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Abstract

Understanding the context of a home is essential in order to provide services
to occupants that fit their situations and thus fulfil their needs. One example
of service that such a context-aware smart home could provide is that of a com-
munication assistant, which can for example advise correspondents outside the
home on the availability for communication of occupants. In order to implement
such a service, it is indeed required that the home understands the situations of
occupants, in order to derive their availability.

In this thesis, we first propose a definition of context in homes. We argue that
one of the primary context dimensions necessary for a system to be context-aware
is the activity of occupants. As such, we then study the problem of recognizing
activities, from ambient smart home sensors. We propose a new supervised
place-based approach which both improves activity recognition accuracy as well
as computing times compared to standard approaches.

Smart home services, such as our communication assistance example, may
often need to anticipate future situations. In particular, they need to anticipate
future activities of occupants. Therefore, we design a new supervised activity
prediction model, based on previous state-of-the-art work. We propose a number
of extensions to improve prediction accuracy based on the specificities of smart
home environments.

Finally, we study the problem of inferring the availability of occupants for
communication, in order to illustrate the feasibility of our communication assis-
tant example. We argue that availability can be inferred from primary context
dimensions such as place and activity (which can be recognized or predicted using
our previous contributions), and by taking into consideration the correspondent
initiating the communication as well as the modality of communication used. We
discuss the impact of the activity recognition step on availability inference.

We evaluate those contributions on various state-of-the-art datasets, as well as
on a new dataset of activities and availabilities in homes which we constructed
specifically for the purposes of this thesis: Orange4Home. Through our con-

iii



ABSTRACT

tributions to these 3 problems, we demonstrate the way in which an example
context-aware communication assistance service can be implemented, which can
advise on future availability for communication of occupants. More generally,
we show how secondary context dimensions such as availability can be inferred
from other context dimensions, in particular from activity. Highly accurate activ-
ity recognition and prediction are thus mandatory for a smart home to achieve
context awareness.

Keywords Smart Home, Internet of Things, Context Awareness, Activity
Recognition, Activity Prediction, Availability Estimation, Machine Learning,
Dynamic Bayesian Networks.

iv



Résumé

Comprendre le contexte ambiant d’une maison est essentiel pour pouvoir
proposer à ses occupants des services adaptés à leurs situations de vie, et qui
répondent donc à leurs besoins. Un exemple de tel service est un assistant de
communication, qui pourrait par exemple informer les personnes hors de la
maison à propos de la disponibilité des habitants de celle-ci pour communiquer.
Pour implémenter un tel service, il est en effet nécessaire que la maison prenne en
compte les situations de ses occupants, pour ensuite en déduire leurs disponibilités.

Dans cette thèse, nous nous intéressons dans un premier temps à définir ce
qu’est le contexte dans une maison. Nous défendons que l’activité des occupants
est l’une des dimensions principales du contexte d’une maison, nécessaire à la
mise en œuvre de systèmes sensibles au contexte. C’est pourquoi nous étudions
dans un second temps le problème de la reconnaissance automatique d’activités
humaines, à partir des données de capteurs ambiants installés dans la maison. Nous
proposons une nouvelle approche d’apprentissage automatique supervisé basée sur
les lieux de la maison, qui améliore à la fois les performances de reconnaissance
correcte d’activités ainsi que les temps de calcul nécessaires, par rapport aux
approches de l’état de l’art.

Par ailleurs, ces services sensibles au contexte auront probablement besoin de
pouvoir anticiper les situations futures de la maison. En particulier, ils doivent
pouvoir anticiper les activités futures réalisées par les occupants. C’est pourquoi
nous proposons un nouveau modèle de prédiction supervisée d’activités, basé sur
des modèles de l’état de l’art. Nous introduisons un certain nombre d’extensions
à ce modèle afin d’améliorer les performances de prédiction, en se basant sur des
spécificités des environnements de maisons instrumentées.

Enfin, nous nous intéressons à l’estimation de la disponibilité des occupants à
communiquer, afin d’illustrer la faisabilité de notre exemple de service d’assistance
à la communication. Nous suggérons que la disponibilité peut être inférée à
partir des dimensions primaires du contexte, comme le lieu et l’activité (que l’on
peut reconnaitre et prédire à l’aide de nos contributions précédentes), mais en
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prenant également en compte le correspondant initiant la communication, ainsi
que la modalité utilisée. Nous discutons de l’impact de l’étape de reconnaissance
d’activités sur l’estimation de la disponibilité.

Nous évaluons expérimentalement ces contributions sur différents jeux de
données de l’état de l’art, ainsi que sur un nouveau jeu de données d’activités et
de disponibilités dans la maison que nous avons spécifiquement construit durant
cette thèse : Orange4Home. À travers nos contributions à ces trois problèmes,
nous démontrons l’implémentabilité d’un service d’assistance à la communication,
pouvant conseiller des correspondants extérieurs sur les futures disponibilités des
occupants de la maison. De manière plus générale, nous montrons comment des
dimensions secondaires du contexte, comme la disponibilité, peuvent être inférées
d’autres dimensions du contexte, comme l’activité. Il est donc essentiel pour
qu’une maison devienne sensible au contexte, que celle-ci dispose de systèmes de
reconnaissance et de prédiction d’activités les plus fiables possibles.

Mots-clés Maison intelligente, Internet des objets, Sensibilité au contexte, Re-
connaissance d’activités, Prédiction d’activités, Estimation de disponibilité, Ap-
prentissage automatique, Réseaux bayésiens dynamiques.
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CHAPTER 1

Introduction

A
utomation has been an important vector of progress in work efficiency,
scientific research, and quality of life. Clocks or mechanical calculators,
which are some of the first examples of automated systems, allowed

people to measure quantities or to perform calculations much more efficiently
and accurately. Advances in information technologies and computer science have
allowed the development of automation strategies on more complex subjects. In
particular, the increasing sensing and computing capabilities of everyday objects
has enabled new perspectives for automation.

One such perspective is that of home automation (sometimes called Domotics),
where we aim to automate daily tasks, chores, or energy management in the
home. Automatic regulation of heating and air conditioning, lighting control,
or energy consumption management are examples of use cases first considered
and developed when home automation arose. However, these services often did
not react properly with respect to users’ expectations, and thus became more of
a nuisance than a convenience [34]. Such inappropriate automation is a great
barrier to adoption for home automation technologies.

One of the commonly given reasons for these inappropriate results is the
difficulty of adapting the behaviour of an automation service to the specificities
and preferences of a particular household. In particular, it is often difficult to
infer the needs of occupants of a home based directly on low-level sensor data.
Moreover, automation for the sake of time saving is actually not often the main
reason for the adoption of similar technologies in homes: users are commonly
more interested in services that improve their quality of life instead [34].

Moreover, automation services are not the only kinds of services that can
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CHAPTER 1. INTRODUCTION

be provided in a home. Using the definitions of Crowley and Coutaz in [34],
classical automation would often fall into tool service and housekeeping service
categories, but not in advisor and media services, which provide information and
suggestions to occupants, or extend their perceptual capabilities. As such, the term
smart home is now preferred to home automation. Under this new denomination,
we take into consideration general computer-assisted home services, including
home automation itself. In this thesis, we study some of the algorithmic processes
required to provide general services in smart homes. We argue that these services
require knowledge on the context of the home, in order to avoid inappropriateness.
In particular, we study algorithmic solutions to obtain information about the
activity of occupants in homes (both present and future), which constitutes a
major part of context, from typical sensing devices that can be installed in a home.

In Section 1.1, we motivate our thesis work with an example of a communi-
cation assistant for the smart home. We show that, in order to provide such a
service, it is essential that the home can discover its internal context and know
about the activities and availabilities of its occupants. In Section 1.2, we present
our contributions on the problems of activity recognition, activity prediction,
and availability inference, in relation to our goal of providing a service of commu-
nication assistance in the home. Finally, in Section 1.3, we give a short overview
of each following chapter of the thesis.

1.1 Communication assistance in homes

One major aspect of the daily life of people is communication. With recent
technological advances, the number of communication modalities (through the
internet, smartphones, etc.) and thus potential contacts has significantly increased,
to the point where incoming communication attempts can become a nuisance.
A home that manages incoming communications for its occupants can thus be a
valuable service that improves quality of life.

Such a communication assistant could for example suggest appropriate mo-
ments for an outsider to call an occupant, based on that occupant’s availability
to communicate. It could suggest appropriate modalities of communication or
devices to reach an occupant: for example, if an occupant and their landline
phone are on different floors, the assistant can suggest to call on their mobile
phone rather than the landline phone. It could automatically delay the delivery
of messages such as e-mails until the occupant is available, in order to reduce their
mental load.

In order to implement such a communication assistant, it requires access
to information about the availability of occupants for communication. This
availability can greatly vary depending on the occupant’s identity, their daily
routine, the current time, the place they are in, their mood, or even outside events.
As such, a communication assistant cannot provide valuable services unless it
has access to personal preferences and situations of its occupants; if it did not, it

2
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would probably exhibit inappropriate behaviours and suggestions to outsiders
in a manner similar to past home automation systems. Moreover, such a system
may need to anticipate future situations of occupants, in order to give suggestions
for future availabilities of occupants.

Therefore, a communication assistant is a complex example of smart home
service that raises a number of algorithmic problems on context recognition
and prediction. We will thus use this example of communication assistance
as the motivating service for all our contributions in this thesis. In particular,
this service requires activity recognition, activity prediction, and availability
estimation capabilities.

Activity recognition The problem of activity recognition in smart homes con-
sists in automatically identifying the current activity of an occupant using only
data collected by sensors installed in the home. Smart home sensors typically
record low-level data such as temperatures, electrical consumptions, motion detec-
tions, door opening events, etc. Activities are complex sets of tasks performed by
an occupant with a set goal, such as cooking, showering, sleeping, etc.

Activity recognition must be as accurate as possible, so as to limit the possibil-
ity of providing inappropriate services that rely on activity information. However,
recognizing such complex activities from heterogeneous and individually poorly
informative sensors is difficult. In particular, the relationship between activities
and sensor data is highly dependent on occupants’ preferences, routines, and
moods, as well as the topology of the home and the existing sensor installation.

