bd
(2.28)

The mode λF = 65 nm has a slower decay giving rise to le ' 200 nm, whereas the
mode λF = 45 nm has le ' 140 nm. These values are consistent with diffusion limited by
the diameter of the nanowire.

One can define a quality factor for Shubnikov de Haas oscillations which counts the
number of 1/B periodic oscillations that can be observed before being damped

QSdH ≡
Bp

Bd
= kFle

2π (2.29)

which is a central quantity in mesoscopic physics. The limitation of the mean free path
by the diameter le . d implies that as the size of the nanowire is reduced, bulk modes
become more and more diffusive. The signature of this behaviour is the disappearance of
Shubnikov de Haas oscillations for large λF, as it would lead to a small QSdH and thus
a strong damping of the oscillations. Therefore, a consequence of finite size effects for
narrow nanowires is the bad conductivity of bulk modes that can be directly observed
through the damping of Shubnikov de Haas oscillations.

However, finite size effects could manifest themselves in a more drastic way : the
quantization of small wavevectors should directly filter out bulk modes. We provide
arguments along this line in the following section.

4.3 Linear magnetoresistance
We observed a linear magnetoresistance from B = 0 for a part of a nanowire with (111)
oriented top surface that was cleaved, contrarily to the magnetoresistance measured for
the non cleaved part of the same nanowire. The latter showed a quadratic instead of
a linear behaviour, similarly to the magnetoresistance measured in all other samples
studied during this thesis. Linear magnetoresistances were already observed about 100
years ago (Kapitza, 1929), and have been mainly explained by two theories : by the
motion of a single Landau Level in the so called extreme quantum limit (Abrikosov,
1969) or by a diffusion driven mechanism in homogeneously disordered 2D gas (Parish
& Littlewood, 2003). A great number of recent studies in various systems displayed
linear magnetoresistances (Veldhorst et al., 2013), but the responsible mechanism is still
debated. Recently, the Abrikosov theory was revisited to explain this phenomenon in 3D
materials by the diffusive motion of guiding centers leading to a mixing of the resistivity
tensor components (Song, Refael & Lee, 2015). I will now detail our measurement.

We found a naturally cleaved Bi nanowire of diameter ø ' 100 nm (fig 2.9B). The
EBSD characterization indicated a (111) top surface orientation. We connected it with
FIB-W electrodes after etching 100 nm thick Au electrodes that were deposited by e-beam
evaporation beforehand and that did not make a good electrical contact to the nanowire.
However, no induced superconductivity was found in both samples.

The connected lengths of the cleaved part (Cl) were L = 2.3µm and L = 3.7µm for
the non cleaved part (Ncl). The resistance measured at 120 mK were 224 Ω for (Cl) and
248 Ω for (Ncl).

The magnetoresistance was measured at 130 mK with a lockin amplifier at 1µA bias,
and leads to very different results (fig 2.9A). For the non-cleaved sample, the magnetores-
istance follows the usual quadratic law at low fields followed by an almost linear Kapitza
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Figure 2.9: Linear magnetoresistance. A : Magnetoresistances measured at 4.2 K. The
green curve corresponds to the non cleaved sample, the blue curve corresponds to the
cleaved sample. B: SEM image of the long nanowire showing a cleaved part and a non
cleaved part. Inset : zoom of the cleaved-non cleaved junction using a different electron
detector

law at |B| > 4 T. On the contrary, the cleaved sample displayed a linear magnetoresist-
ance from B = 0.

For very strong magnetic fields such that �ωc � εF, one enters the extreme quantum
limit for bulk states. This regime is characterized by a linear magnetoresistance.

The hamiltonian for Landau levels in 3D for an isotropic model is

H = �ωc

(
n+ 1

2

)
∓ g�ωc + �2k2

z
2m (2.30)

where the magnetic field is applied along the z direction and the minus (resp plus)
sign designates the up (resp down) spin. Importantly, the motion of electrons along z is
free.

For a very strong magnetic field, only the n = 0 Landau level (LL) will be populated.
The number Ne of electrons in this state, which is the total number of electrons in the
system, is related to kz through

Ne = kzt

2π2
BS

φ0
(2.31)

which has to be understood as the product of the number of transverse modes kzt
where t is the transverse size, times the LL degeneracy BS/φ0. It is valid only in the
continuous limit, and one can equivalently compute the electron density ne = kzB/2π2φ0.

In this extreme quantum limit, the scattering with an impurity is non perturbative,
and one has to sum an infinity of impurity diagrams. A simplification arises in the limit of
su�ciently diluted impurities with concentration ni � ne and one can solve the problem
with a single self-energy diagram. As a result, the elastic scattering time is

τ = eBm

ni�kz

= (B/φ0)2

(2π2)3
m

neni

(2.32)



61 Normal state and induced superconductivity in Bi nanowires

in particular it does not depend on the detail of the scattering potential.
The conductivity tensor will be given by

σxx = σyy = eni/B

σxy = nee/B
(2.33)

where the Hall component σxy is unchanged in this limit. The resistivity components
are

ρxx = ρyy = niB

n2
0e

ρxy = B

n0e

(2.34)

The finite size effect manifest themselves in the fact that the kzt product can only
take integer values. In particular, the validity criterion is dramatically changed in this
limit. As a result, if the bulk can only host a single LL at most, one expects the validity
criterion to be true for all magnetic fields.

However, in order for this theory to explain our data, one has to add the conductivity
of surface states in addition to bulk states to account for the total conductivity of the
sample. The resistance R0 = 200 Ω at zero magnetic field cannot be explained only by
bulk modes, especially if they are confined in one dimension.

In conclusion, we have found a very different magnetoresistance in a cleaved and a
non cleaved sample coming from the same nanowire. This may come from a difference
in quantization of Bulk modes due to the different thicknesses. However one should
take surface conduction into account as well in order to describe the data quantitatively.
An other explanation comes from the diffusion of guiding centers in a smooth disorder
potential.

5 Proximity effect in Bi nanowires connected with W
electrodes

A supercurrent can be induced in a nanowire connected to superconducting electrodes at
low temperatures, on the condition that it is phase coherent, that it to say that its length
verifies L < LT, Lϕ. This supercurrent is carried by Andreev bound states (ABS) which
are inherently sensitive to an external magnetic field. For an usual SNS junction with
many channels, the orbital effect dominates leading to scrambling interferences between
the numerous ABS that are free to explore the available space in the nanowire. Measuring
the magnetic field dependence of the supercurrent can thus provide information on the
trajectories of ABS. For this purpose, it is desirable to use a superconducting material
with a high critical field, in order to be able to neglect the influence of the magnetic field
dependence on the contacts.

5.1 Superconducting electrodes with high critical field
Contrarily to crystalline tungsten which has a a critical temperature TC ' 15 mK and a
critical field HC ' 2 G (Black, 1968), the tungsten deposited by FIB has a much higher
critical temperature (TC ' 4 − 7 K) and has a very strong critical field H2

C & 12 T. The
reason for this is that FIB deposited W results from the decomposition of the precursor gaz
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Table 2.2: Transport properties of Bi nanowires showing proximity effect.

Sample w (nm) L (µA) RC +RN (Ω) IC (µA) RNIC (mV) πεbT (mV) 10.8εdT (mV)
Bi1 90 1.9 900 * 1.7 1.53 * 0.66 0.032
Bi2 90 2 1.0 104 * 0.14 1.40 * 0.62 0.032
Bi3 90 1.6 1.5 104 * 0.07 1.05 * 0.79 0.054
Bi8 200 1.4 1.2 103 * 1.0 1.20 * 0.88 0.141

Bi32 (JU) 200 1.4 0 + 330 1.4 0.46 0.88 0.141
Bi33 (WH) 250 2.4 30 + 116 0.19 0.23 0.50 0.065
Bi34 (SD) 230 1.7 180 + 77 5.4 0.42 0.72 0.11

W(CO)6 using Ga+ ions. This decomposition is imperfect, leading to an alloy containing
C (10 %) as well as Ga (10 %), O (5 %), leaving only 75 % of W, and therefore has an
enhanced TC but more importantly a greatly enhanced H2

C. The latter property allows us
to study Josephson junctions up to very high magnetic fields.

5.2 Proximity effect in zero magnetic field
We have connected two types of wires with FIB deposited W electrodes.

We conducted a first study on Bi nanowires grown by electrodeposition through poly-
mer template, of diameter 90 ± 10 nm but with unknown crystal orientation (C. Li et
al., 2014). They were wet deposited on a Si/SiO2 substrate and connected using FIB-
assisted deposition of W electrodes. Out of 10 samples, 5 nanowires did not show any
sign of induced superconductivity, 2 samples showed a decrease of the resistance below
the TC of W, and 3 samples displayed a zero differential resistance at low temperatures
(T = 100 mK), characteristic of a complete superconducting proximity effect (Bi1, Bi2,
Bi3).

In a second generation of measurements, crystalline nanowires of larger diameter ø '
100 − 250 nm grown by sputtering on a hot surface technique and connected with W
electrodes were measured. Their crystal orientation was determined by EBSD. We selected
only nanowires having their (111) orientation parallel to the substrate. Out of 16 junctions
fabricated, only 4 showed a full superconducting proximity effect (Bi8, Bi32, Bi33, Bi34).

The fact that we observed no supercurrent in many junctions can be explained by two
factors : either they were too long compared to LT, Lϕ or they were badly connected.
The transport properties of the other junctions are summarized in the table 2.

The resistances marked with a ∗ likely include a large contact resistance which is un-
known. The remaining three junction (Bi32, Bi33, Bi34) were respectively part of nanowires
where the resistance of other sections of different length could be determined. We could
therefore extract the contact resistance from the length dependence of these resistances.

The amplitudes of the critical current ranges from 0.07µA to 5.4µA. In order to es-
timate how much supercurrent is carried per channel, one can compute the RNIC product,
which measures the average Josephson energy per channel. Note that for the junctions
marked by a star, this product is less meaningful because of the large contact resistance.
For the other junctions (Bi32, Bi33, Bi34) it is nevertheless larger than the expected value
10.8εdT = 3.6~vFle/L

2 for a long diffusive junction. Here, I took le = w, as justified by the
study in the normal state, and vF = 6 · 105 m/s. These large values of the RNIC product
therefore imply that the junction has ballistic channels. It could be either a short junction
or a long junction.
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In the case of a short junction, one has RNIC = π∆ = 3.77 meV, taking a TC = 6 K
for W. This value is larger than the RNIC measured experimentally. If the junction are
between the short and the long limit, that is to say L ' ξ, then we find from simulations
that RNIC = 2∆ for L = ξ, and RNIC = ∆ for L = 2ξ. Such an intermediate length
can be justified given the uncertainty on the TC of FIB deposited W as well as vF, giving
ξ = ~vF/∆ = 190 − 650 nm. Additionnally, one could argue that the superconducting
FIB W contamination effectively reduces L by 0.4µm. Nevertheless, this interpretation
in terms of junction of intermediate length is only possible for Bi32, but is less realistic
for the other junctions.

The second possibility is that the junctions are long and contains a significant amount
of ballistic channels in addition to diffusive channels that contribute less to the super-
current. Indeed, for a long ballistic junction, one has RNIC = πεbT = π~vF/L ∼ 1/L.
Besides, RN = RQ

M
L
le
∼ L/le for a diffusive channel, whereas RN = RQ

M
∼ 1 for a bal-

listic channel. As a result, the critical current of a diffusive channel is reduced by a factor
(L/le)2 compared to a ballistic channel, that is about 25 for a junction with L = 1µm and
le = 200 nm. Thus, the large value of IC can be interpreted by the existence of ballistic
channels that contribute majoritarily to the supercurrent in addition to diffusive channels
that contribute less. This will be confirmed by the measurement of the current-phase
relation as exposed in the next chapter. On the other hand, the total resistance is less
sensitive to the ballistic contribution.

One can further estimate the number Mb and Md = M −Mb of effective ballistic and
diffusive channels respectively. First, the total conductance is given by the sum of the
conductance of both components

G = GQ

(
Mb +Md

le
L

)
(2.35)

Second, the supercurrent is the sum of the contribution of both components

IC = Mb

(
evF

L

)
+Md

1
2
evF

L

(
le
L

)2


'Mb

(
evF

L

) (2.36)

where the 1/2 factor comes from the 2D diffusive states that dominates transport, and
I neglected the second term as justified above. The calculation without approximation
yields (M,Mb) = (137, 19) for Bi32, (1304, 2) for Bi33 and (638, 90) for Bi34.

A better insight into the distribution of supercurrent over the different channels is
provided by additional experiments : the field dependence of the proximity effect described
below, and the current-phase relation described in the next chapter.

5.3 Resilience of critical current at high magnetic field
I recall the generic field dependence of IC of ordinary SNS junctions with many conduc-
tion channels. The magnetic field suppresses IC via two different pair breaking mech-
anisms. In the semi-classical limit (λF much smaller than all sample dimensions), the
orbital phase breaking is due to the Aharonov Bohm phase difference between differ-
ent Andreev pairs that follow different trajectories through the normal metal. This or-
bital dephasing suppresses the supercurrent at fields corresponding to one flux quantum
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φ0 = h/2e through the sample, as observed experimentally e.g. in Au wires (Chiodi,
2010), as well in Ag nanowires (see previous chapter). In our wires with dimensions
L× w = 200 nm × 1µm ' 2 · 10−13 m2 this would correspond to a typical magnetic field
B = φ0/S ' 100 G.

For all the Bi-based Josephson junctions, the supercurrent was found to exist up to
the maximal field of the coil, either 7 T or 11 T, even for the longer junction of length
L = 2.4µm (fig 2.10).

We interpret this very striking behaviour by the possibility that the supercurrent is
carried by few very narrow channels, thereby suppressing the orbital effect. The length
of the junctions were typically L = 1µm and the typical scale of the magnetic field
suppression of the critical current of Bd ' 10 T. Therefore we can estimate the supercur-
rent carrying channel’s maximal width, over which the orbital effect should destroy the
supercurrent to be

wc .
1
L

φ0

Bd
' 0.2 nm (2.37)

This means that the confinement of the channels in Bi occurs within a few atomic
lengths. This result is in line with the prediction that edge states are very localized in Bi
(111) (Wada et al., 2011).

To put this result into perspective, one can compare the magnetic field dependence
of Bi nanowire based JJ to the magnetic field dependence found in a conventional SNS
junction made of an Ag nanowire also connected with W electrodes, of length L = 2.2µm,
of diameter ø = 50 nm (fig 2.11). The number of channels for this system is M ' 105,
the geometry is such that w � L, and it was shown to be diffusive. Accordingly, one can
fit the decay of the critical current by an orbital dephasing law (Montambaux, 2007)

IC(B) = I0
σ φ
φ0

sinh
(
σ φ
φ0

) (2.38)

where σ = π√
3 = 1.81. We find an excellent agreement with this law, although we have

to adjust σ = 4.11. This would lead to a rescaling of the flux by 2.27, similarly to what
was found in diffusive Au based SNS junctions (Chiodi et al., 2012).

In the case of Bi, there is a much slower decay of the supercurrent at high magnetic
field. One can give a rough explanation of the asymptotics by assuming that the current
is carried along one ballistic edge state, with a distribution that is exponentially localized
at the edge of the nanowire and is dephased upon the application of A. Diffusive states
are not represented in this picture, as their contribution to the supercurrent is weaker by
a factor (L/le)2 ' 102. I take the nanowire along x, with transverse coordinate y and
work in the gauge A = Byex. I first suppose that the density of states is of the form
ρ(y) ∝ e−2πy/λ, λ � w, where λ is the transverse localization length and w is the width
of the nanowire. Then the effect of orbital dephasing is to average on all the paths p ∈ P
:

IC(B) = I0

∣∣∣∣〈e2iπ φ(p)
φ0

〉
P

∣∣∣∣
= I0

∣∣∣∣∫ w

0
dye

2iπByL
φ0

(
be−2πy/λ

)∣∣∣∣
= I0

∣∣∣∣ 1
1 + ix

∣∣∣∣ = I0
1√

1 + x2

(2.39)
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Figure 2.10: Differential resistance showing the supercurrent induced in Bismuth
nanowires as a function of the bias current and magnetic field at large magnetic field.
The critical current is seen to persist to high field, and oscillates with a typical scale of
1 T. Left : SEM images of the devices, right : measurement. A- B Measurement on the
junction Bi2 with unknown orientation. C- J SEM image and Ic vs B for nanowires with
(111) top surface. Note that the FIB may have contaminated Bi8 (C-D) on some parts
resulting in a smooth transition to the normal state as a function of IDC. Note also that
Bi34 (I-J) consists in two aggregated nanowires in parallel, which can explain the resulting
large value IC = 5.4µA at zero field.
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where I0 = I(B = 0), and the reduced flux x is defined by x ≡ BLλ/φ0 = 2πφ/φ0.
This law fails to reproduce at the same time the data at low magnetic fields B . 1 T
and the resilience of the supercurrent at B ' 7T. A better fit is obtain by assuming the
existence of a second lengthscale of the order of the atomic size of Bi.

For this purpose, lets assume now that the distribution is in fact characterized by two
localization lengths λ1 and λ2. The length λ2 represents the ultimate confinement of an
edge state, that is few Å. The length λ1 represents less confined edge states, that are
for example hybridized with the bulk or surface states. A similar calculation gives the
following law

IC(B) = I0

∣∣∣∣∣ 1− α
1 + iB/B1

d
+ α

1 + iB/B2
d

∣∣∣∣∣ (2.40)

where B1,2
d = φ0/λ1,2L are the magnetic field decay scales associated to the two local-

ization lengths considered, and α is a dimensionless weighting parameter.
It turns out that this model agrees well with the average behaviour of the critical

current data taken on characterized nanowires with (111) top surface, if we take λ2 = 1.8 Å
and α = 1/3 for all the wires (fig 2.11A,C,E) except Bi34 where one has to take α = 2/3 (fig
2.11F). The length λ1 is about 0.6 times the nearest neighbor distance in Bi (Liu & Allen,
1995). The justification for the 1/3 weighting factor is the following : as one increases the
magnetic field, the orbital structure px, py, pz of the edge states will hybridize, resulting
in the gaping of some of the energy level crossings. Due to the topological protection,
it is predicted that one Kramers pair of edge states remains (Wada et al., 2011). This
argument should apply as long as the magnetic length is larger than the localization length
of the remaining edge state, that is to say B . 10 T. The fact that the junction SD needs
a different treatment with α = 2/3 is not fully understood, but could be the result of its
geometry made of two stuck nanowires (fig 2.10 I).

The only adjusted parameter in (2.40) is the decay length λ1, shown in table 2.3. From
the discussion above, this length measures the hybridization of non topological ballistic
states, which could occur e.g. upon scattering with impurities. Interestingly, the junctions
Bi8 and Bi32 have very similar characteristics, with supercurrents I0 ' 1µA and length
L = 1.4µA, however their decay length λ1 differs by one order of magnitude : λ1 ' 1 nm
for Bi8 and λ1 ' 10 nm for Bi8. Given that Bi8 is very disordered at the surface (fig 2.10
I), one can understand qualitatively the origin of this difference as the result of scattering
at the surface with FIB induced contamination.

The fluctuations of the critical current around this average behaviour also have some
structure that can be related to the Zeeman effect as will be showed now.

5.4 Oscillations due to Zeeman effect
In samples with a very small area perpendicular to the magnetic field, the orbital de-
phasing is weak, and the Zeeman effect becomes noticeable, especially for high g factor
materials. The Zeeman effect causes an energy difference εZ = gµBB, and therefore a
phase difference between the electron and hole components of a given Andreev pair, given
by θB ≡ εZτ/~ = εZ/εT.

As illustrated by the theory of Nazarov et. al. in the short junction limit (Yokoyama,
Eto & Nazarov, 2014) for M = 4 channels this leads to oscillations of the critical current,
with a typical period given by θB ∼ nπ, i.e. ∆B = εT/gµB (fig 2.11 D). An other feature
was predicted by these authors : an asymmetry between the positive and negative critical
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Figure 2.11: Magnetic field dependence of the critical current of Bi nanowires with top
(111) surface for large perpendicular magnetic fields. A, C, E, F : Critical current vs
magnetic field, (I+, red) and (I−, blue) differential resistance vs bias current, critical
current vs magnetic field for the junctions Bi32, Bi33, Bi8, Bi34 respectively. B : IC vs B
for an Ag nanowire with dimensions L × w = 2.2µm × 50 nm. The fit was done using
formula 2.38. D : Dependence of the critical current with the Zeeman field θB ≡ εZ/εT in
a short junction with M = 4 channels and with spin-orbit interaction, predicted by (Eto,
Yokoyama et al, 2015). Solid line : positive current I+, dashed line negative current I−.
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Table 2.3: Structure of the critical current at large magnetic fields

Sample B1
d (T) λ1 (nm) B2

d (T) λ2 (nm) δI (nA) δMb ∆B (T) g
Bi2 75 1.5 1.25 8.6
Bi8 0.15 9.6 8.0 0.18 280 4.0 1.3 11.7

Bi32 (JU) 1.3 1.1 8.0 0.18 60 0.86 3.1 4.9
Bi33 (WH) 0.41 2.0 4.7 0.18 50 1.23 1.0 7.8
Bi34 (SD) 0.50 2.3 6.5 0.18

Table 2.4: SQUID-like oscillations parameters

Sample ∆B (G) weff (nm) δI (nA) Bd (T) Bmax T
Bi1 754 12 100 1.2 * 4.5
Bi3 154 70 5 0.43 2.5

Bi32 (JU) 100 140 10 0.18 1

current in presence of SOC. This oscillatory behaviour is seen in all samples, with typical
period between 1 and 3 T (fig. 2.11 A,B and 2.10). We also observe the asymmetry as
indicated by the red and blue curves I+

C , I−C (fig. 2.11 A, B). Furthermore, the amplitude
δI of the oscillations can also be interpreted in terms of a number of channels δMb ∼ 1
(table 2.3), which agrees with what is found from the numerical simulations by Nazarov
et. al.

From the period ∆B, one can extract the g factor using the estimated εbT. This yields
g ' 5− 10 for all the wires.

In summary, it is important to note that this g factor is associated to ballistic states
at high field and is possibly lower than the g factor found at lower fields, where all the
orbitals contribute.

5.5 SQUID-like oscillations
If few narrow channels exist at the two edges of a nanowire connected to superconducting
electrodes, they should lead to a two slit interference pattern with periodic oscillations sim-
ilar to a SQUID. We do indeed observe such oscillations in three samples : Bi1,Bi3,Bi33.

The period of these oscillations (100 G) should correspond to one flux quantum en-
closed between the two trajectories located on the two edges of the nanowire, that is φ0
across the area of the nanowire.

This is confirmed for the oscillations we find (fig 2.12,2.13,2.14), and one can further
evaluate the distance weff between the supercurrent carrying paths (table 2.4). The partial
modulation between 5−10% of the supercurrent is typical of a SQUID with two branches,
with very different critical current I1

C and I2
C .

The SQUID-like oscillations persist up to Bmax = 2.5 T for Bi3, 4.5 T for Bi1 and 1 T
for Bi32, confirming that the edge states are narrow. The decay scale Bd of the oscillations
can be fitted by a gaussian, shown in table 2.4. The value of B for Bi1 is marked with a
* indicating that it was not fitted but only estimated.

5.6 Modulation of the SQUID-like oscillations
We have analyzed more precisely the SQUID like oscillations of sample Bi3, which were
visible up to 2.5 T. They display a clear amplitude modulation with a period B2 = 2200 G
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Figure 2.12: SQUID-like oscillations found in Bi samples with unknown orientations. A :
SEM image of the sample Bi1. B Magnetic field dependence of IC of sample Bi1, taken for
different temperatures. C-D SEM image and magnetic field dependence of IC of sample
Bi3. The SQUID like oscillations are of period 154 G (orbital effect) and their amplitude
is modulated with a period 2200 G (Zeeman effect).

(fig 2.12).
This amplitude modulation of the SQUID like oscillations can be understood as the

Zeeman effect acting on the two supercurrent carrying channels, if they have different g
factors.

Moreover, in presence of spin-orbit interaction, bands are spin split, which implies a
finite momentum kSO between up spin and down spin. The addition of a Zeeman effect
raises one band with respect to the other one. This leads to a difference between Fermi
velocities v+ and v− related to the spin up and spin down respectively.