Activity prediction The problem of activity prediction in smart homes con-
sists in automatically predicting future activities of an occupant using their past
situations as well as their current situation. Specific instances of this problem in-
clude predicting the next future activity, predicting a sequence of future activities,
or predicting the next time of occurrence of each activity class.

Activity prediction, much like activity recognition, must be as accurate as
possible, both regarding activity labels as well as time of occurrence of these
activity instances. Activity prediction relies of previous situations and thus on
an activity recognition step, which is thus an additional source of confusion.
Routines of occupants can highly vary from one person to the next, from one
day to another, and unexpected changes can occur depending on the mood of
occupants, which is generally unobservable.

Availability estimation The problem of availability estimation in smart homes
consists in deciding whether a communication attempt from the outside would
inappropriately interrupt an occupant or not, based on their situation. We can
also anticipate if potential communication attempts at a future time would be
appropriate. Availability of an occupant can greatly vary from one situation to the
next, and is often difficult to precisely evaluate even for the occupant themselves.
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Few works study availability estimation in smart home settings. Availability
estimation has indeed been mostly studied in the context of professional environ-
ments and directly on smart phones, where availability is more easily decidable
and where communication assistance was seen as being valuable for a long time.
In smart homes, availability estimation should rely on the accurate identification
of situations, including activity. Linking situations to availability in homes is not
an extensively-studied problem.

1.2 Contributions of this study

We propose 4 main contributions in this thesis:

Orange4Home We propose a new dataset of labelled activities of daily living in
a realistic home setting, which we openly share. Availability for communication
of the occupant is also labelled in the dataset. We constructed this dataset such
that each algorithmic piece required for our motivating communication assistance
service can be evaluated on it. As far as we know, Orange4Home is the only
available dataset of availability for communication in smart homes.

Place-based activity recognition We propose a new activity recognition ap-
proach that relies on the relationship between context dimensions of place and
activity. More precisely, we suggest that instantiating different activity recognition
models depending on the place (with their own independent sets of sensors and
possible activity classes), independently from each other, will lead to simpler mod-
els and thus higher recognition accuracies compared to global approaches. We also
argue that such a non-monolithic approach allows modular training phases which
is valuable in smart homes and which will shorten computing times. We evaluate
the behaviour of our approach on a state-of-the-art dataset and Orange4Home.

PSINES for activity prediction We propose a new activity prediction model
called PSINES, which extends state-of-the-art work. We propose to use both con-
text information and sensor information to predict future activities. We propose
to model non-Markovian relationships between activity sequences, contrary to
most state-of-the-art solutions. We suggest to model the cognitive state of the
occupant using a latent unobserved variable. We argue that these 3 extensions
should greatly improve activity prediction accuracy. We evaluate the behaviour
of our approach on state-of-the-art datasets and Orange4Home.

Availability inference from context We propose to model availability for com-
munication in homes as a function of other context dimensions. We introduce
two context dimensions essential to infer availability: the correspondent that
initiate the communication, and the modality of communication used. Other
important context dimensions for availability estimation in homes include place
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and activity. We show that a baseline inference function based on this estimation
workflow can achieve high performances on Orange4Home. We evaluate the
impact of incorrect activity recognition on availability estimation.

1.3 An overview of the thesis

We present below an overview of each chapter of the thesis.

— Chapter 2 presents our definition of context in smart homes and the data
sources that can be used to observe this context. We first survey state-of-the-
art definitions of context in various fields of study, from which we give a
definition of context specifically for smart home environments. We define
in particular what we mean by activity of occupants in homes, which is a
major part of the context.
We then discuss the different categories of data sources that are typically
used in smart home systems: audio-visual sensors, wearable sensors, and
ambient sensors. We discuss the advantages and drawbacks of each type
of data source, and argue that ambient sensors should be primarily used.
This choice conditions our contributions, which have to adapt to these data
types.
Finally, we survey state-of-the-art datasets of activities recorded in smart
home environments. We use some of these datasets in our experimen-
tal studies. We propose a new dataset of activities of daily living, called
Orange4Home, following a discussion on the issues commonly found in
state-of-the-art datasets.

— Chapter 3 presents our contributions to the problem of activity recognition.
We first introduce the problem in more details as well as the underlying
assumptions we make. We then survey previous works in the literature on
this problem and discuss some of the drawbacks that appear among them.
Following these first 2 sections, we present our place-based activity recog-
nition approach, and our motivations for its design. We discuss the main
advantages of this approach compared to state-of-the-art approaches. We
emit a number of hypotheses that we expect to verify experimentally.
We finally present a number of experimental results on the performances
and computing times of the place-based approach compared to global ap-
proaches. We use the Opportunity dataset found in the literature [128] as
well as Orange4Home, for these experiments. We confront our hypotheses
to these results.

— Chapter 4 presents our contributions to the problem of activity prediction.
The word “prediction” has many meanings in the literature. We provide
a proper definition of prediction, and present the assumptions we make
about the problem. We survey the state of the art of activity prediction (in
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the sense that we previously defined) and identify in particular a promising
model that we think can be substantially improved.
From this model, we propose 3 main extensions to improve prediction
performance. We discuss the motivations for each of the 3 extensions, and
propose a combined model called PSINES. We emit a number of hypotheses
that we expect to verify experimentally on the behaviour of PSINES.
We finally present a number of experimental results on the prediction per-
formance of PSINES, intermediate models, and state-of-the-art approaches.
We use a group of 5 related datasets from the CASAS project [32], as well
as Orange4Home, for these experiments. We confront our hypotheses to
these results.

— Chapter 5 presents our contributions to the problem of availability estima-
tion. We define availability estimation as the problem of evaluating whether
occupants of homes are willing to be interrupted by remote communica-
tions. We then survey state-of-the-art works on availability inference in
professional environments, on smart phones, and in smart homes.
We then propose to model availability as a function of other context di-
mensions, which include in particular place, activity, correspondent, and
modality of communication. We present a workflow for inferring avail-
ability following activity recognition or prediction (using our previous
contributions on both of these problems), and propose a simple averaging
inference approach as a baseline. We discuss on what domains of values
should be assigned to the context dimensions of correspondents, modalities,
and availabilities.
We finally present experimental results on availability inference following
an activity recognition step (using place-based activity recognition). We
use the Orange4Home dataset for these experiments, as it is the only smart
home dataset containing labelled availabilities, as far as we know. We study
the impact of the activity recognition step on availability inference.

— Chapter 6 concludes the thesis with a summary of our contributions, and
their impact on future work. We finally discuss the limitations of our
contributions and propose some potential perspectives to address these
shortcomings.
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CHAPTER 2

Context in the home

P
roviding context-aware services to occupants of a smart home presup-
poses that this smart home is able to discover and maintain knowledge
of said context. In order to properly implement general public smart

home systems with such context-aware capabilities, it is first and foremost nec-
essary to precisely define what we mean by context. This is the goal of Section
2.1, in which we clarify in particular the role of occupants’ activities as context
information. Following this definition, we survey in Section 2.2 the main cate-
gories of sensors that can be used to collect data about the home, and from which
algorithms can infer the activity of occupants. We discuss which of these cate-
gories is well-adapted to general public smart home systems. Finally, we present
in Section 2.3 the first contribution of this thesis: Orange4Home, a dataset of
daily living activities in the home, following an analysis of the characteristics of
similar state-of-the-art datasets.

2.1 Modeling context in the home

In this section, we propose an explicit definition of what context is in homes,
as well as related terms. In particular, we explain how the activity of occupants is
one of the keystones of context information according to our definition, and thus
that it is fundamental for a smart home system to be able to automatically recog-
nize these activities so as to be context-aware. This definition work, presented in
Section 2.1.2, is preceded by a survey of state-of-the-art definitions of context in
Section 2.1.1, which constitute the foundation of our proposed definition.
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2.1.1 Context as defined in the literature

We present in the following subsections 4 significantly different definitions
of context from various fields of computer science, as well as examples of how
those definitions apply to a situation of living in a home. An extensive survey of
state-of-the-art definitions of context is proposed by Bazire and Brézillon in [15].

2.1.1.1 Context as the location and changes of nearby people and

objects

In [132], Schilit and Theimer first introduced the notion of context-aware
computing. In this paper, they report that the spread of new mobile objects
with computing capabilities, as well as the emergence of distributed computing
on those mobile objects, lead to a new paradigm of computer interactions and
executions. Indeed, contrary to the relatively fixed environment of a personal
computer, the environment of execution and interaction with mobile devices is
greatly dependent on the types and locations of such devices.

Consequently, the definition of context given by Schilit and Theimer (and as
reformulated by Crowley et al. in [35]) is the following:

Definition 2.1 (context according to [132], as reformulated by [35]). “[Context
is] the location and identities of nearby people and objects and changes to those objects.”

Unsurprisingly, this definition is grounded in the field of distributed mobile
computing, as evidenced by the restriction of context to nearby (in the physical
sense) people and objects.

Example: Context of a home occupant using Definition 2.1
Jane Doe is watching TV on the couch in her living room. Context in this example
is thus that Jane Doe, her TV, her TV remote, and her smartphone are all located
close to each other in the living room.

2.1.1.2 Context as computationally available information

Hirschfeld et al. present in [66] a new programming approach, context-
oriented programming, in response to the lack of clear programming designs to
use in current programming languages so as to address the need for programs to
adapt their behaviour to their execution context.

Context in context-oriented programming is defined as such:

Definition 2.2 (Context according to [66]). “Any information which is computa-
tionally accessible may form part of the context upon which behavioural variations
depend.”

Therefore, according to this definition, context is limited only to information
which may be captured and then transmitted to the program. This implies that
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context is closely tied to the sensors that are used to capture it; information
that cannot be captured by the system (due to a lack of instrumentation), and
information that no sensor is known to capture (due to a lack of scientific and
technological advances) are thus not considered to be part of context.

Example: Context of a home occupant using Definition 2.2
Jane Doe’s TV can send various information to the smart home system: that the TV
is on, that the current channel displayed is Channel 1, and that the sound volume is
at 42%. Those 3 pieces of information constitute Jane Doe’s context, assuming no
other element sends information to the smart home system.