The full calculation including spin-orbit interactions was done by Mironov and Buzdin
((Mironov, Mel’nikov & Buzdin, 2015), yielding a current-phase relation

I(ϕ) =
∑
n=1,2

In sin (ϕ+ βnB + (−1)nπφ) cos(γnB) (2.41)

where γn = gnµBL (1/v+ + 1/v−) leads to Zeeman induced modulations of the sign
and amplitude of the critical current (0−π type transitions) and βnB = gnµBBL(1/v+−
1/v−) results in the formation of spin-orbit and Zeeman induced φ0 junction, that will be
discussed in the next chapter.

The critical current is then given by

I2
C = I2

1 cos(γ1B) + I2
2 cos(γ2B) + I1I2 cos(γ1B) cos(γ2B) cos

(
2πφ
φ0

+ (β1 − β2)B
)

IC ' |I1 cos (γ1B)|
∣∣∣∣∣1 + I2

cos (γ2B)
cos (γ1B) cos

(
2π φ
φ0

+ (β1 − β2)B
)∣∣∣∣∣

(2.42)
in the case I2 � I1. This implies an amplitude and frequency modulation of the

critical current.
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Figure 2.13: Oscillations in magnetic field for sample Bi3 connected with FIB-W. A :
SEM image of the sample Bi3. The nanowire was grown in a polycarbonate membrane.
A smaller lateral nanowire is visible, however it should not be electrically connected to it
due to the presence of the membrane in between. B : Oscillations of the critical current
as a function of the magnetic field from 0 to 2.5 T. The red, blue and black curve are
obtained by applying a moving filter to the main curve using the maximum, average and
minimum functions on a 3 periods wide window. This evidences an amplitude modulation
of the SQUID-like oscillations of amplitude 3 nA, and period B2 = 2200 G. C : Variation
of the period B1 of the SQUID-like oscillations as a function of the magnetic field. D- G
Zoom of the IC vs B curves. They display oscillations with a local period B1 ' 154 G.
This period changes as a function of the magnetic field due to phase jumps, as indicated
by pink arrows. The magnetic field dependence of B1 is sinusoidal with period B3 = 1 T,
as shown in C.
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A frequency modulation is also visible in the data. This can be seen in the form of
phase jumps or change of the period B1 of the SQUID-like oscillation (fig 2.13D-G). This
can be quantified by computing the density of local minima in the current (fig 2.13 C) .
We find an oscillation of the period ∆B1 on the scale of 1 T.

5.7 Magnetic field orientation dependence of the SQUID-like
oscillations

The finding of two-path interference patterns of the critical current is consistent with the
existence of two distinct current paths located on the opposite edges of the wire. Given
that these edges are in fact predicted to be located at the diagonally opposite edges of
the nanowire from our tight-binding simulations, then one should also be able to observe
SQUID-like oscillations in a in-plane magnetic field as well. We could measure the critical
current oscillations of Bi32 as a function of a parallel magnetic field for different field
orientations θ (fig 2.14 B, E).

The period of the oscillations depends on the field direction, and corresponds to one
flux quantum through the surface enclosed by the two paths projected onto the y direction.
Given the interference period φ0/wL = 100 G in a perpendicular field Bz, where w is
the nanowire’s width, the measured period ∆By = 500 G = φ0/tL yields a nanowire’s
thickness t = 40 nm. This would mean that the thickness of the nanowire is one half of
the thickness of the Au electrodes, which agrees qualitatively with the tilted SEM image
(fig 2.14 A).

The SQUID-like oscillations disappear faster with B along the y direction than with B
along the z direction. This is consistent with the fact that the states are more delocalized
in the y direction than in the z direction. The typical scale of the decay in the z direction
can be obtained from a gaussian envelope function, giving 1800 G (fig. 2.14 F). We
also observe a reduction of the decay scale in parallel field By : Bd = 700 G (fig 2.14
E). In the scenario of a nanowire of rhombohedral transverse section with an anistropic
localization that prevents from observing SQUID-like oscillations, then assuming that the
states are more delocalized along the (100) surface (fig. 2.14 B), implies that Bd should
be 1800 tan 57o = 1170 G in the y direction.

6 Inducing superconductivity with sputtered Pd elec-
trodes

In order to study Bi nanowires in the normal state, we contacted one wire with elec-
trodes made of sputtered Pd, which is a normal metal. Surprisingly, a superconducting
transition was detected at 1.8 K. I will first review the existing literature that shows that
Bismuth is very close to a superconductor, in the sense that there exists several ways
to observe superconductivity in Bismuth even though pure Bi in its crystalline phase is
superconducting only at very low temperatures T ' 0.5 mK. I will then describe the
device that was measured in this experiment, and then expose the results showing unam-
biguously superconducting proximity effect. Finally, I discuss effects that could modify
this observation such as inverse proximity effect and show that they are minimal.
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Figure 2.14: Magnetic field orientation dependence of the critical current in Bi 33. A :
SEM image of the device with false colors. For this nanowire, only the sections encircled
with white dashed lines displayed a supercurrent. B : Magnetic field orientation with
respect to the axis of the nanowire. The LDOS calculated from tight binding simulations
is plotted here. The angle between the (100) and (111) directions measures 57o. C : IC
vs B as a function of the perpendicular magnetic field Bz. D : SQUID-like oscillations
at low magnetic field. The periods are indicated by dashed vertical lines. The different
periods represent phase jumps. These jumps were not reproducible from an up sweep to
a down sweep. Inset : Zoom of oscillations from -100 G to 300 G, yielding a period of
100 G. E SQUID-like oscillations in parallel magnetic field for different orientations of
the magnetic field. The curves are rescaled by the projection of the magnetic field on the
y direction. Inset : non rescaled data. F Amplitude of the SQUID-like oscillations as a
function of the magnetic field Bz or By for large magnetic fields. Dashed lines : gaussian
envelope functions.
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6.1 Bismuth is close to a superconductor
Perhaps every metal is a superconductor, as predicted by Anderson (Morel & Ander-
son, 1962), although its critical temperature may be very small and the transition not
observable at accessible temperatures. Previous studies on Bi based materials indicate
that the combination of a very low density of states and electron-phonon coupling which
prevents it from becoming a superconductor, can be easily broken. In particular this can
be achieved either through amorphization, or by alloying. I review them here.

Recall the superconducting gap equation within BCS theory (Tinkham, 2004)

∆ = ~ωDe
−1/(N(εF)V ) (2.43)

where ωD is the Debye frequency, V = Ve−ph− Ve−e is the effective attractive retarded
interaction between electrons and N(εF) is the electronic density of states at the Fermi
level. Despite the fact that this formula can only describe a subclass of low TC materials
termed BCS superconductors, it has proven to be quite predictive (Roberts, 1976). An
important point that it conveys is that the stronger the λ = N(εF)Ve−ph product, the
stronger the superconducting gap will be. This provides two possibilities to increase
superconductivity : one can either increase the density of states or increase the effective
interaction. A third way would be to increase the Debye frequency.

The most common way to increase the density of states is through doping. It is indeed
known to provide a way to strengthen superconductivity in materials. This has proven to
be the case in several situations for example when doping diamond (Bustarret et al., 2006)
or silicon (Ekimov et al., 2004) with B atoms. This phenomenon can even be observed
through electrostatic gating in two dimensional superconductors, although to a smaller
extent, for example at the LAO/STO interface (Bert et al., 2012) or for monolayer NbSe2
(Xi, Berger, Forró, Shan & Mak, 2016).

An early measurement of Bi using Ag contacts displayed some signatures of super-
conductivity, probably localized at the Bi/Ag interface (Esaki & Stiles, 1965). This was
explained by the creation of a superconducting metastable intermetallic alloy BiAg2. In
fact, subsequent measurement from 1966 showed that almost all non magnetic metal-
lic bismuth compounds are superconducting (Matthias, Jayaraman, Geballe, Andres &
Corenzwit, 1966).

On the other hand, amorphous Bi alone was also known to be superconducting since
1954 with a T a

C ' 6 K (Buckel & Hilsch, 1954) whereas non disordered Bi films do not
show any superconducting transition down to 50 mK. Later, superconductivity was found
to appear as one applies a local pressure (Shklyarevskii, Duif, Jansen & Wyder, 1986),
the mechanism being either amorphization or a change of the crystal structure leading
to the BiII phase, known to be superconducting. A recent ab-initio calculation on a
disordered cluster of atoms distributed with a probability distribution function mimicking
the one determined experimentally (Mata-Pinzón, Valladares, Valladares & Valladares,
2016) demonstrated that amorphisation leads to a four times larger N(εF), while ωD is
only slightly modified. Assuming no modification of V , this yields a T c

C of crystalline Bi
as

T c
C ' T a

C

(
T a

C
θD

)3
' 1.3 mK (2.44)

where θD ' 100 K is the Debye temperature of amorphous Bi which agrees both with
theory and estimation from experiments. This is an upper bound in the sense that taking
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CA B

Figure 2.15: Different superconducting Bi based materials A, B : Temperature depend-
ence of the superconducting gap and critical field measured in the BiPd superconductor.
C : Phonon density of states F (ω) for crystalline (fine dotted curve) and amorphous
Bi (solid, shaded curve) calculated ab-initio (Mata-Pinzon et al., 2016). Amorphization
allows low frequency vibration modes also termed "soft modes", directly enhancing the
parameter λ = 2

∫∞
0 ω−1α2(ω)F (ω)dω within McMillan theory, yet leading to a diminution

of ωD by only 10%.

a smaller value of V for the crystal would lead to an even (much) smaller value of T c
C.

In fact, a very recent experiment that was performed at very low temperatures using an
adiabatic demagnetizing fridge, showed that pure crystalline Bi is indeed superconducting
with a TC = 0.53mK and an upper critical field of 5.2µT (Prakash, Kumar, Thamizhavel
& Ramakrishnan, 2016).

Several theoretical studies find that the electron-phonon coupling is dramatically in-
creased by amorphisation. It has long been known that amorphous Bi is a strong coupling
superconductor (Chen, Chen, Leslie & Smith, 1967), with λ = 2.46 which is even stronger
than Pb. On the other hand, theoretical calculations find that crystaline Bi should have
a very small λ : 0.09, 0.13, 0.236 (upper bound).

Furthermore, the mere effect of size reduction may also be a determining factor for
increasing the electron-phonon coupling, yielding λ ' 0.45 (Alcántara Ortigoza et al.,
2014) for the outer bilayers, where the structural relaxation occurs. Therefore, the effect
of size reduction can also enhance superconductivity, as it has recently been observed for
few atoms thick TaS2 films (Navarro-Moratalla et al., 2016). Of course when the size is
too small, superconductivity should be destroyed due to quantum size effects (Anderson,
1959), and this has been verified experimentally on strongly disordered Bi thin films
(Kubatkin & Landau, 1989), or by decreasing the film thickness (Liu, Haviland, Nease &
Goldman, 1993).

Polycrystalline Bi films can therefore display superconductivity either in rough and
randomly disposed polycrystals (Baring, Silva & Kopelevich, 2011), or on the form of
well defined connected rhombohedral clusters (Weitzel & Micklitz, 1991). Interestingly,
it has even been found in isolated individual grains (Johnson, Nieskoski, Disseler, Huber
& Graf, 2013). This can now be understood easily as being the consequence of either a
superconducting amorphous Bi surrounding these crystals or a finite size enhancement of
superconductivity. Therefore, the observation of superconductivity in polycrystaline Bi
nanowires (Tian et al., 2006) is not a surprising fact. Yet, all measurements on polycrys-
talline nanowires do not show superconductivity but sometimes only a weak signature
in the resistance (Tian, Kumar, Chan & Mallouk, 2008). This demonstrates that this
superficial superconductivity is a priori too weak to develop a zero resistance state in
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polycristals by proximity effect.
These observation raise an important question from the superconducting proximity

effect standpoint. Pure Bi being a high mobility material it can consequently have a very
large electronic mean free path. This implies that the propagation of pair correlations
induced by doping could reach great distances. However, because it is localized at a
surface, this superconductivity could be too weak and not induce a zero resistance state.
Moreover, doping by metal alloying, as originally discovered by Esaki and Stiles, implies
a strong weakening due to inverse proximity effect. To what extent can the interfacial
superconductivity found in Bi develop into a full superconducting proximity effect ?

6.2 Device description
We fabricated a junction made of Bi connected with Pd electrodes. The Bi nanowire
was grown by the sputtering technique described in chap 7. Its length L = 6µm was
determined by optical microscopy and its diameter was estimated to be between 100 nm
and 200 nm from similarly grown nanowires from the same batch observed with SEM. The
contacts were made of 63 nm sputtered Pd contacts, with a DC power of 150 W and an
Ar flow of 15.4 sccm in a vacuum better than 3 · 10−7 mbar. Beforehand, an etching step
was performed using IBE with Ar+ ions at an accelerating voltage of 200V for 15 s. This
corresponds to an etching of the order of 30 nm of Bi. Four such contacts were made on
the nanowire, realizing a pseudo four probe situation. The distances between the contacts
were 0.6µm for the two outer regions and 2µm for the inner region (fig 2.16). The two
inner contacts were 0.5µm wide and the outer contacts were 1µm wide.

6.3 Regime of proximity effect
The four wire resistance of the central region was measured with a lockin amplifier with
0.1 nA bias current, as a function of the temperature. At temperatures below 4.2 K the
resistance undergoes a broad superconducting transition from R = 222 Ω to R = 184 Ω at
1.8 K with a resistance jump of 36 Ω, and an exponential broadening with characteristic
temperature θb = 243mK. The corresponding superconducting gap is therefore ∆ =
1.76TC = 272µeV. At lower temperatures, a second transition to a zero resistance state
is observed with an onset around 400 mK. The observation of a change in the contact
resistance for this four probe geometry is not surprising as the inner probes are actually
invasive (fig 2.16B). The second transition to a zero resistance state can only be explained
by the superconductivity induced in the Bi nanowire by the contacts. Since we have etched
Bi before depositing Pd, we were first tempted to explain the induced superconductivity
by the presence of a layer of amorphous Bi between the Pd and the Bi nanowire. However,
this explanation does not hold, as superconductivity was not found on nanowires that were
purposely etched on their entire length using IBE an then contacted with Nb. We came
to the conclusion that the doping from the Pd is crucial for the superconductivity in this
system. Moreover, this hypothesis is corroborated by the fact that the BiPd alloy is known
to be superconducting with a similar TC = 3.7 K (Sun et al., 2015) to the TC = 1.8 K we
measure.

The temperature dependance of the resistance for this second transition can be inter-
preted by a phase diffusion mechanism driven by thermal fluctuations. In the limit of the
overdamped junction, which is justified because the junction is not hysteretic (see below),
a phase diffusion leads to a finite voltage proportional to the bias current Ib in the limit
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Ib → 0. Within the RSJ model, a finite resistance can be measured (Chauvin, 2005)

R(T ) = RNJ
2
0

(
γ0(T )

2

)
(2.45)

where γ0(T ) = φ0Ic(T )/πkBT is the damping, J0 is the modified 0th order Bessel
function, and RN is the shunt resistance, interpreted as the resistance in the normal state.
The temperature dependent critical current IC(T ) is related to RN and the effective gap
∆∗ through

eRNIC(T ) = π

2 ∆∗ tanh
(

∆∗
2kBT

)
(2.46)

As a result, the temperature dependance of the resistance is

RN

R(T ) = J2
0

(
h

8e2RN

∆∗
kBT

tanh
(

∆∗
2kBT

))
(2.47)

Although this formula is valid for an SIS junction, it yields a good agreement with the
experimental data, with a characteristic energy ∆∗ = 128.5 mK = 11.05µeV (fig 2.16D).

The existence of a superconducting interfacial region between the contact and the Bi
nanowire is plausible. However, one can wonder why the superconductivity in the BiPd
film is not destroyed by the normal Pd electrode (inverse proximity effect). We believe that
the inverse proximity effect is strongly reduced for highly disordered superconducting thin
films whose coherence length ξ is very short and of the order or below the film thickness
t (Fominov & Feigel’man, 2001). Therefore, it is reasonable that a full superconducting
proximity effect could occur in the Bi nanowire induced by a small superconducting alloy.
In the next paragraph we estimate these two parameters and show that the condition
t ' ξ is fulfilled.

6.4 Characteristic parameters of the superconducting contacts

From the differential resistance data taken for larger bias current, one can deduce the
critical current IC = 5µA and the critical perpendicular magnetic field BC = 0.17 T of
the superconducting contact 2.18. The superconducting coherence length in the contact
is then estimated by ξ = (Φ0/4πBC)1/2 ' 30 nm. From this value one can extract the
diffusion coefficient and the mean free path le ' 0.5nm from ξ = (~D/∆)1/2. Such a very
small mean free path is not surprising in this highly disordered BiPd alloy. The thickness
t of the contact can in turn be estimated from the contact resistance:

Rc = h

2e2
t/le
M
' 18 Ω (2.48)

where M = S/(λF,Pd/2)2 ' 105 is the number of channels connecting the alloy region
and S = 150nm × 500nm is the section of the contact covering the Bi wire. We find
t ' 50 nm. These values of M and t rely on the assumption of the formation of a uniform
ohmic contact on the Bi wire. They are probably over-estimated. Our data are anyhow
consistent with t ' ξ.
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Figure 2.16: Induced proximity effect with sputtered Pd electrodes A : Optical image of
the measured Bi nanowire connected with Pd contacts. B: SEM image with angle of a Bi
nanowire with Pd contacts deposited after IBE milling of 30 s. The etched part is clearly
visible and displays some roughness provoked by the etching. Some facets of the nanowire
are visible indicating the crystalline nature. C: Cartoon of contact region and the meas-
urement setup. At the contact region the Pd makes a superconducting disordered alloy
with the Bi. The differential is then measured in four probe configuration for the section 2
of the nanowire using a standard lockin technique. D: Resistance vs temperature between
120 mK and 2.5 K. Dashed, red line : fit of the temperature dependent resistance using
Zilberman-Ivanchenko formula. Inset : the resistance subtracted from the fit displays an
exponential behavior with a characteristic temperature θB ' 0.28K
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Figure 2.17: Temperature dependence of the proximity effect found in the devices. A-
C : dvdi vs i for the sections 1 (A), 2 (C) and 3 (B). Note the large offset resistance
coming from the Pd contacts in sections 1 and 3, as they are measured in a two probe
configuration. D-F : dvdi (color) vs bias current and temperature for the corresponding
sections.
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A B

Figure 2.18: Differential resistance versus bias current and transverse (perpendicular)
magnetic field, for large bias currents. It reveals the behaviour of the critical current of
the contacts as a function of the magnetic field. A : dvdi (color) vs i (vertical) and B
(horizontal) for the section 1 of the Bi-Pd sample. The dashed line indicates the critical
current of the contacts in the current dominated deparing regime (horizontal lines) and in
the magnetic field dominated regime (canted lines). The blue dashed-dotted line indicate
the location of the crossover between the two regimes in the I-B plane, for a fixed aspect
ratio of the contact. The white arrows indicates some seemingly periodic oscillations
of the critical current of the contact. The period corresponds to a flux of φ0/2 in the
surface of the contact. B : dvdi vs i cut at B=0. The narrow jump at low bias currents
corresponds to the destruction of proximity effect, while the jumps at higher bias currents
is due to the contacts becoming normal.
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6.5 Discussion
The fact that TC and H⊥C are not so much reduced from the values corresponding to the
bulk, agrees with the theory that predicts small reduction for large ρint. More quantit-
atively for ρint ' 150, following the calculation of Feigelman and Fominov, the TC would
be 30% of the bulk value at most (we find 47%) and 20% for H⊥C (we find 28%). This
indicates either that ρint has been underestimated or even that the pairing properties
of the interfacial alloy are different from the bulk (different electron-phonon coupling or
density of states).

Interestingly, a zero resistance was measured in Bi nanowires connected to FIB de-
posited Pt contacts (Tian, Wang, Ning, Mallouk & Chan, 2015). We suspect that at
the Bi-Pt interface, the intermetallic alloy BiPt known to be superconducting since a long
time (Matthias, 1953) with a TC = 1.3 K, could induce a superconducting proximity effect
similarly to what we observe. Furthermore, some oscillations of the resistance at zero bias
current were also observed, which could be related to the physics of edge states that is
detailed in the next part.

Finally, the small superconducting layer of PdBi alloy is protected from the inverse
proximity effect at the disordered PdBi - Pd interface because it has a large value of the
resistivity per channel ρint, which prevents the leakage of pair correlations into the Pd. On
the other hand, the fact that the Fermi wavelength is larger inside the bulk of Bi nanowire
leads to an overall decrease of the number of channels. As a result, for the same disorder,
the parameter ρint gets smaller at the PdBi - Bi interface and the pair correlations can
increase inside the nanowire : the superconducting proximity effect can take place.

In conclusion, I believe that this behaviour is generic and should happen with a large
variety of contacts.

6.6 Magnetic field dependence
For the Bi nanowire connected with Pd electrodes, we observe oscillations of the critical
current for at least one of the junctions (fig 2.19). The junction 1 displayed four qua-
siperiodic oscillations, with an average period of 150 G and the junction 3 displayed one
damped oscillation with period of 170 G.

The width w inferred from the average period ∆B through

w = φ0

(∆B)L (2.49)

gives w = 222 nm for the junction 1 and w = 195 nm for junction 3, which agrees with
the estimated width of the nanowire. However, given that the length of the junction is
greater than the diameter by a factor L/w ' 4, no oscillations are expected.

These SQUID like oscillations present similarities with those observed in the W FIB
contacted Bi nanowires discussed in the previous sections. However in the present case
we observe a complete modulation of the supercurrent whereas the amplitude of the mod-
ulations observed on the W connected Bi nanowires did not exceed 10%. This indicates
that in this sample the transmission between the 2 interfering paths are of the same order
of magnitude which was not the case for the previous devices.

Two other observations can be made on this oscillatory pattern. First, the height
of these oscillations is non monotonic, which again disagrees with the expected gaussian
behaviour. Second, the location of the minima and maxima of the critical current displays
an increase as a function of B (2.20A).
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Figure 2.19: Low field oscillations of the critical current for the three different segments
of the Bi-Pd sample measured at 120 mK. A,B,C : I-B map of the differential resistance
for the junctions 3, 1 and 2. Blue arrows indicate the first lobe of the oscillations. C,D,E
: Zoom of the low field oscillations for the corresponding sections.
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A B

Figure 2.20: Doppler shift of the oscillations. A: Location of the successive maxima
(orange triangles) and minima (purple triangles) of the Fraunhoffer pattern as a function
of the index. B: Schematic picture of a quantum spin hall Josephson junction in a magnetic
field. The Doppler shift results from the the difference of momentum acquired by both
edges due to the difference of potential vector. From Tkachov et al. 2015

We could interpret it by a shielding response from the contacts (Tkachov, Burset,
Trauzettel & Hankiewicz, 2015). Indeed, in the scenario of supercurrent carrying edge
states, a local gradient of phase will appear in the contacts due to the wide geometry (fig
2.20). This results in a different value of the momentum of the Cooper pairs condensate
from one edge compared to the other

ps(B) = ±π�Bw
φ0

(2.50)

This results in a magnetic field dependent phase shift arccos(vFps/2∆) in the Andreev
equation that competes with the phase dependence coming from the orbital flux φ/φ0.
This results in

• an increase of the period as a function of the magnetic field

• a non compensation of the phase dependence of the current for both edges, and
therefore the height of oscillations will alternate as a function of B : this is an
amplitude modulation.

This shielding effect is significant above a typical magnetic field scale

BAR = 2φ0

wξ∗
(2.51)

where ξ∗ = min (�vF/∆, �vF/πkBT ). In our case, using vF = 106 m/s and T = 130 mK,
we have �vF/πkBT ' 28µm and �vF

∆ ' 1.1µm. Therefore the limitation occurs due to
the coherence length, and BAR ' 90 G which allows the effect to be observable.

7 Conclusion of this chapter
The fabrication of crystalline Bi nanowire with small diameter and the use of powerful
characterization techniques allows us to study well defined quasi one dimensional systems
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with strong spin orbit interaction. The magnetoresistance measurements in the normal
state revealed different types of carriers, that can be used as an indicator for the effective
dimensionality of the system. More importantly, transport measurement in the normal
state show that the conduction is dominated by the surface states rather than the bulk.