2.1.1.3 Context as a subjective view of the world

Giunchiglia argues in [57] that context is both a local and a partial view of
the state of an individual. He proposes the following definition of context:

Definition 2.3 (context according to [57]). “Context is a theory of the world which
encodes an individual’s subjective perspective about it.”

This definition relies on the viewpoint of Giunchiglia that the context of an
individual is used by this individual to reason about a goal. Therefore, this context
is necessarily limited to the sensing capabilities, the modelling capacities and the
reasoning abilities of that individual. It is thus subjective and incomplete. The
complete, objective state of the world at a specific moment in time is called a
situation by Giunchiglia.

Following this definition, Giunchiglia et al. model context in practice as the
union of 4 different pieces of information [58]:

— the temporal context (i.e. your current activity);
— the spatial context (i.e. your location);
— the social context (i.e. the other people you are with);
— the object context (i.e. the objects you are with).

Example: Context of a home occupant using Definition 2.3
Jane Doe’s personal context comprises the following 4 aspects: her temporal context
is that she is watching Channel 1 on her TV; her spatial context is that she is on the
couch in her living room; her social context is that she is alone; her object context is
that she is near her TV, the remote of her TV, and her smartphone.

2.1.1.4 Context as characterization of situations of entities

In [46], Dey and Abowd survey previous definitions of context and context-
awareness used in the literature of ubiquitous computing. They notice that,
although most researchers have an approximate idea of what context is, context
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is generally not a well-defined term. In particular, Dey and Abowd consider
the definitions of context given in the few articles they surveyed to be too
specific: they are either definitions based on examples, which makes them difficult
to apply to new applications, definitions based on synonyms, which shift the
burden of proper definition on those synonyms, or definitions based on specific
applications, which makes them non-generalisable (Definition 2.1 and Definition
2.2 are examples of such specific definitions).

Following those observations, Dey proposes in [45] this very general defini-
tion of context:

Definition 2.4 (context according to [45]). “Context is any information that can
be used to characterise the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a user and an application,
including the user and applications themselves.”

Here, as opposed to Definition 2.3, there is no notion of locality or subjec-
tiveness. Any information, whether it is known by the entity or not, that can be
used to characterize its situation in the world, is context information. In addition,
Dey makes it clear with his definition that context information can be, to him,
attached to any entity in general; Definition 2.3 uses the term “individual” which
suggests context can only be attached to persons.

Based on this definition, Dey and Abowd argue in [46] that there are 2

main levels of context information: primary context constitutes the first level,
and everything else the second level. Primary context comprises the following
elements: identity, time, location and activity. These levels are introduced because,
according to Dey and Abowd, context information in the second level can be
obtained from one or more pieces of primary context information.
Example: Context of a home occupant using Definition 2.4
Jane Doe has 4 primary context attributes while watching TV: her identity is Jane
Doe, her location is the living room (and more precisely, the couch in the living
room), her time is the date and time indicated by her smartphone, and her activity
is that she is watching TV. The channel she is watching, which is another piece of
context information, can be indexed on her activity of watching TV.

2.1.2 Our definition of context

The definitions of context presented in Section 2.1.1 have varying degrees
of applicability in smart home systems. Definition 2.1 and Definition 2.2 are
domain-specific definitions (respectively within mobile computing and within
programming languages) that are rooted to examples of those domains. As
mentioned in Section 2.1.1.4, such example-based definitions are difficult to apply
to other domains and thus to smart home systems.

Definition 2.1 does not consider for example time to be part of the context,
although it is obvious that the period of the day (the morning, the night, etc.)
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can have a big influence on the global context of a home. This definition is thus
too specific to be applied to smart homes.

Definition 2.2 includes all computationally available data as a potential part of
the context; computational availability is indeed a limitation that a smart home
system faces on the context it manages. This definition does not say anything
about what the data actually are and from what they are generated. This definition
is thus not very informative when applied on smart homes.

Definition 2.3 limits context to what is known by people and is as such not
applicable to smart homes. Indeed, the home may need to provide services,
such as housekeeping services as described by Crowley and Coutaz in [34], that
require knowledge of the context of the home regardless of whether it is currently
occupied. Therefore, the context managed by the home is not limited to the
subjective view of one of its occupants, contrary to this definition; the home can
have a more extensive knowledge of the current context than its occupants.

Definition 2.4 is general enough that it can applied to smart homes. However,
in this definition, there is no clear distinction between types of information, the
set of those types, or the actual values received by the system. They are all grouped
under the word “context”, which is limiting when talking about smart home
systems. Indeed, types of information that can be used by smart homes, such as the
identity of an occupant or their activity, are often determined by the sensors and
the algorithms that are deployed in the home. In particular, information about the
activity of occupants relies on activity recognition algorithms, which is the main
subject of this thesis. Moreover, types of information are often interdependent:
for example, your current time depends on your location (because of time zones),
or even on your movement if your are travelling at a relativistic speed. Therefore,
explicitly defining those types of information independently from the set of
those types is important, as we cannot discuss their interdependences and uses in
algorithms if they were all defined to simply be “context”.

Following those observations, we propose the following Definitions 2.5, 2.6,
and 2.7 of context dimensions, context and situations for smart homes:

Definition 2.5. A context dimension in the homeDi is a type of information that
can be used to characterize the situation of a home entity. A home entity is an occupant,
a visitor, a pet, a sensor, an actuator, an object of the home, or the home itself.

Definition 2.6. The context of a home entity is the set {D1, . . . , Dn} of context
dimensions of this entity.

Definition 2.7. A situation {d1, . . . , dn} is a specific instance of context, where d1,
. . . , dn are set values for each of the context dimensions.

Example: Context of a home occupant using Definitions 2.5, 2.6 and 2.7
Context dimensions that are relevant for us to describe Jane Doe’s situation include
her identity, the current time, her location in the home, and her activity (other
dimensions such as the ambient temperature could be included if a service required
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such information). The set of those dimensions is the context of Jane Doe that the
smart home system will manage. {Jane Doe, evening, living room, watching TV}
is the current situation of Jane Doe in the home.

We will use Definitions 2.5, 2.6, and 2.7 when talking about context dimen-
sions, context and situations in the rest of this thesis. In the following subsections,
we discuss in more details on context dimensions in homes: in Section 2.1.2.1,
we present 4 primary context dimensions that are important to characterize the
context of a home occupant. Activity, which is one of those primary context
dimensions, has many different definitions that we aim to unify in Section 2.1.2.2.

2.1.2.1 Primary context of occupants: {identity, time, place, activity}

Although context can comprise, in our definition but also in state-of-the-
art ones, any context dimension that is a relevant source of information to
provide context-aware services, it often contains in practice a limited set of
specific context dimensions. For example, as presented in Section 2.1.1.3, only
4 context dimensions (temporal, spatial, social and object) are used in practice
to model context in [58]. Dey and Abowd argue in [46] that context-aware
applications typically require the answer to the following 4 questions about the
entities they need to serve:

— who are you?

— when are you?

— where are you?

— what are you doing?

This leads them to assert that, in practice, 4 context dimensions (which they name
primary context types) are more important than others: identity, time, location,
and activity.

Although it is possible to imagine services that do not require knowledge about
some of those context dimensions (for example, a basic automatic lighting control
system may not necessarily need to know the identity of the person entering the
room), it indeed appears that those 4 context dimensions are very often necessary
to build context-aware services in smart homes. Understanding routines of living
of occupants, which is the main subject of this thesis, is fundamental for many of
such services. The routine of an occupant (which we first need to identify) is the
sequence of activities in time of that occupant, throughout the various places of
their home.

Therefore, we will adhere to the assertion of Dey and Abowd, fitted to the
subject of this thesis, that identity, time, place (or location), and activity are
essential context dimensions to provide context-aware services to occupants of
smart homes. We define this primary context, using previous Definitions 2.5 and
2.6, in Definition 2.8:
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Figure 2.1 – Hierarchical structure of an activity in smart home research.

Definition 2.8. The primary context of occupants in smart homes is the set of primary
context dimensions {identity, time, place (or location), activity}.

2.1.2.2 What is the activity of an occupant?

The word “activity” is very common in regular speech as well as in scientific
discourse. As such, it is a very overloaded word that is not always properly
defined. In the following section, we report definitions of “activity” (and related
terms) in smart home research as well as other fields of computed science which
deal with activities. We then propose a unified terminology that we will use for
the rest of this thesis.

Smart home In parts of smart home research, activities are ranked by levels:
authors usually distinguish low-level activities (e.g. walking, sitting) from high-
level activities (e.g. cooking, watching TV) [75]. Some authors also introduce
mid-level activities [128]. The general idea is that activities of higher levels are
constituted of activities of lower levels (see Fig. 2.1).

High-level activities in smart home research are often described as Activities
of Daily Living (ADLs). In datasets and various studies, ADLs are chosen based
on what was chosen in previous works and don’t always involve such level-based
hierarchies.

Activity theory According to Kaptelinin and Nardi, activity is defined, in
activity theory, as “a unit of subject-object interaction defined by the subject’s motive”
[73]. Activities are thus motivated by the needs the subject has for the object (i.e.
their motive).

Activities in activity theory can be represented as hierarchical structures with
3 layers: the activity layer, the action layer, and the operation layer [73]. In
activity theory, activities are thus composed of actions, which are themselves
composed of operations (see Figure 2.2).

An activity is directed by a motive, that is the object that the subject wants to
attain. A motive may not be immediately conscious; making motives conscious
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Figure 2.2 – Hierarchical structure of an activity in activity theory.

can require special effort from the subject [91]. An action is directed by a goal. A
goal is conscious: the subject is aware of the goal they want to attain. An operation
is directed by a condition. A condition is relative to the goal of the parent action,
that is, the goal of an action must be attained under a set of conditions, which
are attained by the operations that constituted the action. The subject is typically
unaware of operations. Operations can be improvised.