For Bi wires connected to W electrodes, the critical current was shown to persist
up to very high magnetic fields, which is a very unusual behavior for superconducting
proximity effect. Two types of oscillations were observed and were attributed to two
types of interferences controlled by the magnetic field. The orbital effect results from
interferences between trajectories that are located at the periphery of the sample, leads
to SQUID-like oscillations pattern with a magnetic field period ∆B = φ0/S. The Zeeman
effect results in an oscillatory signal with larger period ∆B = ET/gµB.

We also observed induced superconductivity in Bi nanowires with normal Pd electrodes
at low temperatures. We think that this was possible due to the disordered supercon-
ducting PdBi alloy that is protected from the inverse proximity effect in the Pd electrode
on one hand, and on the other hand lets pair correlations to proximitize the nanowire due
to the fewer conducting channels in Bi.

The scenario where the supercurrent is carried by states located at the edges of
the sample calls for a direct confirmation using a phase biased detection experiment.
Moreover, the spin-momentum locking in the system should have very strong consequences.
In the next chapter, I will present some measurement of the current-phase relation on the
Bismuth that reveals the ballistic conduction through few narrow channels.
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Chapter 3

Measurement of the current phase
relation of Bi nanowires based
Josephson junctions

In this chapter I describe the measurement of the current phase relation (CPR) of Bi
nanowires. I start by recalling the CPR in known cases, then explain the technique used
for the fabrication and the measurement. I then describe the measured CPR, which
leads to the conclusion that the supercurrent is carried by ballistic edge states in the two
samples we have measured.

1 Introduction
When a normal metal is connected to superconducting electrodes making a so called
SNS junction, the current is carried by Andreev bound states (ABS) which are coherent
superpositions of electrons and holes. This current is dissipationless, similarly to the su-
percurrent found in superconductors. The measurement of the critical current, defined as
the maximum supercurrent the SNS junction can sustain, gives already some information
about these states. Measuring the magnetic field dependence of the critical current can
provide an idea about the phase breaking mechanism : the orbital effect or the Zeeman
effect. In the previous chapter, we showed that the orbital dephasing breaking mechanism
effect is very weak in Bi nanowires.

In particular, the ABS energy is sensitive to the phase difference ϕ between the super-
conducting contacts leading to an Andreev spectrum that encodes the information both
about propagation through the normal metal and the reflection at the NS interface. The
current carried by these states is related to the spectrum according to

i(ϕ) = −2e
h

∑
n

fn
∂εn
∂ϕ

(3.1)

where each individual level carry a supercurrent in = −2e
h
∂ϕε(ϕ). The minus sign is

reminiscent of the diamagnetic response of a superconductor (the Meissner effect). It will
be absorbed in an amplitude prefactor in the rest of the manuscript.

Therefore the measurement of the CPR, i.e. the supercurrent of a phase biased SNS
junction, is of fundamental importance to understand the propagation of its charge car-
riers. I will now review the CPRs of SNS junctions in some important limiting cases.



86 Current-phase relation of Bi nanowires based Josephson junctions

2 Current phase relation of model junctions

2.1 Scattering matrix formalism
The formation of ABS can be understood formally by using scattering matrix formalism
(Nazarov & Blanter, 2009). In this formalism, the propagation in the electron-hole channel
is described by a spinor Ψ = (Ψe,Ψh)T, where Ψe and Ψh are themselves Bogoliubov
spinors

Ψe = (ψ↑, ψ↓)T

Ψh = (ψ∗↑, ψ∗↓)T (3.2)

This formalism allows to take into account the imperfect Andreev reflection processes
by including a finite normal transmission at the interface. However, note that it works
well for 1D cases but is less explicit for more complicated systems. I will describe it now.

One starts from the Bogoliubov-de Gennes (BdG) equations describing the propaga-
tion of electrons and holes in presence of a pair correlations :(

HN ∆(x)
∆†(x) −H∗N

)
Ψ = εΨ (3.3)

where HN is the hamiltonian of the normal metal, ∆(x) is the order parameter that
vanishes inside the N and is equal to a constant ∆0 inside the S. For practical purposes, it
is described by a step function at the interface. Assuming kFξ � 1, one can approximate
the spinor Ψ by an enveloppe function Ψ ' Ψ̃(x)eikFx where Ψ̃ is a slowly varying function
in space, on a scale ξ � 2π/kF.

We can linearize the kinetic energy term in the BdG equation(
−i~vF

d
dx ∆(x)

∆†(x) i~vF
d

dx

)
Ψ̃ = εΨ̃ (3.4)

Assuming ε < ∆, the solutions can be computed in the uniform, infinite normal case

Ψ̃(x) = eiεx/~vF (3.5)

and in the superconducting case

Ψ̃(x) = e−
√

∆2−ε2|x|/~vF (3.6)

The latter solution is evanescent as no electron-like or hole-like propagation can be
found due to the condition ε < ∆, leading to a vanishing density of states.

At the NS interface, one can match these two solutions. As a result, the hole solution
propagating in the opposite direction is

Ψh,− = rAΨe,+ (3.7)

where the reflection coefficient rA ≡ e−iα is a pure phase factor. Indeed, the incident
wave cannot be transmitted in the superconductor at ε < ∆ and therefore has to be fully
reflected |t|2 = 0 and |rA|2 = 1. The expression for this coefficient is

e−iα = ε

∆ − i
√

∆2 − ε2
∆ (3.8)
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The conversion of electrons into holes is described by a scattering matrix Ŝeh and the
propagation in the normal metal is described by a conventional S matrix.

Finally, one can assemble these matrices into a secular operator

Π̂ = ŜN(ε)ŜehŜ∗N(−ε)Ŝhe (3.9)

This operator describes the succession of Andreev reflection and propagation through
the normal metal from the point of view of electron-hole pairs. More precisely, it describes
the following successive processes, starting from an electron-like excitation

• the electron-like excitation propagates forward (with positive velocity)

• reflects into a hole-like excitation

• propagates backwards in space (with negative velocity)

• reflects into an electron-like excitation

A dual sequence applies starting from a hole-like excitation. A bound state is found
at the condition that

Det
(
Π̂− 1̂

)
= 0 (3.10)

Finally we conclude by stressing that the existence of ABS results from the coherent
superposition of successive Andreev reflections at the two NS interfaces, similarly to a
cavity where the resonances result from the coherent superposition of reflected probabil-
ity amplitude on the mirrors. Therefore, the ABS are non local in nature. In this sense,
they are very different from excitons. Indeed, in semiconductors, the binding potential is
the semiconducting gap, which makes the excitons local in nature. This non-local nature
of ABS makes them very sensitive to boundary conditions, and as a result they carry
intrinsically the information about them. In particular, they depend crucially on the
difference between the macroscopic phases of the wavefunction describing the supercon-
ducting Cooper pair condensates of the two electrodes.

2.2 Single channel, clean limit
In the case of one channel, in the clean limit, the scattering matrix describing propagation
is simply given by

Ŝ(ε) =
(

0 e−εL/~vF

e−εL/~vF 0

)
(3.11)

and the scattering matrix describing the electron hole conversion at the interface by

Ŝeh = e−iα
(

e−iϕ 0
0 eiϕ

)
(3.12)

The secular operator is therefore

Π̂ = e−2iα
(

eiϕ−iεL/~vF 0
0 e−iϕ−iεL/~vF

)
(3.13)

A bound state is found at the condition that
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Det
(
Π̂− 1̂

)
= 0

exp
(2iεL
~vF

+ 2i arccos
(
ε

∆

)
± iϕ

)
= 1

εL

~vF
+ arccos

(
ε

∆

)
± ϕ

2 = nπ, n ∈ Z

(3.14)

This result shows that ABS exists at the condition that the total accumulated phase
is an integer multiple of 2π.

We can solve this equation in two different limits

• the short junction limit L � ξ, one can neglect the propagative term εL/~vF , and
the equation leads to

ε(ϕ) = ±∆ cos(ϕ/2) (3.15)

the spectrum is composed by two cosine functions (fig 3.1A)

• the long junction limit L � ξ, where the propagative term is dominant, and the
energy scale ∆ is absent in the problem. As a result, one has below the gap

εn(ϕ) = ~vF

L
(nπ ± ϕ/2) (3.16)

In this case the spectrum is composed by linear segments (fig 3.1E). One should
also take into account the spectrum just above the gap that has a small phase
dependence.

Once the Andreev spectrum and its dependence with respect to the phase is known,
one has to determine the thermodynamic occupation fn. At zero temperature, all the
states below the Fermi level are filled, and all the states above are empty. The current
is then obtained by taking the derivative of the energies εn(ϕ) whose states are occupied,
with respect to the phase

i(ϕ) = −2e
h

∑
n

fn∂ϕεn(ϕ) (3.17)

For the short junction case, the CPR is a piecewise sine function (fig 3.1B), while for
the long junction, it is a piecewise linear function (fig 3.1F).

It is interesting to note that the original ϕ/2 dependence of the energy levels (3.15)
(3.16) leads to a ϕ dependence of the resulting current. This is directly related to the
existence of an energy level crossing at π.

However in practice, there always exists a finite transmission at the interface, which
results in the level crossing at π (and also at 0 for the long junction) to be avoided due to
mixing of Andreev reflection and normal reflection. The Andreev levels are thus effectively
coupled at the vicinity of π leading to a gap opening (fig 3.1C,G). As a result, the CPR
is strongly affected by this behavior and loses its sharpness at π (fig 3.1D,H). The same
happens in presence of disorder in the normal metal.

The anharmonicity of the CPR can be translated as a number of Andreev reflections
performed before a scattering event occurs. This can be illustrated in Fourier components
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C D
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Figure 3.1: Spectrum (left) and CPR (right) of single channel SNS junction in different
regimes. A-B Short junction in the clean limit. The solid blue line corresponds to the
occupied state. C- D Short junction with finite transmission τ . The arrow corresponds to
a gap opening of ∆

√
1− τ . E-F Long junction, clean limit. In the spectrum, the dashed

lines are solutions with odd integer n, the solid lines are solutions with odd integer n.
The blue (red) curve corresponds to solutions with positive (negative) current. G- H Long
junction with finite transmission, from (Bagwell 1992). The black line corresponds to the
clean limit, the blue (red) curve corresponds to the states with opposite contribution to
the current. Note that one has also to take into account the slightly phase dependent
levels above the gap in order to get the correct current in this case.
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i(ϕ) = i0
∞∑
m=1

am sin(mϕ) (3.18)

The components are given by

am =


(−1)m+1

m
L� ξ

(−1)m+1m

m2 − 1/4 L� ξ

(3.19)

In presence of bad interfaces or disorder, one can phenomenologically introduce a
parameter t ∈ [0, 1], that modify the Fourier coefficients

am → amt
2m (3.20)

We interpret t2 as an effective transmission that is encountered m times during the
processes of Andreev reflection - propagation, and describe both the effects of disorder
or bad interfaces. When t → 1, one recovers the original CPR, and when t → 0 one
obtains a sine CPR. One can thus understand the transition from an anharmonic CPR
to an harmonic (sine) CPR due to a finite t by relating the cutoff −1/2 ln t to the typical
number of reflections before a scattering event occurs.

In summary, a disordered or poorly transmitted junction should lead to a small number
of Andreev reflections before a scattering event occurs and should be universally sinus-
oidal. On the contrary, for a very ballistic junction with clean interfaces, the number of
reflection-propagation is very large before any scattering event, and the CPR should be
very anharmonic, i.e. sharp at π, both in the short and in the long junction.

2.3 Multiple channels
The case of M multiple channels can be generalized straightforwardly for the short junc-
tion limit, because one can identify one conduction channel in the normal metal with a
definite Andreev energy level. If there is no diffusion, then the current-phase relation
remains the same with a global multiplicative factor M .

For the long junction, there is however no such one to one relationship between An-
dreev levels and the transmission matrix eigenstates. In other words, the scattering matrix
does depend on the energy. Other approaches makes use of the quasiclassical Green’s func-
tions formalism, or by performing exact numerical diagonalization of the Bogoliubov-de
Gennes equations. The result is similar than the one stated in the one channel case : the
presence of disorder leads to a loss of harmonic content in the CPR (Dubos et al., 2001),
(Heikkilä, Särkkä & Wilhelm, 2002), (Hammer, Cuevas, Bergeret & Belzig, 2007).

For both the short diffusive and the long diffusive junction, one has

i(ϕ) = i0
∑
m

am sin(mϕ) (3.21)

with

am = 3(−1)m
(2m+ 1)(2m− 1) (3.22)

and
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i0 =


3.2∆
eRN

(short)

10.82ET

eRN
(long)

(3.23)

2.4 Prediction for Quantum Spin Hall systems
For the quantum spin hall case (QSH), there is a locking between the spin and the velocity
along each edge. As a result

• transport should be ballistic if no time reversal symmetry breaking mechanism oc-
cur. Indeed, in this case one cannot flip the velocity without flipping the spin, which
is forbidden in a chiral channel. Therefore the transport should be ballistic due to
this protection.

• At the NS interface, for the same reason, the normal reflection is forbidden in
the absence of time reversal symmetry breaking because it would flip the velocity
without flipping the spin, while on the contrary Andreev reflection is favored as
the reflected hole has an opposite spin given the s wave pairing symmetry of the
superconducting order parameter.

In addition to these properties related to the motion of Andreev pairs across the
junction, an other property is predicted for the Quantum Spin Hall insulator connected
with superconducting electrodes (Beenakker et al., 2013). This prediction results from
the fact the secular equation which admits two solutions associated with ±φ/2 are now
located on two different edges. In the limit of a very wide sample, they do not couple and
the levels truly cross at π : in other words the resulting CPR has the ϕ/2 dependence,
that is to say it is 4π periodic instead of 2π periodic.

2.5 π junction and ϕ junction
I now focus on the consequence of spin orbit interaction on the propagation of ABS.
For simplicity, I assume a Rashba spin-orbit interaction. Depending on the effective
dimensionality of the system, spin-orbit interaction will lead to a splitting of the levels.
In one dimension with parabolic band dispersion, no effect occurs. Indeed, in this case, the
transverse component of the momentum ky is negligible and one can rewrite the Rashba
term as

HSO = kxσy − kyσx ' kxσy (3.24)

Therefore, the total hamiltonian commutes with σy, in other words the spin is a good
quantum number. Consequently it has no evolution and the ABS are still spin degenerate.

However, this degeneracy is somewhat accidental. As soon as the dimensionality is
not purely 1D, or that the band dispersion is not parabolic, the presence of spin-orbit
coupling leads to a shift between the two Fermi velocities v+ and v− due to the spin
degeneracy lifting. Interestingly, this is the case for a parabolic band dispersion with
spin-orbit interaction in addition to a perpendicular and parallel magnetic field. Indeed,
the hamiltonian of the system reads
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ĤN = Ĥ0 + ĤSO + ĤZ

= p̂2/2m+ α(p̂× σ̂) · ez − gµBH · σ̂
≡ k2/2m+ α(kxσy)− h‖ · σy − h⊥ · σz

(3.25)

where for simplicity I put here ~ = 1, and define h ≡ gµBH. The eigenenergies are

ε± = ε0(k)±
√
h2
⊥ + (αkx − h‖)2 (3.26)

where ± denotes the two spin split bands and ε0(k) ≡ k2/2. Thus, the velocities
v± = ∂kε|± are given by

v± = k±/m±
α(αk± − h‖)√

h2
⊥ + (αk± − h‖)2

= k±/m+ α(αk± − h‖)
εF − k2

±/2m

(3.27)

This shows that the presence of a parallel magnetic field h‖ acts directly on the velo-
cities. On the other hand, the effect of h⊥ is to split the bands.

In the case of two dimensions, one cannot neglect ky anymore. This is the case as soon
as one allows more than one conduction channel, and in general, some band mixing will
occur, leading to a non parabolic dispersion relation. As a result, the velocities are also
shifted in this case.

The Andreev spectrum is directly affected by the velocity shift, as it leads to a shift
of the propagative phase acquired by the ABS along their trajectories by an amount

∆φ = 2εFL
~

( 1
v+
− 1
v−

) (3.28)

However, although spin-orbit interaction alone can change the Andreev spectrum, it
does not change the CPR (Dimitrova & Feigelman, 2006), if no magnetic field or disorder
is present. One can understand this result by stating that the CPR cannot change if
one does not break time reversal symmetry. One can view this result from the Andreev
spectrum perspective by looking at the velocity of the spin up and spin down levels. As
a result, the Andreev equation leads to different energy levels, that are effectively spin
split.

Microscopically, the evolution of electrons from one interface to the other in presence
of SOI implies a phase accumulation along closed trajectories. However, the phase ac-
cumulated by the holes compensates this phase by the exact same amount. In order to
observe a net effect, one should create an imbalance between electrons and holes. In other
words one should break time reversal symmetry (Buzdin, 2008).

This is the role played by a Zeeman field. Indeed, taking into account both effects,
one sees that the total accumulated phase due to the spin does not vanish. As a result,
the CPR is shifted by a constant ϕ0.

In the QSH case, the CPR is very sensitive to spin orbit interaction that leads to
a ballistic CPR even in presence of disorder, due the topological protection. Moreover,
since each counterpropagating edge channel is associated to a definite spin, the effect of
the Zeeman field gµBB at one edge is to shift the spin up towards positive energy and
spin down towards negative energy. Then, summing the current of each levels results in
a net phase shift. However, this phase shift is counterbalanced by the same amount at
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Figure 3.2: Anomalous Josephson effect in the QSH case. A : Phase dependent Andreev
spectrum. Solid blue (red) line : branch of positive (resp. negative) current at zero
Zeeman energy EZ = 0. Dotted blue (red) line : branch of positive (resp. negative) current
at zero Zeeman energy EZ 6= 0. B : Schematics of the QSH connected asymmetrically to
the superconducting electrodes. Taken from (Dolcini, Houzet, Meyer, 2015)

the other edge. Therefore, for a perfectly symmetrical sample, the phase shift should be
compensated (Dolcini, Houzet & Meyer, 2015). This is no longer the case if there is an
asymmetry between the length of the channels (fig 3.2).

3 Fabrication and measurement technique
One cannot phase bias a junction in order to measure the CPR in a two terminal geometry.
In order to achieve this, one possibility is to enclose the junction in a loop geometry. In
that case, a relation exists between the phase and the Aharonov-Bohm flux thread through
the loop.

3. 1 Asy metric SQUID technique
In a SQUID, the relation between the phase difference ϕ1 − ϕ2 across the two junctions
is related to the Aharonov Bohm flux inside the loop thanks to the fluxoid quantization
relation

ϕ1 − ϕ2 + 2πφext

φ0
= 2nπ (3.29)

The critical current of the whole SQUID for a given φext is given by the maximum of
the function of one variable

ic = max |i1(ϕ1) + i2(ϕ2)| (3.30)
If one makes the further assumption that the SQUID is asymetric, meaning that

i1 � i2, then the phase ϕ1 at the maximum of supercurrent will be constant to first order

ϕ1 ' ϕ0
1 (3.31)

As a result, ϕ2 is given by

ϕ2 ' ϕ0
1 + 2πφext

φ0
(3.32)
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and is therefore a linear function of the magnetic field. Therefore, at first order in
i1/i2, the measurement of the switching current of the whole SQUID will result in the
superposition of a 0 order term (constant) given by critical current of the reference junction
i2(ϕ0

2) modulated by a 1st order term i1(ϕ0
1 + 2πφext/φ0) which is nothing but the current

phase relation of the junction.

3.2 Proof of principle using a W constriction as the reference
junction

The critical current of Bi nanowire being in the range of few 10 nA to few 100 nA, it
is therefore desirable to make a junction with critical current around 10 µA. If we were
using an Al tunnel junction, then using the relation eRNIC = π∆/2, with ∆ ' 160µV for
Al, that requires a shunt resistance of 20 Ω, that is only realizable in practice by making a
junction of large area, which is not convienient in particular because it would not survive
to high magnetic fields. Therefore, we have chosen to make the reference junction using a
tungsten constriction. This has two advantages : the gap of W is larger, and the resistance
can be made smaller than for the tunnel junction. Aiming IC ' 10µA, the resistance of
the constriction required is RN ' 120 Ω.

The fabrication of the SQUID for the proof of principle experiment was made using an
open Al loop closed on one side by a superconducting tunnel junction (fig 3.3). The other
side is left open for growing the W constriction. Two other discontinuities in the loop are
made in this design, in order to measure the resistance of different sections independently
before the measurement at low temperature. They are closed by growing tungsten lines
at the last step.

The fabrication of the W constriction is made in two steps, using a technique developed
by Alik Kasumov. First, a W line is grown using the FIB. Second, two micro-manipulated
metallic tips present inside the FIB chamber are brought to contact with the big pads
connecting the two sides of the W line. Finally, the W line is etched while measuring the
differential resistance using a lockin amplifier. Every etching step can be modelized by a
reduction of the nanowire’s thickness t by an amount τ . Therefore the resistance at every
step is given by

Rn = RC + ρL

w(t− nτ) (3.33)

with ρ the resistivity of W, and w the width of the W line. The increase in resistivity
is thus approximately given by

Rn+1 −Rn '
ρL

S

τ/t

(1− τn/t)2 (3.34)

Therefore, the resistivity increases non linearly with the index of the step, mimicking a
divergence : the increase is small at the beginning, and becomes progressively very large.
Of course, when the critical step where the W line is disconnected and the resistance is
infinite is passed, the process has to be restarted over. A way to circumvent this is be
to measure the conductivity instead of the resistivity. Furthermore any shift during the
etching process will result in a smaller τ , or a recovering of the constriction by redeposition
of tungsten and therefore an increasing of τ .
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Figure 3.3: Proof of principle of the current phase relation measurement using an asy-
metric SQUID technique with a W constriction as the reference junction. A : Schematics
of the asymetric squid. The superconducting tunnel junction is symbolized by the white
junction and the W constriction is located opposite to it. B Critical current of the asy-
metric SQUID. Red : measurement after performing the β correction. Black dashed line :
sinus function fit. C : SEM image of the measured SQUID. The long part of the SQUID
is 20 microns long. Inset : Zoom of the W constriction.

3.3 Measurement technique
The switching current was measured using a counter technique (fig 3.4). A time dependent
current source signal is produced using an arbitrary function generator (AFG) voltage
source in serie with a polarization resistance Rpolar. The signal is chosen to be a triangle
of amplitude peak to peak Vpp, so that a bias current is swept linearly over over a period
T . For practical reasons, this triangle is asymetric, the duration of the positive slope part
of the signal divided by T being termed as the duty factor. Moreover, it is important that
the current has a negative part to ensure the junction to return to the superconducting
state, therefore offsetting the bias by a voltage Voff is important. The typical frequency
for this signal can vary from few Hz to 200 Hz. The output voltage across the junction
will therefore switch into the normal state, at a given time that corresponds to the current
of the ramp. This time τm is defined modulo the period T , and is recorded in a counter
so that it will be averaged over many such events. An extra offset time can be defined by
setting a delay between the ramp and the counter, that is characterized by a phase ϕ.

One can relate the measured time to the current through

im = 1
Rpolar

(
Voff + Vpp

Duty

(
tm
T

+ ϕ

2π − 1/2
))

(3.35)

4 Current phase relation of Bi nanowires based Joseph-
son junctions

We decided to investigate the CPR of a Bi junction that was already characterized in
a two terminal DC transport measurement, the data of which are shown at the end of
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Figure 3.4: Principle of the measurement of the switching current using the counter
technique. A : Electrical circuit diagram of the measurement setup. B : see main text.
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Figure 3.5: Fabrication of the asymetric SQUID using FIB. A: Dual imaging using both
FIB and SEM. The FIB imaging is done in a reduced window, at coincidence between the
two focal points of the SEM and the FIB. The magnification is less than 5k. The window
is displaced in order to avoid exposing the nanowires to the Ga+ ion beam. A W line is
grown thereby shunting the nanowire. It is then etched in order to obtain a significant
increase of the 2 wires resistances measured in situ. B : Two common errors using FIB
that are fatal for the fabrication of a SQUID. White lines : hole in the nanowire caused
by Ga ions due to excess of exposure at the reduced window’s dump point (upper left of
the window). Blue lines : shift of the beam while etching, due to either charging effects
or a too long time taken during the procedure.

the previous chapter. The choice of this particular junction was made because of its
distinctive feature of SQUID like oscillations at low magnetic fields, compatible with the
existence of edge states in the system. We therefore directly built the SQUID on the DC
W electrodes, without using an Al loop such as in the proof of principle experiment. This
leads to a modification of the fabrication process that I will now detail.