As the subject learns and repeats certain actions, some of those actions can
become operations. This process is called automatization (and the opposite process
deautomatization). The main difference between actions and operations in activity
theory is thus that operations are automatized (and thus mostly unconscious)
[73]. Similarly, an action can become an activity, and thus a goal can become a
motive.

Computer vision In a survey paper by Moeslund et al. [103] on vision-based
human motion analysis, it is mentioned that words such as actions, activities,
simple actions, etc., are often used as synonyms of each other, with little care from
authors in the field. They thus propose to use the following hierarchy: action
primitives are atomic movements at the level of limbs; actions are sets of action
primitives which describe whole-body movements; activities are sets of actions
which give interpretations to what the subject is doing (see Figure 2.3). This
hierarchy is also used in [121], another more recent survey paper in the field of
computer vision.

Automated classical planning In automated planning theory, the problem of
planning is to establish a set of actions, corresponding to a sequence of states
transitions, to reach a goal state from an initial state [56]. This set of actions
is called a plan [56] or a task [55] (see Figure 2.4). Activity in this field is a
frequently used word but does not seem to be a well-defined term with a unique
meaning.

Hierarchical task network planning In hierarchical task network planning,
the problem of planning is to establish a set of tasks, to reach a goal state from an
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Figure 2.3 – Hierarchical structure of an activity in to computer vision.
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Figure 2.4 – Hierarchical structure of a plan in planning theory.

initial state [56]. Each task is composed of other sub-tasks, except for primitive
tasks. The root of those tasks is called a plan or simply a task (see Figure 2.5).

A unifying view As we can see, the definition of an “activity” varies heavily
from domains to domains, and also from person to person inside the same domain.
In order to clearly specify what is meant by activity, tasks, and related terms in this
thesis, we thus propose in Table 2.1 a unified hierarchical model of activity, which
we will use in the rest of this thesis, put in correspondence with the previously
presented hierarchies.

In this unified model, an activity is a set of tasks directed by an activity goal.
The subject of the activity is consciously or unconsciously aware of the activity
goal. Nonetheless, the activity goal can always be explicited by the subject, with

Plan/Task

Task Task Task

Primitive
task

Primitive
task

Primitive
task

Goal state

State

State

Figure 2.5 – Hierarchical structure of a plan in hierarchical task network planning.
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Table 2.1 – Comparison of the terminology used for hierarchical models of activity
in different fields of research, as well as the unified terminology used in this thesis.

some effort (i.e. the subject can understand and explain why they perform this
activity). The activity goal is set, consciously or unconsciously, by the subject.

A task is a set of actions directed by a task goal. The subject is consciously
aware of this task goal. The task goal is either set by the following task goals in
the activity (i.e. some tasks need to be completed before doing other tasks) or by
the activity itself (i.e. some tasks need to be completed to perform an activity).

An action is a set of gestures directed by an action goal. The subject is con-
sciously aware of the action goal. The action goal is set by the environment of
the subject.

A gesture is an atomic movement of the subject directed by a gesture goal. The
subject is not aware of the gesture goal but rather performs it automatically. The
gesture goal is set by the environment and the morphology of the subject.

Example: Cooking in the home
Cooking is an activity directed by the goal of obtaining edible food that I like
(which is a goal I knowingly set myself). To do this activity, I need to perform a set
of tasks, among which there is the task of boiling water. This task is directed by the
goal of obtaining boiling water, which is a necessary condition to perform the next
task, cooking pasta (which is itself directed by the cooking activity). To boil water,
I need to perform certain actions, such as filling a saucepan with water. This action
is dependent on my environment, that is the saucepan and water tap of my kitchen.
To complete this action, I need to perform certain gestures, such as grabbing the
saucepan. This gesture is dependent on the saucepan and my own ability to grab it.
I am not consciously aware of what I need to do to grab a saucepan.

2.2 Capturing activities in the home

The ability of a smart home system to recognize and predict the activities of
its occupants heavily relies on the sensors it has access to in order to observe those
activities. We make the basic assumption that similar sensor data will represent
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similar situations, such that smart home sensors can be used to discover context
and thus activities in particular [133]. With an inadequate sensors environment, it
is possible that certain classes of activities would be undistinguishable from each
other using all available data. It is even possible that certain instances of activities
would take place in parts of the home not covered with sensors.

Nevertheless, over-instrumenting homes is not a good solution to this prob-
lem: sensors can be expensive, not well accepted by occupants, and having too
much data can pose algorithmic problems. In the following sections, we present 3
main categories of sensors that are typically used in smart home systems: cameras
and microphones, wearable sensors, and ambient sensors. We discuss on which of
these categories is the better candidate to collect data in a general public smart
home system.

2.2.1 Cameras and microphones

Understanding scenes and identifying activities of people from images and
video streams is one of the many applications of computer vision [141]. Recog-
nizing activities of occupants in smart homes is thus a research problem that can
be approached from this angle, especially considering how active and large the
current computer vision research community is. For example, in [169], ADLs are
recognized from RGB-Depth cameras that are placed at different fixed viewpoints
and under different lighting conditions. On the other hand, in [120], ADLs are
recognized from a camera mounted on the chest of occupants, so that videos are
captured with a first-person viewpoint.

In much the same way, recognizing activities from sound is also an approach
used in smart home research. We find numerous examples such as [134] or [157]
where microphones are used to captured audio streams throughout the home,
used as the sole data collection modality to recognize activities of occupants.

In recent years, various cognitive assistants, such as the Google Home or
the Amazon Echo, have been introduced in the consumer market. Such systems
always include microphones, but also sometimes even cameras [50]. As such,
these cognitive assistants can, in addition to their standard uses, be used as data
sources for activity recognition.

2.2.2 Wearable sensors

Wearable sensors have been prominently featured in healthcare and elderly
care research in homes, where they can be used to conveniently collect physio-
logical data such as heart rate, blood pressure, etc. [126]. Inertial sensors (i.e.
accelerometers and gyrometers) are also commonly used: for example, in [67],
such sensors help identify body postures, and wearable RFID tags are used to
capture hand activities. In general, wearable sensors are often used in conjunction
with non-worn sensors, as in [156]. Recognizing activities, postures or location
from wearable sensors, as in [88, 119], is also an active research subject.
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Inertial sensors are nowadays commonly found in smartphones. This has thus
motivated researchers to use them as wearable sensors for activity recognition in
general, as in [81]. Since smartphones are often carried by people in their homes,
they could thus be included as potential wearable data sources for smart home
systems.

2.2.3 Ambient sensors

The last main category of data sources is that of ambient sensors. These
sensors are placed at fixed points in the home and typically capture atomic,
low-level data about the home. Motion detectors, temperature probes, plugs
which measure their energy consumption, door opening sensors, connected light
switches, etc., are example of ambient sensors which record physical and state
information about appliances, rooms, and the home in general [10].

Although such sensors were historically used in home automation systems,
where the simple data they produce could be used to trigger actions automatically
in the home, there is growing interest in using such modalities in activity recog-
nition systems. Indeed, these sensors are often small and not as expensive as the
previous two categories; as such, covering the entire home with data collection
capabilities is possible with ambient sensors. For these reasons, state-of-the-art
approaches of activity recognition in the home rely on these data sources, as in
[145, 80, 93].

2.2.4 Discussion

As illustrated in the previous sections, each of those 3 categories of sensors are
commonly used as data sources for activity recognition in homes. Some studies
even make use of more than one of these categories of sensors: for example, in
[117], both a wearable headset containing a 3-axis accelerometer, and a video
camera, are combined to enhance activity recognition performances. However,
it is not clear from these examples that all 3 categories of sensors are equally
acceptable data sources for our study, which focuses on general public smart
home systems.

Indeed, many examples we previously mentioned are aimed towards Ambient
Assisted Living (AAL) for the elderly and for people with medical conditions.
Such applications are significantly different from general public smart home
services. Consequently, the suitability of the 3 categories of sensors can also
significantly vary for our purposes.

2.2.4.1 Acceptability

Acceptability is one of the main problems of home instrumentation: privacy
concerns can indeed lead people to reject smart home technologies. Since sensors
are the most physically visible parts of a smart home system, they can often
be the first reason that motivates people to reject such technologies. Townsend
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et al. show in [146] that, in the context of AAL, wearable sensors measuring
physiological data are typically better accepted than wearable sensors, while
cameras were the least accepted category of sensors. Debes et al. draw the same
conclusions in [42]. Indeed, they argue that the first two categories of sensors
capture significantly less sensitive data compared to cameras, which makes the
trade-off between privacy and usefulness fair for occupants. Similarly, complete
audio streams can contain sensitive conversations that occupants would not want
recorded.

For general public smart home systems, these acceptability concerns are very
similar. In fact, it is likely that the threshold for rejecting sensors is even lower
than in AAL applications, as occupants do not have health concerns that would
make them accept worse trade-offs between privacy and usefulness of collected
data. In particular, this means that wearable sensors, especially those collecting
health-related data, are likely to be less accepted in general public populations
than in typical AAL populations.

2.2.4.2 Expensiveness

Another common concern in the adoption of smart home technologies,
especially for the general public, is that of the cost of such installations. Lara et
al. argue in [84] that using ambient sensors in smart homes implies significant
installation and maintenance costs. Indeed, since these sensors typically capture
very little information by themselves, a high number of such sensors is required
to comprehensively capture activities in the home. Installation and maintenance
is thus time consuming, and the required mass of sensors counterbalances their
individual costs. However, we can hypothesize that the cost of such sensors
will decrease as smart home systems democratize. Similarly, it is possible that
future homes will be directly instrumented during construction, thus reducing
installation costs.

On the other hand, smartphones are expensive systems compared to ambient
sensors. Moreover, not every occupant of a home owns one (e.g. children).
As such, using smartphones as wearable sensors is problematic as they would
potentially not cover every occupant in a home.

Cameras and microphones are quite expensive compared to the other two
categories of sensors. High definition, in terms of image or of audio, are most
likely required to properly capture activities in the home, which increases costs
even further.