4. 1 Variation on the fabrication process
A W line was grown in parallel to the Bi nanowire. The tips were placed on the pads
in order to measure the resistance (fig 3.5) of the whole circuit. We etched the W line
about 20 times in the same conditions, and stopped when the increase in the resistance was
su�ciently high. As a result, the increase in resistance was found to be equal to 90 Ω. The
critical current of the reference junction was found to be equal to 83 µA and modulated
by only 350 nA, compared to the 1.4µA measured in the two wires configuration. The
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A B

1 µm

Figure 3.6: SEM image of the fabricated SQUID with Bi nanowire Josephson junction.
A : SEM image of the nanowire before constructing the SQUID. White dashed circle :
the selected section showing SQUID like oscillations. Inset : Zoom on the SEM image
showing the damaged contact interface. B : Fabricated SQUID. The white arrow indicates
the etching line.

reason of this decrease in the amplitude of the current of the Bi junction is understood by
the modification of the contact resistance due to thermal cycling that was necessary for
the fabrication of the SQUID. As a result, the SQUID made this way was very asymetric,
making it challenging to measure. A variation on the traditional measurement technique
was made in order to circumvent this issue.

4. 2 Variation on the measurement technique
We added AC modulation of the current to the switching measurement process (fig 3.7).
An AC voltage with small amplitude and with frequency of the order of few 10 kHz
was added to the DC voltage. The output of the amplified differential signal was then
demodulated at the same frequency and fed to an adjustable band pass filter. The output
of the latter was used for the detection in the counter. The use of a lockin amplifier has
two advantages. First, it gets rid of the large constant resistance in serie with the sample.
Second, it increases the signal over noise ratio in the signal measured by the B port of
the counter. A band pass filter is used to select the high resistance jump in the dvdi vs i
curve, corresponding to the switching event. As a result, the detection threshold is done
on a dark background (zero voltage).

4. 3 CPR of Bi nanow ires based Josephson junctions
The switching current data shows oscillations of amplitude ∆i = 350nA above the critical
current of the constriction IC ' 79µA. The SQUID dimensions are L ×W = 1.4µm ×
1.4µm, therefore the SQUID area is 1.96µm2. The expected magnetic field period for the
signal is thus 10.2 G, which matches the measured period 9.62 G within 6%.

The shape of the CPR is a very sharp sawtooth, which is indicative of the ballistic
propagation of Andreev pairs with quasi perfect Andreev reflection.

Furthermore, the shape of the CPR is characteristic of the long junction. Using
vF = 6 ± 2 · 105 m/s, one can estimate the coherence length in the ballistic limit ξ =
�vF/∆ = 318 nm� L, which indeed indicates that the junction is long.
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Figure 3.7: Principle of the measurement of the switching current using the counter
technique with AC modulation. A : Electrical circuit diagram of the measurement setup.
B : Signal at the output of the preamplifier. See main text for the details.
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Figure 3.8: Switching current of the SQUID 1 as a function of the magnetic field. A
Switching current of the SQUID 1 at 130 mK for magnetic fields up to 2400 G. B Zoom
of the switching current at low field, revealing the sawtooth shaped current phase relation
of the Bi nanowire based Josephson junction, for two temperatures. C Fourier transforms
of the corresponding signals. The temperature dependence can be found in the higher
harmonics.



99 Current-phase relation of Bi nanowires based Josephson junctions

4.4 β-correction

Before going further, I now show that the SQUID is not hysteretic. The CPR signal
would have been difficult or impossible to extract otherwise. Indeed, if the amplitude of
the current circulating around the loop gets too large, then the external applied flux may
be screened inside the loop.

In SQUID-like systems, this effect can be accounted by a single parameter β termed
the Stewart - McCumber parameter, which is defined as

β ≡ 2πLtotIC

φ0
(3.36)

In order to evaluate β, one needs to estimate the inductance of the loop. The total
length of the loop being Ltot = 5.1µm, the corresponding geometrical inductance is
µ0Ltot = 6.4·10−12 H. It is important to correct this value by adding the kinetic inductance
of FIB deposited W to it. Indeed, being a disordered superconductor, it’s contribution
outweighs that of the geometrical inductance alone. The kinetic inductance of a wire of
section S is given by

LK = µ0Ltot
λ2

S
(3.37)

where λ is the penetration length of the disordered superconductor.
For FIB deposited W wires, one has on one hand

Lgeo = µ0L (3.38)

and on the other hand

LK = 1
π
RN

~
∆ (3.39)

Therefore,

LK

Lgeo
= RNh

µ0L∆ (3.40)

which is a constant for a W line with constant thickness fabricated in the same con-
ditions. For our case, R/L ' 10.0 · 107 Ω/m at most and ~/∆ ' 0.53ps, therefore an
upper estimate for this ratio is LK/Lgeo = 13.4. Therefore, the kinetic inductance can be
estimated to be LK ' 10Lgeo.

The corresponding correction due to the finite Stewart-McCumber parameter β is
negligible in this case :

β = 2π (LK + Lgeo)
φ0

Ic

= 0.092� 1
(3.41)

where the Ic to take in this formula is the current that screens the loop, which is
Ic = 350nA in our case.



100 Current-phase relation of Bi nanowires based Josephson junctions

4.5 Temperature dependence
The CPR of the main signal displays a very small variation between the temperatures 130
mK and 1.3 K, an observation that seems to disagree with the long junction behavior. If
we look at the higher harmonics of the CPR (fig 3.8), we see a change of amplitude of the
harmonics starting from the 5th harmonic. This small thermal rounding of the CPR can
be used to evaluate the Josephson energy εJ of the junction. One has (Bergeret, Virtanen,
Ozaeta, Heikkilä & Cuevas, 2011)

in(T )
in(0) = 1/ sinh

(
πnkBT

εJ

)

' exp
(
−πnkBT

εJ

) (3.42)

in the asymptotic limit (nT → ∞). In a long junction, εJ is given by the Thouless
energy εT = 282µV ' 6 K, so that the decay should be in(T )/in(0) ∼ e−n/4.8 at 1.3 K.
This would imply that the amplitude of the 5th harmonic should be approximately one
third between 1.3 K and 130 mK. We observe that this only happens around the 7th
harmonic, meaning that we underestimated εT. More quantitatively, we measure a decay
exp(−0.25n) at 1.3 K, so that εJ/π = 4 K, and therefore εJ = 12 K. This would correspond
to vF = 1.2 · 106 m/s.

4.6 Second channel
By optimizing the detection setup, which is done essentially by increasing the number of
measurements on which the counter performs its average, one observes a small periodic
signal which superimposes to the main signal with a different periodicity. The observed
periodicity is 10% higher than the one of the main sawtooth signal. It matches the value
of one flux quantum across the area of a greater SQUID that would be formed by the outer
channel of the Bi nanowire. It also corresponds to the second channel whose existence
was hinted by the two wires measurement described in the previous chapter.

The amplitude of the full signal is recovered as one adds an other sawtooth with
amplitude 50nA. The reason for this mismatch between the values of the current for the
two different channels could be related to the existence of a disordered region that was
caused by etching with Ga ions during the FIB deposition procedure (inset of fig 3.6A).

The critical current of this second channel is completely suppressed at T = 1.3 K. This
seems to be in agreement with a reduced effective gap with value ∆∗ < 1.3 K, and this
second channel would therefore be in the short junction limit. An other way to say this
is to describe this channel by a longer path, which is justified since the electrons have to
go through a disordered region before being Andreev reflected (fig 3.6)

4.7 Number of channels
The amplitude of the measured supercurrent as well as its resilience up to high magnetic
fields (Bmax = 0.5 T) are consistent with a small number of channels, each of them confined
in an extremely narrow region in space (within less than 4 nm = φ0

BmaxL
). The maximum

supercurrent through one ballistic channel is I1 = π∆
φ0
' 250 nA for a short junction (i.e.

L � ξ = ~vF/L ' 330 − 600 nm), and I1 = evF/L = 70 ± 30 nA for a long junction
(L� ξ). The critical current of the nanowire, given by the modulated current amplitude
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Figure 3.9: Second edge state revealed by performing the switching current measurement
with a higher resolution. A : Blue curve : Critical current vs magnetic field. Black
curve : sum of two sawtooth signals with different periods, corresponding to the different
channels. The yellow arrows indicate the wiggle, corresponding to the second channel. B
: Schematics of SQUID loop closed by the inner (bottom) channel, which is the shortest
one. The area Sint is smaller, thus it has larger magnetic field period. C : SQUID loop
closed by the outer (top) channel, which is the longest one, and corresponds to a larger
area Sext. The period is thus smaller. D : Main sawtooth signal. Blue dots : CPR signal
averaged over 12 periods in order to remove the wiggle signal. The data is plotted against
φ/φ0 = BSint/φ0. Red solid line : theoretical sawtooth signal with t2 = 0.92 of amplitude
310 nA. E : Secondary sawtooth signal ("wiggle"). Blue dots : Raw signal subtracted
from the averaged signal (D). The data is plotted against 1/2 + φ′/φ0 ≡ 1/2 +BSext/φ0.
Red solid line : theoretical sawtooth signal with t2 = 0.7 of amplitude 50 nA.
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Figure 3.10: Envelope of the CPR showing that the signature of the second channel can
be retrieved as an amplitude modulation of the largest channel. A : CPR at large scale.
Blue dots : supercurrent filtered by a low frequency signal. The data between 58 G and
78 G are discarded. Orange solid line : guide to the eye for the maxima and minima
of the CPR. Green dashed line : guide to the eye for the wiggle signal. B : CPR as a
function of the magnetic field. C : Maxima (red triangles) and minima (blue squares) of
the CPR as a function of the magnetic field. Orange line is the periodic sawtooth signal
with period 80 G. D : Cartoon of the supercurrent carrying edge states along with their
transmission and current.
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of 400 nA (fig ), thus implies that at most six perfectly transmitted channels carry the
supercurrent. A reasonable assumption is that one path contains three to four quasi
perfect channels, each with the same sawtooth-shaped CPR, and all situated at the inner
edge of the wire, on the bottom (111) facet. They could be associated to the orbitals
px, py, pz of one topological edge state of Bi, as suggested by Murakami (Wada et al.,
2011), or could also run along the edges of few parallel terraces at the facet edge.

On the other hand, the outer channel has I0 = 45 nA. We can attribute this result
to the prediction that the 3 conduction channels are not robust against disorder, but the
topological protection ensures that one channel will remain ballistic, and thus contribute
substantially to the current. Additionally, the current could be reduced further due to
the reduction of the effective gap.

4.8 How ballistic are the channels

These sharp current phase relation can be fitted to evaluate the effective transmission of
the channels. In order to achieve this, we use the formula

i(ϕ) = i0
∑
n

(−1)n
n

t2n sin(nϕ) (3.43)

where t represents the average effective transmission. Note that this quantity is differ-
ent from the finite transmission at the interface. The latter only reproduces the sharpness
of the CPR while the second dictates the amplitude of the CPR. In this sense, the para-
meter t only concerns the propagation through the normal metal. We find t = 0.9 for the
inner (bottom) channel, and t = 0.7 for the outer (top) channel.

4.9 Second SQUID

A second squid (BiW-SQUID2) was fabricated in order to confirm these results. The
magnitude of the critical current found was 174µA. The dimensions of the SQUID were
W × L ' 1.5µm× 1.6µm which corresponds to the measured period of 8 G.

The shape of the CPR is again a sawtooth, with a strikingly straight cusp at ϕ = π.
The amplitude of the current is 35 nA, which is similar to the current of the outer

channel of the first SQUID. It would therefore correspond to one supercurrent carrying
channel. The amplitude of the current being much smaller than in the previous SQUID
and the dimensions being similar, the screening parameter β is completely negligible in
this case (β ' 10−3).