2.2.4.3 Conclusion

Among the 3 main categories of sensors typically used in smart home systems,
it appears that ambient sensors currently are the most likely to integrate well in
systems aimed at the general population. They capture atomic, low-level data
which considerably lowers privacy concerns (especially compared to cameras
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and microphones). They are less cumbersome than wearable sensors, which is
important for occupants of the general public who do not have health issues
that would make them accept to wear such sensors more willingly. Ambient
and wearable sensors are generally less costly than vision and sound based data
collection systems.

For these reasons, we will, in this thesis, study the problem of activity recogni-
tion and prediction from ambient sensor data, or occasionally from a combination
of ambient sensors and wearable sensors.

2.3 Datasets of activities in the home

In order to both train and evaluate activity recognition and prediction algo-
rithms, datasets of labelled activities are a necessity. Recording such datasets is an
expensive and difficult process. Indeed, very few instrumented homes currently
exist; it is thus often required to equip a home with sensors for the purposes of
data collection, which is costly and technically demanding. Secondly, labelling ac-
tivities, often over long periods of time, is a tedious, but crucial process; a dataset
with inaccurate labels loses much of its value. Finally, the diversity of home
layouts and households is so large that many such datasets should be recorded, in
order to get a sufficiently representative sample of activities in homes.

In Section 2.3.1, we present examples of such home activity datasets that are
openly shared to the scientific community. We discuss their strong points, as well
as their drawbacks in the context of our study. We then present in Section 2.3.2 a
new dataset of activities in the home, constructed to fill in the specific needs of
this thesis, and that we openly share to the scientific community.

2.3.1 State-of-the-art datasets

We present in this section a number of state-of-the-art datasets available in the
literature.

2.3.1.1 Opportunity

The OPPORTUNITY Activity Recognition Dataset [128] is presented as
a benchmark dataset for algorithms related to human activity, such as activity
recognition or activity segmentation. This dataset comprises two main scenarios,
performed by 4 subjects (independently from each other):

— ADL run: this scenario consists of the following sequence of activities: Start,
Groom, Relax, Prepare coffee, Drink coffee, Prepare sandwich, Eat sandwich,
Cleanup, Break. This scenario is performed 5 times by each subject. An
example of data collected during such a scenario is presented on Figure 2.6.

— Drill Run: this scenario consists of 20 repetitions of the following specific
sequence of actions: Open the fridge, Close the fridqe, Open the dishwasher,
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Figure 2.6 – Inertial energy of an accelerometer on the back of a subject during a
scenario of data collection in the Opportunity dataset.

Close the dishwasher, Open drawer 1, Close drawer 1, Open drawer 2, Close
drawer 2, Open drawer 3, Close drawer 3, Open door 1, Close door 1, Open
door 2, Close door 2, Toggle switch, Toggle switch, Clean the table, Drink while
standing, drink while seated.

Both of these scenarios took place in a single experimental room (see Figure
2.7) instrumented for the purposes of this data collection, which lessens its
representativeness of real inhabited homes. Each subject was equipped with 7

inertial measurement units (3D accelerometer, 3D gyrometer, 3D magnetometer),
12 3D accelerometers, and 4 3D coordinates measurements from a localization
system. 12 objects of the room were equipped with 3D accelerometers and 2D
gyrometers. Finally, appliances and doors of the room were instrumented: 13
switches and 8 3D accelerometers were used for this purpose. In short, nearly half
of all sensors used in this dataset are body-worn sensors, which is not acceptable
for systems aimed at the general population, as explained in Section 2.2.2.

Data were synchronized so that each row of input data corresponds to exactly
one timestamp; we thus have at each timestep the current value of each sensor.
The dataset contains a sizeable amount of missing values, which as explained by
the authors are partly due to the loss of messages from wireless sensors.
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Figure 2.7 – Experimental setting of the Opportunity dataset.

At each timestep, 5 different labels are also provided: the gesture made by the
left hand of the subject (e.g. Reach door), the gesture made by the right hand
of the subject, the action of the subject (which is generated automatically from
gestures, e.g. Open door), the activity of the subject (of which there are 5 classes,
e.g. Prepare sandwich), and the modes of locomotion of the subject (e.g. Sitting,
Walking).

2.3.1.2 The CASAS datasets

CASAS is a smart home design and instrumentation kit developed by re-
searchers at Washington State University [32]. The goal of this project is to
allow the quick, straightforward, and inexpensive instrumentation of any home
with state-of-the-art smart home sensing technologies. As such, more than 30

datasets of daily living captured using the CASAS project are available to the
scientific community [1]. These datasets were generally captured in homes of 1 or
2 occupants, and contain the true labels of activities performed by the occupants
during the entire duration of the data collection phase.

The instrumentation kit comprises motion sensors, light sensors, door open-
ing sensors, as well as temperature sensors. The datasets recorded using the
CASAS kit thus only contain these data sources, which may be limiting when
studying the value of various data sources when capturing context in the home.
Similarly, this may limit the amount of information captured in the dataset, for
example when occupants’ activities cannot be distinguished clearly using only
these data sources.

22



2.3. DATASETS OF ACTIVITIES IN THE HOME

2.3.1.3 The Transfer Learning dataset

The Transfer Learning dataset [153] is a dataset that contains the records
of 3 subjects (26, 28, and 57 years old) living in 3 different homes (a 3 rooms
apartment, a 2 rooms apartment, and a 2 story house respectively). Each home
was instrumented with (14, 23, and 21 respectively) sensors for a period of (25, 13,
and 18 respectively) days.

Activities were segmented and labelled by each user in situ, using a Bluetooth
headset for the first 2 apartments, and using handwritten notes for the 2 story
house. There are 8 activity classes as well as one extra class for activities that were
not labelled by the user:

— leave house,
— take shower,
— go to bed,
— prepare dinner,
— other.

— toileting,
— brush teeth,
— prepare breakfast,
— get drink,

The dataset offers data as a sequence of timestamped sensor events; it has not
been synchronized. All sensors provide binary data about an event in the home:
reed switches detect the opening and closing of doors, passive infrared sensors
detect movement in rooms, etc.

2.3.1.4 Activity recognition in the home dataset

Tapia et al. present in [145] a dataset that contains the records of 2 subjects
(2 women, 30 and 80 years old), both living alone in their apartments. The
apartment of the 30 years old subject was instrumented with 77 state-change
sensors, while the apartment of the 80 years old subject was instrumented with 84

state-change binary sensors (see Figure 2.8). Data were collected for 14 consecutive
days in each apartment. This dataset was recorded with the intent of evaluating
activity recognition algorithms that can serve healthcare applications, such as
elderly care, as opposed to general public smart home systems.

Activities were segmented and labelled by the subjects themselves, using a
Personal Digital Assistant (PDA) every 15 minutes while the subjects were at
home. 35 different classes of activities are considered in this dataset, based on a set
of activity categories proposed by Robinson et al. in [127].

As indicated by the authors, this labelling approach was very coercive to the
subjects, who didn’t always label their activities when the PDA asked them to
every 15 minutes; the subjects also did not at times label the activity properly,
or with the correct time period. Therefore, the authors, with the help of the
subjects, labelled sizeable amounts of data by hand after the experiment ended,
by observing sensors events.
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Figure 2.8 – Examples of state-change sensors in one of the 2 homes instrumented
for the activity recognition in the home dataset.

2.3.1.5 MavPad 2005

The MavPad 2005 dataset [166] provides the records of 8 weeks of living
of a subject in a student apartment. This apartment was instrumented with 76

heterogeneous sensors: lightings usage, temperature sensors, humidity sensors,
motion detection, door openings, water leakage sensors, smoke detectors, and
CO2 level sensors.

This dataset does not contain any labelling of activities, tasks, actions, or
gestures, and thus cannot be used to evaluate the performances of algorithms
related to activity recognition. It is instead used by its authors to evaluate sensor
events prediction algorithms, in particular motion detection and interactions with
the lighting system. Although those events are heavily correlated to the activities,
tasks, actions, and gestures of inhabitants, they do not directly describe those
elements and are much less informative than them for context-aware services.

2.3.1.6 Discussion

In general, most state-of-the-art datasets of activities in smart homes are diffi-
cult to apply in the context of this thesis for two main reasons: representativeness
issues and exploitability issues. The previously presented datasets highlight those
aspects.

Datasets are indeed often not representative of the problems we want to
tackle in this thesis, which is general public smart home systems. For example,
many research programs on activity recognition were devised for elderly care
or healthcare applications: the dataset presented in Section 2.3.1.4 is one such
example of dataset. Those applications typically have different requirements than
general public applications. In particular, the routines of activities of elderly
people or people with health issues can greatly differ from the routines of the
general public; incidentally, research in this area is more concerned with detecting
deviations from the routine (which could indicate degrading health for example)
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rather than recognizing activities that feet the learned routine, which can be used
to provide services in systems aimed at the general public. Another example of
representativeness issues is that some datasets, for example Opportunity presented
in Section 2.3.1.1, are recorded in experimental environments that do not mimic
closely the complexity of a real home. As such, the interactions of the user with
their environment can vastly differ from interactions in a real home.

Datasets can also be unrepresentative for more technical reasons: for example,
some datasets, such as the Transfer Learning dataset presented in Section 2.3.1.3,
only provide the recordings of specific types of data (in this case, only binary
data is provided). Considering the heterogeneity of types of data and sensors that
exist in current smart home technologies, such datasets are not representative
of many smart home installations in the general public which can include any
of such sensors. Another example of technical representativeness issue is the
common presence of body-worn sensors in datasets of activities, as in Opportunity
presented in Section 2.3.1.1. Such sensors cannot, in general, be suitable for general
public systems, as explained in Section 2.2.2.

Exploitability issues are mostly due to the inherent difficulties of accurately
labelling datasets with the activities of the subjects. For example, as reported in
Section 2.3.1.4, in situ labelling can be very coercive for the subjects; the labelling
quality can thus be greatly impacted, which makes the dataset hard to use for
algorithm evaluation, as bad results could be in part attributed to inaccurate
labels.

The time span of data collection can also be the cause of exploitability issues
in this thesis. Indeed, to tackle the problem of activity prediction, it is necessary
that the dataset used spans enough time such that the routines of the subject are
sufficiently well captured, and such that the algorithm can be tested on subsequent
periods of living of the occupant. A dataset such as Opportunity, where subjects
were recorded during sessions of approximately 30 minutes, can only be used as a
benchmark for short-term action prediction, which is limiting for the purposes
of this thesis.