There was no signature of two path CPR, like in the previous SQUID. This could be
due to two effects. First, the inner channel could be not connected to the SQUID this
time, as can be hinted from the SEM image. Indeed, in the first SQUID, the Bi nanowire
was etched and therefore more likely to connect both channels, whereas in the second
SQUID, no etching was made which may result in a poorly connected bottom channel.
Second and more likely, it could be due to the too high amplitude of the critical current
of the reference junction combined with the small amplitude of the CPR, thereby limiting
the sensitivity of the technique.
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Figure 3.11: Switching current of the second SQUID (BiW-SQUID2) measured. A The
CPR of the Bismuth nanowire based Josephson junction modulates the switching current
of the SQUID over many periods. B Zoom on the signal at lower magnetic fields, showing
a sawtooth like current-phase relation. C : SEM image of the BiW-SQUID2 device. The
Bismuth junction is 1.4 µm long.

5 ϕ junction and π junctions behaviour

5. 1 0− π transition
The purely one dimensional nature of the Andreev bound states that carry the super-
current across the nanowire implies that they are insensitive to orbital dephasing and
therefore that the magnetic field acts primarily through the Zeeman effect. A Zeeman
field can induce a crossing of the Andreev levels, turning an energy maximum into a
minimum : this causes a sign change of the CPR, or equivalently a π shift of its phase.
0− π transitions are expected when dephasing by the magnetic field equals dephasing by
the propagation time through the wire, i.e. when the Zeeman energy equals the Thouless
energy, geffµµBB = �〈vF〉/L.

The characteristic field Bx,y ∼ 600 G, Bz ∼ 400G between 2 successive 0−π transitions
seen in the CPR as a function of a magnetic field in the (111) plane, either perpendicular
or parallel to the wire axis yields an effective g factor geff ∼ 30 − 100, consistent with
the high g factors of some bands in Bi. We note that penetration of vortices in the
superconducting electrodes would also lead to phase jumps. This is however unlikely as
no sign of hysteresis was found in our data. This realization of a 0−π transition induced by
the Zeeman field is possible because the junction is long, contains few channels, and the geff
are high enough that the transition occurs at a magnetic field below the superconducting
electrodes’(relatively high) critical field.

5. 2 ϕ junction eff ect
1. Linear correction
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The main signature of the Zeeman induced ϕ junction is predicted to be a linear shift
of the CPR as a function of the magnetic field : ϕ ∼ Bx,y. However, a linear shift
already arises from the misalignment of the two coils, that needs to be corrected.
For example, a misalignment of θ = 1o between the in plane coil and the out of
plane coil would lead to a perpendicular magnetic field coming from the supposedly
in plane coil of sin θ ' θ ' 1.7% of the out of plane coil. Therefore, if Bz = 1000G,
an uncertainty of Bx,y = 10G, that corresponds to one period of the oscillations.
Moreover, the misalignment could be greater than 1o.
For these reasons, we perform a linear correction in the Bz, Bx,y plane, on the form

Bx,y → Bx,y + αx,yBz

Bz → Bz
(3.44)

2. Evaluation of the effect
After having performed these correction, we observe a non linear shift of the CPR
which is quadratic in the parallel magnetic field. The effect is stronger in the y
direction than in the x direction (the direction of the nanowire), which agrees with
the prediction of the theory.

6 Conclusion of this chapter
We showed that the CPR of Bi nanowire based Josephson Junction is that of a ballistic
junction, with transparent interfaces. This result was confirmed independently in a second
SQUID. In the first SQUID, we also detected a second ballistic channel, with a signal
having a different periodicity, that was hinted in the 2 wire measurement of the critical
current displayed in the previous chapter.

The strong spin orbit and g factor lead to the possibility to observe Zeeman induced
band crossing under the form of 0− π transitions and Zeeman induced ϕ junction effect.
This g factor g ' 30− 100 is significantly different from the g ' 5− 10 obtained at high
field in the two probes experiment. This is explained by the fact that the edge states may
be different from low field to high field, as was explained in the previous chapter.

Another prediction for the Quantum Spin Hall is that the CPR is 4π periodic. How-
ever, poisoning processes at finite temperature will always give this 4π periodic signal a
finite lifetime, resulting in a 2π periodic signal measured in DC. In order to probe this
physics, we need to measure the CPR at finite frequency.
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Figure 3.12: π junction and ϕ junction effects observed in parallel magnetic field. A-
B Switching current as a function of the parallel magnetic field in the Y direction (A)
and the X direction (B) as labeled in F. Black dotted lines : guide to the eye for the
non linear ϕ junction behavior. Orange dotted line : region corresponding to the zoom
displayed in G. Pink dotted line : region corresponding to the zoom displayed in C. C
0 − π transition as a function of the parallel magnetic field for the region marked by a
pink dotted line. D-E Andreev spectrum (D) and current-phase relation, as a function
of the phase ϕ, in presence of a Zeeman magnetic field. In D, the plain and dotted line
corresponds to two level resulting from the Zeeman field lifting of the spin-degeneracy.
Taken from (Yokoyama, Eto and Nazarov, 2014). F Labeling of the directions with respect
to the nanowires’axis. G CPR measured for different magnetic fields in the y direction,
corresponding to the orange box in A.



Conclusion

In this thesis, I have investigated the superconducting proximity effect induced in mono-
cristalline, micron long Bi and Ag nanowires with typical diameter ø ' 100 nm.

The Ag nanowires display a conventional proximity effect typical of conventional multi-
channel, diffusive nanowires with a mean free path of the order of their diameter le '
50 nm. By varying the length of the junctions, we could follow the full transition from
short to long SNS junction. Interestingly, we unambiguously found a systematic reduction
of their RNIC product by a factor 4 with respect to the theory. Moreover, a paradoxical
increase of the critical current at low magnetic field was observed, and interpreted as a
competition between heating and supression of the order parameter in the contact.

In contrast to the conventional proximity effect seen in the Ag nanowires, radically
different results were obtained on monocristalline Bi nanowires. From the measurement
of the resistance of segments of different lengths and Shubnikov de Haas oscillations,
we first show that the normal transport is dominated by surface states, and that both
bulk and surface states are diffusive with a mean free path of the order of the diameter
le ' 200 nm. Using superconducting proximity effect we revealed the existence of very
few narrow ballistic channels that are undetectable in the normal state. The interference
of the supercurrent carried by these channels lead to strikingly pure and robust SQUID-
like oscillations up to high field (several T). The period extracted from the two path
interference pattern correspond to one flux quantum across the area of the nanowires,
indicating that the paths are situated at opposite edges of the wires. In addition to this
orbital effect, a Zeeman effect (enhanced by the high g factors of the carriers) caused an
amplitude modulation of the supercurrent with a Tesla range period.

We investigated further these supercurrent carrying edge channels by measuring the
current phase relation of an already characterized Bi based Josephson junction, purposely
realized in Bi nanowire with toplogical (111) facets. From the measured sawtooth shaped
signal, we could unambiguously prove that these channels are ballistic and in the long
junction regime. Besides, from the beating of this main signal, a second ballistic channel
was found with a different period, demonstrating that this second channel is located on
a diametrically opposite edge. The ballistic character (over a length L > 1µm) suggest
a topological protection of these states. Additionally, the high transmission extracted
from these measurements suggests a nearly perfect Andreev reflection, as predicted for
a chiral quantum spin Hall edge state. These results are in agreement with our tight
binding simulations of Bi nanowires with rhombic section and (111) surface, that find
two diametrically opposite paths along which the density of states is concentrated, and
demonstrates spin-momentum locking.

In addition to those results obtained with high HC focused ion beam induced tungsten
superconducting contacts, we have also observed a two path interference pattern using
different superconducting contacts made of BiPd. This result came as a surprise since
they were obtained from pure sputtered Pd.
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The next step is to perform the measurement of the dynamical response of the phase
biased Bi based Josephson junction. This could uniquely uncover the topological protec-
tion suggested by the previous experiments. Indeed, as was also revealed by numerical
simulations during this thesis, the AC susceptibility can exquisitely distinguish between
avoided and topologically protected crossings. For this purpose, a test measurement has
been realized on a Au based SNS junction at low temperatures and high frequency, with
increased sensitivity by using a cryogenic RF amplifier. The insertion of the already
measured Bi based SQUID in a superconducting resonator was successfully realized and
should be measured soon.

Besides these measurements of supercurrents carried by edge states, other investiga-
tions of the quantum spin hall phase of Bi in the normal state could be imagined. For
example, detecting the magnetic moment of a few bilayers-thick crystal should reveal large
orbital currents that exist thanks to the protected edge states of Bi (111). One could also
directly probe the Aharonov Bohm oscillations of the resistance, resulting from normal
interferences of the edge states.
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Title : Superconducting proximity effect in monocrystalline bismuth nanowires

Keywords : mesoscopic superconductivity, topoological insulators, bismuth nanowires

Abstract : The superconducting proximity effect is a phenomenon occurring at low tem-
peratures that conveys superconducting properties to a phase coherent normal metal sample
connected to superconducting electrodes. It is also a powerful tool in mesoscopic physics because
it is sensitive to different transport regimes at low temperatures. In particular, we have used
this effect to reveal the special electronic transport properties of single crystal Bi nanowires.
In this system, the transport is dominated by surface states. Moreover, the presence of strong
spin-orbit coupling in Bi at low dimensions deeply influences its electronic structure : it was
predicted that (111) oriented Bi bilayer are insulating in the bulk, but conducting along the
edges. This so called Quantum Spin Hall Effect (QSHE), gives rise to counterpropagating chiral
edge states, that are protected against disorder as long as time reversal symmetry is present.
Through the observation of the resilience of the critical current in several samples at high ma-
gnetic field, along with SQUID-like interference pattern at low magnetic field, we showed the
existence of supercurrent carrying 1D edge states. The measurement of the current-phase rela-
tion using the asymetric SQUID technique on a previously characterized nanowire was realized
and further demonstrates that these edge states are ballistic. These findings are consistent with
tight-binding simulations that extend the known results for (111) Bi bilayer to nanowire-like
system. The addition of an in-plane Zeeman field allows one to observe 0 − π transitions, the-
reby revealing spin-splitting induced Andreev level crossings. Finally, microwave spectroscopy
measurement of the dynamical susceptibility in this system are initiated, that could reliably
demonstrate the property of protection against disorder according to numerical simulations. By
exploring Bi at low dimensions, this thesis paves the way towards the exploration of electronic
states fully protected from disorder.
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Titre : Supraconductivité par effet de proximité dans des nanofils de bismuth mo-
nocrystallins

Keywords : supraconductivité mésoscopique, isolants topologiques, nanofils de bismuth

Résumé : La supraconductivité par effet de proximité est un phénomène apparaissant à
basse températures qui confère des propriétés supraconductrices à un métal normal cohérent de
phase connecté à des électrodes supraconductrices. C’est aussi un outil puissant de la physique
mésoscopique, car il est sensible aux différents régimes de transport à basse température. En
particulier, nous avons utilisé cet effet afin de révéler les propriétés électroniques spéciales de
nanofils de Bi monocrystallins. Dans ce système, le transport est dominé par la surface. De plus,
la présence de fort couplage spin-orbite dans le Bi à basse dimension influence profondément sa
structure de bande : la bicouche de Bi orienté selon la direction (111) a été prédite d’être isolante
dans le volume, mais conductrice sur les bords. Cet effet, appelé l’effet Hall quantique de spin
donne lieu a deux états chiraux contra-propageants, qui sont insensibles au désordre tant que la
symmétrie par renversement du temps est préservée. A travers l’observation de la robustesse du
courant critique à fort champ magnétique dans plusieurs échantillons, en même temps que des
intérférences de type SQUID à bas champ magnétique, nous avons montré l’existence d’états de
bord 1D portant le supercourant. La mesure de la relation courant-phase grace à la technique
de SQUID asymétrique sur un nanofil caractérisé auparavant a été réalisée et démontre que ces
canaux sont en fait ballistiques. Ces résultats sont compatibles avec des simulations de type
liaisons fortes, qui étendent les résultats connus pour la bicouche de Bi (111) aux systèmes
de type nanofil. L’ajout d’un champ Zeeman dans le plan permet d’observer des transitions
0 − π, révélant ainsi des croisements de niveaux induits par la séparation en spin des états
d’Andreev. Enfin, des mesures de la susceptibilité dynamique de ce système via des mesures de
spectroscopie micro-onde ont été mises en place, et pourraient démontrer de manière univoque
la propriété de protection topologique contre le désordre, d’après nos simulations numériques.
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