In conclusion, few to no dataset presented in the literature fulfils the require-
ments imposed by the problems we are looking to tackle in this thesis. Although
those datasets were soundly constructed, and possess undeniable qualities, they
typically cannot be used to their full potential for our problematic of situation
recognition and prediction, in the context of general public smart home systems.

2.3.2 Orange4Home: a dataset of activities of daily living

As shown in Section 2.3.1, it it thus necessary, in this thesis work, to construct
a new dataset of activities of daily living in homes that is more well-adapted to
the constraints and specificities of our study. To avoid representativeness and
exploitability issues, presented in Section 2.3.1.6, we established a list of 5 goals
that must be met when recording this new dataset:
G1: record data in a real, liveable home which is as seamlessly instrumented as
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possible;
G2: establish realistic routines of daily living of an occupant from the general

public;
G3: record data on a relatively long time scale;
G4: equip as many appliances and objects of the home as possible, with as many

heterogeneous smart home sensors as possible;
G5: accurately label all 4 primary context dimension for the entirety of the

experiment.
The following subsections present the various methodologies adopted for data

collection to attain each of these 5 goals: the environment used in Orange4Home
to fulfil goal G1 is presented in Section 2.3.2.1; the scenario of daily living and the
planning of activities for the 4 weeks of data collection, established to fulfil G2
and G3, are discussed in Section 2.3.2.2; the data sources recorded to fulfil G4 are
presented in Section 2.3.2.3; the labelling procedure used to fulfil G5 is explained
in Section 2.3.2.4.

This data collection phase resulted in the consolidation of a new dataset of
activities of daily living in an instrumented home, called Orange4Home. This
dataset is freely available on request [5].

2.3.2.1 Apartment

The Orange4Home dataset was recorded within the Amiqual4Home project
[4]. Amiqual4Home is an equipment of excellence funded by the French Research
Agency, which serves as an experimental platform comprising prototyping work-
shops, living labs, and mobile tools for ambient intelligence research projects. One
of those living labs is an instrumented apartment, whose purpose is to provide a
realistic home setting in which to perform experiments on smart home systems
as well as usability tests in a home environment. In particular, this apartment can
be used as a smart home dataset recording setting.

Indeed, the Amiqual4Home apartment is an 87 m2 two-story home, that has
been seamlessly instrumented with sensors. We present on Figure 2.9 and Figure
2.10 the layout of both floors of the apartment, annotated with the name of
each place. This apartment was instrumented during renovation works. As such,
sensors are well integrated to appliances and furniture, instead of being added on
in a way that could change the way occupants interact with the home (because
the sensor is physically a hindrance, or because its visible presence changes the
perception of the occupant).

This apartment has been used to establish other datasets related to smart
home research. In particular, ContextAct@A4H [82] is a dataset of daily living
activities recorded for AAL research purposes.

2.3.2.2 Scenario of daily living

Orange4Home only contains the records of a single subject. Since this occu-
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pant does not live in the Amiqual4Home apartment outside the Orange4Home
data collection experiment, and since they will only spend 20 days in the apart-
ment (excluding an acclimatisation day), 3 major issues could occur in the data
collection phase:

— the occupant might not use some appliances or some rooms of the apart-
ment that they are not used to or comfortable with, and instead interact
with only parts of the apartment that are similar to their own home;

— some activities that are commonly performed in homes might not appear
in the dataset because this occupant in particular does not do them;

— some activity classes might have way too few instances at the end of the
collection phase, which is a problem in particular if machine learning
approaches are used on the dataset.

For these reasons, we deemed it necessary to establish a scenario of daily
living in this apartment, as well as an explicit routine of activities for the occupant
to follow during the 4 weeks of data collection.

Scenario of daily living in Orange4Home
The apartment is a modern environment in which Bob, the occupant, comes to
work alone every working day, from around 08:00 to 17:00. This apartment
provides many appliances that allow Bob to not only work, but also have lunch,
shower (since Bob comes to the apartment with his bicycle), spend some leisure time,
and relax during his pauses. Bob is interested in having personalised services in this
environment. As such, he will label his activities for a duration of 20 working days
(i.e. 4 consecutive weeks). Bob does not spend time in the apartment outside his
working hours (i.e. nights and weekends).

A standard day routine was then established (see Figure 2.11) to fit this
scenario: the occupant enters the home; they take a shower and brush their teeth;
they go back down to the living room to watch morning news on TV; they then
spend the rest of the morning working on their computer in the office; they cook,
eat, and do the dishes around noon and then spend some leisure time on their
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Figure 2.11 – Standard day routine in Orange4Home.

computer; they read and take a nap in the bedroom; they spend the afternoon
working again; they briefly watch the news before leaving the home for the day.

In order to increase the variability in the routines of the occupant (and thus
the realism and “difficulty” of the dataset), this standard day routine was the
routine to follow only for the first two weeks of the experiment; for the last
two weeks, the routine of each day was established by applying minor to major
changes to the standard day routine (such as interversion, omission, or shortening
of activities). In practice, the start and end times of activities in this planning
are only indicative. If need be, the occupant could always deviate from the
routine and label the actual performed activities (though this did not happen).
No instructions were given as to how the occupant should perform any of the
activity classes.

The complete list of possible activity classes, grouped by place, in the Or-
ange4Home dataset is the following:

— Entrance: “Entering”, “Leaving”, “Cleaning”;
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Data type

Place Binary Integer Real number Categorical Total

Entrance 3 1 2 3 9
Kitchen 13 21 18 0 52

Living room 16 6 8 7 37
Toilet 3 1 1 0 5

Staircase 3 0 0 0 3
Walkway 9 0 1 0 10
Bathroom 9 6 8 3 26

Office 9 3 3 5 20
Bedroom 17 4 6 7 34

Global 1 13 20 6 40

Total 83 55 67 31 236

Table 2.2 – Number of sensors per place and per type of data in Orange4Home.

— Kitchen: “Preparing”, “Cooking”, “Washing the dishes”, “Cleaning”;
— Living room: “Eating”, “Watching TV”, “Computing”, “Cleaning”;
— Toilet: “Using the toilet”, “Cleaning”;
— Staircase: “Going up”, “Going down”, “Cleaning”;
— Bathroom: “Using the sink”, “Using the toilet”, “Showering”, “Cleaning”;
— Office: “Computing”, “Watching TV”, “Cleaning”;
— Bedroom: “Dressing”, “Reading”, “Napping”, “Cleaning”.
We can note that some activity classes can occur in different places: “Watching

TV” can occur in both the Living room and the Office; “Using the toilet” can
occur in both the Toilet and the Bathroom; “Computing” can occur in both the
Living room and the Office; “Cleaning” can occur in any place. It is indeed not
uncommon for occupants to perform some activity classes in multiple different
places, which is not a possibility often captured in state-of-the-art datasets.

2.3.2.3 Data sources

As presented in Section 2.3.2.1, the apartment used in Orange4Home is
natively instrumented with sensors. Data captured by these integrated sensors
include door openings, light switches usage, noise levels, energy consumption of
electrical appliances, water consumption, humidities, luminosities, CO2 levels,
motion detections, temperatures, heater settings, etc. Additional information such
as weather conditions, outdoor temperature, wind direction, etc., are retrieved
from the internet as well. The complete list of 236 sensors can be found at [2].

In addition to the existing pool of sensors, 5 connected plugs were installed for
the needs of this particular experiment: one plug on the television in the Living
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Figure 2.12 – CO2 levels in the Bedroom on January 31st, 2017.

room, one plug on the television in the Office, as well as 3 available plugs near
the table in the Living room, the couch in the Living room, and the desk in the
Office, so that the electrical consumption of the laptop of the occupant could be
measured during the experiment.

We present in Table 2.2 the number of sensors present in each place of the
apartment, grouped into 4 main types of data: binary (e.g. motion, switches),
integer (e.g. humidity, water consumption), real number (e.g. luminosity, tem-
perature), and categorical data (weather conditions, heater settings). We can see
that the Orange4Home dataset contains truly heterogeneous data sources, as each
of these 4 types of data compose a significant proportion of the dataset. There
are no body-worn sensors in Orange4Home, for reasons explained previously in
Section 2.2.2.

Linking sensor data to activities in Orange4Home is not trivial: sensors by
themselves typically provide little information about activities, and that informa-
tion is often difficult to interpret. For example, we present in Figure 2.12 data
collected by the CO2 level sensor in the Bedroom, on January 31st, 2017. We
can see that this sensor reports an abrupt increase in the levels of CO2 once the
occupant is present in the room, which is expected. However, during this time pe-
riod, the occupant is performing the following sequence of activities: “Dressing”,
“Reading”, “Napping”, “Dressing”. CO2 levels by themselves are not informative
enough to differentiate between those activities, as the breathing patterns of the
occupant are fairly similar for each one of them. Moreover, we see that the CO2

levels do change even when the person is not present in the room: they increase
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Figure 2.13 – Interface of the labelling application used in Orange4Home.

in the morning, and decrease after the occupant leaves the room. As such, this
data can be confusing for an activity recognition system which might mistakenly
believe that something is occurring in the Bedroom because of such changes.
Finally, we see that the data is quite noisy, which is an additional problem one
has to deal with in smart home systems.

2.3.2.4 Labelling activities

As reported in Section 2.3.1.6, it is difficult to label activities both accurately
and in a non-burdensome way. Labelling activities a posteriori is very costly and
error-prone. Indeed, the occupant has a less clear memory of the events happening
during each activity instance. Moreover, a large number of ground truth sources
(such as cameras) is needed to cover the entire home. On the other hand, in
situ labelling is tiring and distracting for the occupant, which may impact their
behaviour in the home. In particular, the occupant is bound to make labelling
errors, especially if the experiment lasts for a long time as in Orange4Home.

As such, we decided to label activities in situ, and correct labelling errors a
posteriori: the occupant carried a smartphone with them, on which was installed
the labelling application developed for this experiment (see Figure 2.13). This
application allowed the occupant to first select the place they were in, and then the
activity they were going to perform in this room (including an activity “Other”
for unexpected cases, although this was never used). Pressing “START” when the
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Place Activity Number of instances Total

Entrance Entering 21
42Leaving 21

Kitchen Preparing 19

61
Cooking 19
Washing the dishes 19
Cleaning 4

Living room Eating 19

71
Watching TV 18
Computing 15
Cleaning 19

Toilet Using the toilet 8 8

Staircase Going up 57
114Going down 57

Bathroom Using the sink 38

70
Using the toilet 9
Showering 19
Cleaning 4

Office Computing 46
64Watching TV 14

Cleaning 4

Bedroom Dressing 30

63
Reading 15
Napping 15
Cleaning 3

Total 493

Table 2.3 – Number of instances of each class of activity in Orange4Home.

activity begun and “STOP” when it ended sent the labelling messages to the data
collection system of the apartment.

Using the “Error” functionality, the occupant could write any message, which
would subsequently get sent to the system much like activity labels. This func-
tionality allowed the occupant to immediately record any labelling error they
had recently made, so that a posteriori corrections were much less costly. Video
streams captured by 6 cameras (1 in the Kitchen, 1 in the Living room, 1 in
the Walkway, 1 in the Office, 2 in the Bedroom) were also recorded during the
entirety of the experiment. These video streams provide ground truth on the
events happening in the apartment; as such, they were used to accurately correct,
in conjunction with the error messages, some of the activity labels of the dataset.
The labelling accuracy in the Orange4Home dataset is thus very high.

We present in Table 2.3 a summary of the activity instances labelled in the
Orange4Home dataset. We see that some activity classes are more frequent than
others (e.g. 46 instances of “Computing” in the Office compared to 9 instances of
“Using the toilet” in the “Bathroom”). Similarly, some places are more active than
other (e.g. 63 instances of activities in the “Bedroom” compared to 42 instances
in the “Entrance”). This lack of balance is representative of real situations, where
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some activities are only sporadically performed, and some places are uncommonly
visited by occupants.

2.4 Conclusion

This chapter presented the definition of context which we will use in the
rest of this thesis. This definition highlights in particular that the activities of
occupants constitute a central context dimension. As such, it is necessary for
a smart home to be able to automatically recognize such activities to achieve
context-awareness.

In order to recognize such activities, the home, much like humans, requires
sensors that will allow it to observe such events. We thus surveyed in this chapter
the common categories of sensors that can serve as data sources to smart home
systems. We showed that ambient sensors are more likely to integrate well in a
solution aimed at the general public.

Finally, we presented the first contribution of this thesis: Orange4Home,
a dataset of activities of daily living, shared to the scientific community. We
constructed this dataset following the identification of characteristics required to
properly capture general public smart home data, which state-of-the-art datasets
often did not have.

In Chapter 3, we will study the problem of recognizing activities of occupants
in homes from sensor data, which is a necessary step to provide context-aware
services as shown in this chapter. We will propose a new approach to activity
recognition which exploits known information about other primary context di-
mensions that we previously defined. We will experimentally study the behaviour
of this approach on some of the datasets identified in Section 2.3, and in particular
on Orange4Home.
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CHAPTER 3

Recognizing activities using context

O
ne of the primary context dimensions necessary to provide context-
aware services in the home is activity. As such, smart home systems
must be able to recognize the activity of their occupants, using data

recorded by all sensors installed in the home. In order to provide services that are
always well-adapted to the context, this activity recognition algorithm must be as
accurate as possible. Based on our preliminary assumptions, presented in Section
3.1, and a survey of the main methods for activity recognition in smart homes
published in the state of the art, presented in Section 3.2, we present in Section 3.3
the second contribution of our thesis: the place-based activity recognition approach,
which seeks to improve the performances and computing efficiency of activity
recognition, using the specificities of other context dimensions in the home. We
experimentally evaluate this new approach in Section 3.4.

3.1 Problem statement and preliminary assumptions

We seek to design a Human Activity Recognition (HAR) approach that can
be applied in smart homes. That is, we need to design an algorithm which,
from data collected by sensors typically installed in a home (see Section 2.2),
automatically assigns to a sequence of such sensor data an activity class (or label)
that semantically corresponds to the actual activity (as defined in Section 2.1.2.2)
performed by occupants and recorded by sensors.

As such, we must confront a number of problems that are inherent to HAR,
to smart home environments, or the combination both. In the following section,
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we explicitly state some of the hypotheses we make about this problem, in order
to limit the scope of the study and make the problem of HAR in smart homes
tractable.

3.1.1 Single-occupant situations

Most work published in the literature about HAR in smart homes focuses on
single-occupant situations [17], that is, situations where only one person occupies
the home at all times (although that person can change). We make the same
assumption in this thesis, for the following reasons:

— single-occupant HAR is still not accurate enough to always correctly pro-
vide the right service [26, 33, 17]. Further work is thus needed in this
area;

— multi-occupant situations seem difficult to analyse regardless of the algo-
rithm used, because the currently available sensors used to record data in
homes typically capture raw, general information about the home (such as
motion, temperature, electrical consumption, etc.), which will most likely
not capture all the subtleties of human interactions that are necessary for
multi-occupant HAR.

3.1.2 Information on identity

We make the assumption that the context dimension of identity is given
before the activity recognition step. Identification of people is in itself a complete
research subject, which is not the focus of our work. We thus assume that the
identity of the single occupant in the home is known.

Equivalently, we can assume that the identity of the occupant is not considered
important for activity recognition. Although it seems obvious that different
occupants will perform activities differently, we can in practice assume that such
differences are sufficiently minimal, for most activity classes performed in a home,
so as to not impact the activity models used for HAR.

3.1.3 Presegmented activity instances

We assume that the segmentation of an activity instance is given, that is, we
know that a sequence of sensor events corresponds precisely to a complete activity
instance from beginning to end. Similarly to the single-occupant assumption,
most published works also assume presegmented activity instances instead of
working on streaming data [80], yet such approaches are still not accurate enough.

We can afford to make this simplifying assumption in the grand scheme of
our thesis, because our motivating use-case of communication assistance does not
require online HAR (which is the main advantage of not making this assumption).
Indeed, future availabilities for communication may occur hours after the current

36



3.2. STATE OF THE ART

situation, and the system can thus often afford to wait for the end of an activity
instance before recognizing it.

3.1.4 Sequentiality of activities

We assume that no two activities can occur simultaneously, i.e. the occupant
never performs two activities in parallel. This assumption is obviously not always
verified in practice. However, for most high-level activities, such as the ones
defined in the Orange4Home dataset, it is reasonably unlikely that two activities
would be performed simultaneously.

3.2 State of the art

Following up on our presentation of the problem of HAR in smart homes, we
review in this section relevant literature which exposes state-of-the-art approaches
used to tackle this problem. These works will inspire and motivate our activity
recognition choices presented in Section 3.3.

HAR is a long-standing problem with multiple domains of applications,
such as video surveillance [155], health and sports [12], or Human-Computer
Interaction (HCI) [49]. As we have discussed in Chapter 2, Smart homes and
AAL also require HAR techniques, since activity is one of the primary context
dimensions required by such applications to provide context-aware services.

HAR is a problem whose solution is not only constrained by the domain in
which it is applied, but also by the sensors that are available to provide input data.
Videos [149, 170], wearable sensors [84], and ambient sensors [28] are typical
sources of data used in HAR research. As we discussed in Section 2.2, ambient
sensors, and wearable sensors to a lesser extent, are the types of data sources we
should use when working on smart home applications.

Most HAR approaches fall in one of two categories: knowledge-driven ap-
proaches, and data-driven approaches. Knowledge-driven techniques typically
use logic, or more generally formal reasoning systems, to model the problem at
hand; data-driven techniques rely instead on empirical data to model the problem,
typically using statistical reasoning [47]. Some HAR approaches make use of
both paradigm: we will name these hybrid approaches.

In the following section, we present some of the previous knowledge-driven,
data-driven, and hybrid contributions in HAR found in the literature. In par-
ticular, we survey works which are applied to home environments, which often
share the same constraints, presented in Section 3.1, that we will have to take into
account. However, we also discuss some HAR approaches that were originally
not applied to home environments, but which present valuable insight about
the problem of activity recognition in general, and whose contributions can
potentially be applied to smart home environments.
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3.2.1 Knowledge-driven activity recognition

Constructing Artificial Intelligence (AI) systems using formal reasoning is a
fairly old idea: in a 1958 paper, McCarthy discusses the construction of intelli-
gent, learning programs which derive conclusions (and potentially actions) from
premises using formal language manipulations [98]. Expert systems and rule-
based programming in general are archetypical examples of such knowledge-driven
systems, and have thus been extensively studied to solve various AI problems. In
such systems, knowledge is represented though a set of facts and rules which can
be evaluated on the system’s current input data using formal interpretation of the
rules (which are typically “if-then-else” expressions). The different conclusions
that the system draws from this evaluation enables it to take decisions depending
on the situation it faces [60].

In recent years, ontologies have been one of the main formalisms used in
knowledge-driven systems. They indeed allow to explicitly model the knowledge
of such systems with 3 main benefits [158]: firstly, their graphical nature facilitates
the implementation of many different kinds of reasoning systems, since it is a
well-studied data structure in computer science; secondly, they can be shared
between applications through semantic interoperability [61], and therefore allow
the construction of more complex knowledge-driven systems which can share
knowledge between each other using a common formalism; thirdly, they can
be reused and combined, such that, for a particular problem, the ontological
knowledge-base of the system can be easily built by picking and merging relevant
ontologies into one.

For example, DogOnt is an ontology model proposed by Bonino and Corno
in [22] which has been designed for home automation environments. Using
DogOnt, we can for example model the knowledge we have about a lamp, as
shown in Figure 3.1. From this instantiation, a rule-based reasoning system could
infer that the lamp is in the first floor of the home (the dashed “isIn” edge) from
the fact that it is in the living room, which is itself in the first floor (the solid
“isIn” edges).

As such, knowledge-driven approaches have been applied to the problem of
activity recognition, and related smart home challenges [30, 24, 122, 7, 162, 113,
123, 99]. We discuss in more details 3 papers that present such approaches in
Section 3.2.1.1, Section 3.2.1.2, and Section 3.2.1.3.

3.2.1.1 Recognizing ADLs using ontological reasoning

Chen et al. present in [29] a knowledge-driven approach for real-time ADL
recognition, in which they explicitly model context and activity using ontologies.
In particular, they propose to model activities as hierarchical structures where
an activity is itself composed of activities. This makes it possible to reason on
different levels of activities. Activities can either be abstract (e.g. “Make drink”)
or specific (e.g. “Make coffee”). Sensor events are properties attached to activity
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Figure 3.1 – Extract of an instance of a lamp model using the DogOnt ontology.

classes that they can observe.
The proposed activity recognition approach relies on the formalism of de-

scription logics [13], in much the same way that the Web Ontology Language
(OWL) they use for ontological modelling does. Subsumption is used to recognize
activities hierarchically from sensor events. For example, if an instrumented cup
signals that it is being filled, and if activity “Make drink” has ontological property
“hasContainer”, which can be subsumed by the class “Cup”, then the system can
conclude that generic activity “Make drink” is occurring. Furthermore, if the
coffee machine reports that it is being used, the the recognized class “Make drink”
can be further subsumed by the specific class “Make coffee”.

Extensions of this approach using temporal logic have been proposed by
Okeyo and al. in [112].

Chen et al. justify the use of knowledge-driven approaches by stating that
there are many common sense relationships between ADLs, sensors, and occu-
pants. As such, explicit ontological models linking these elements should be
constructible. However, they state that data-driven approaches typically require
large data-sets, which are costly to build and record, and generally do not transfer
well from one occupant to another, one home to another, etc.

3.2.1.2 Activity recognition through semantic similarity

Ye et al. propose in [165] a knowledge-based approach for activity segmen-
tation and concurrent activity recognition. This approach employs 3 main on-
tologies: a domain ontology (which models objects, locations and persons), a
sensor ontology (which models sensors themselves as well as sensor events), and
an activity ontology (which, in the same vein as the work of Chen et al. presented
in Section 3.2.1.1, models a hierarchy of activity classes).

Each activity classes is assigned a set of constraints on time, object, location
and persons. More precisely, for a certain activity class, the values of these
properties are constrained to certain sets (for example, activity “Cooking” can
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only occur in location “Kitchen”, and objects manipulated during this activity
must be cooking utensils, the stove, etc.). When an input instance is recorded,
their approach extracts, from sensor sequences, the semantic features of time,
object, location and persons based on their ontological models. The activity class
assigned to this instance is then the one for which those semantic features best
match its constraints.

Time, object, location, and persons can be seen as context dimensions that this
approach uses for activity recognition. Adding constraints to the set of values of
context dimensions depending on the current activity is a principle used in some
other activity recognition approaches, mostly in hybrid approaches presented in
Section 3.2.3.

3.2.1.3 Rule-based presence detection

In [125], Ramparany et al. propose an ontological model of trust in data
sources, and uncertainty about information. Each data source is assigned a trust
value which quantifies how much we should believe in data it measures, and each
information is assigned an uncertainty level which quantifies how much we should
believe in that information. Using an Assumption-based Truth Maintenance
System (ATMS), they then compute the uncertainties of new information inferred,
by applying rules to information measured by the data sources.

Ramparany et al. applied their system to the presence detection problem in in-
strumented rooms. Rules that model the relationships between sensor events and
the presence of occupants are defined using Semantic Web Rule Language (SWRL).
Their use-case includes multi-occupant scenarios where the system should rec-
ognize the difference between no presence, presence of a single occupant, and
presence of more than one occupant. SWRL rules have been defined accordingly,
by stating that simultaneous detection of presence in different parts of the room
imply that more than one occupant are present. They show that such a system
can classify between each of these 3 presence situations fairly accurately using
rules, and that it is possible to associate uncertainties to the inferred information
of presence using the ATMS.

Further work by Ramparany in [124] gives several examples of information
that can be inferred using this approach, such as occupation of rooms or misuse of
appliances (e.g. forgetting to close a fridge’s door). For such use-cases, a rule-based
approach indeed seems easy to implement (as they require few rules that involve
few sensors), and applicable to most homes (as they involve commonly found
appliances or smart home sensors). On the other hand, this rule-based system
seems difficult to apply to the problem of activity recognition, where the design of
rules is much more complex than in the previously mentioned examples. Indeed,
modelling the relationship between each sensor and each activity class seems
unrealistic, especially considering the variability of activity realization from one
occupant to the next, and the variability of homes and sensor installations.
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3.2.2 Data-driven activity recognition

Data-driven AI finds its roots in the early statistical methods for regression
and data fitting, such as the least squares method first published by Legendre
in 1805 [90]. Turing, in a classical paper published in 1950 [150], discusses the
idea of computer programs that learn to solve problems from experience, rather
than from a fixed set of programmed rules. This idea, combined with new
developments in statistical methods, lead to the field of study now known as
machine learning.

In such methods, algorithms are trained on a set of experimentally collected
instances that are hopefully representative of the problem at hand. The goal of
the training phase is for the machine learning algorithm to build its own model
of the training data, based on properties discovered in the training set (such as
the correlations between variables), in the hope that these properties hold for any
future data instance of that same problem, and can thus be used to process the
instance in the same way the algorithm was trained to process them on training
data.

The main advantage of such approaches is that model construction is auto-
matically done during the training phase. This is particularly helpful when the
underlying problem is too complex to be modelled by experts, in which case
knowledge-based approaches become difficult to implement. On the other hand,
a major drawback of data-driven approaches, as their name suggests, is that a large
amount of data is typically required to properly capture the complexity of the
target model that must be learned. Moreover, most of the current well-working
techniques are supervised, that is, each training instance requires a label that speci-
fies which output is expected for that particular instance (e.g. “Cat” for an image
of a cat, if the task consists in recognizing animals in images). Acquiring lots of
labelled data is often expensive, sometimes prohibitively so.

Nevertheless, automatic model construction is such a valuable property that
data-driven approaches are very popular at the time of writing this thesis. HAR
and related smart home challenges, due to modelling complexity, are natural
problems to use machine learning approaches on, such as in [8, 114, 14, 116, 33].
We discuss in more details 3 papers that present such approaches in Section 3.2.2.1,
Section 3.2.2.2, and Section 3.2.2.3.

3.2.2.1 Activity recognition augmented with past decisions

Krishnan and Cook propose in [80] a data-driven activity recognition ap-
proach applied to smart home environments. In this work, they focus on clas-
sification of windows of sensor data, rather than fully presegmented activity
instances. Recognizing activities from sensor streams rather than complete in-
stances is theoretically beneficial since it means that the system can identify the
activity of the occupant before they actually complete their activity, which poten-
tially extends the number of context-aware services the smart home can provide.
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However, recognizing activities on fixed-size windows implies a relative regularity
in the sampling rates of sensors; it also requires that sensors are sufficiently infor-
mative such that an activity can actually be recognized from only a fraction of
the entire activity. It does not seem clear that both of these hypotheses are valid
in smart home environments.

The construction of feature vectors given as input to the classifier (a Support
Vector Machine (SVM) in their experiments) in this work is original: in addition
to sensor data, extracted for a specific window, information about the classification
performed on the previous window is added. More precisely, a first activity model
is trained to recognize activities from sensor data only, and a second activity model
is used to recognize the activity of the next window from sensor data as well as
classification information on the previous window (e.g. the activity label given to
the previous window).

Krishnan and Cook show through this contribution that one can improve
the classification performances of an activity recognition approach in the home
by augmenting raw sensor data with higher level contextual data, through the
introduction of the activity label of the previous activity. This suggests that
context information in general can indeed be used in order to improve activity
recognition performances. Here, this context information is directly injected into
the input of the classifier, in a data-driven fashion. Hybrid approaches, which we
discuss in Section 3.2.3, may use this context information differently.

3.2.2.2 Gesture recognition with similarity metrics

In [19], Berlemont et al. tackle the problem of gesture and action recognition
using Siamese Neural Networks (SNNs). A classical SNN can be seen as 2

identical Artificial Neural Network (ANN) which are run simultaneously on 2

different instances. If the output vectors of both executions are close (according
to some measure), then both instances are member of the class; conversely, if both
instances are far apart, the 2 instances are members of different classes. In that
sense, a SNN learns a metric of similarity between input instances, unlike most
ANN which learn a function between input instances and class labels.

The authors propose to improve the discriminative power of the similarity
metric learned by the SNN through modifications of the SNN comparisons.
Instead of comparing one instance to a known instance during training or run-
time, they argue in favour of comparing examples of instances of all classes
simultaneously (as well as the input instance, with unknown class), which should
better model the similarity relationships in multi-class problems (such as activity
recognition). Berlemont et al. propose a new measure to evaluate the closeness of
output vectors, that is more adapted to this new approach.

Through various favourable experimental results, Berlemont et al. showed
that multi-class gesture and action recognition problems are better tackled when
the classifier used can properly model the relationship between an instance and
all possible classes at once, instead of two-by-two sequential comparisons. This
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suggests that, for the problem of activity recognition in homes, one must be
careful not to block certain relationships between activity classes on the basis
of insufficiently correct expert knowledge (such as 2 linked activity classes that
occur in different rooms, which we falsely assume don’t have any relationship).

3.2.2.3 Action recognition using deep learning

Ordóñez and Roggen present in [115] an action recognition approach based
on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). These ANNs are part of the field of deep learning [85], which aims
at designing classifiers that not only learn the models from training data, as in
classical machine learning, but that also learn to automatically construct the
features on which it will learn this model from raw data inputs.

Beyond the contribution on combining CNNs and RNNs, this work demon-
strates that deep learning techniques can be applied on wearable sensor data for
action recognition, even though the CNN was first designed for image recogni-
tion tasks. In particular, this shows that such deep learning techniques can be
successfully applied to heterogeneous data types, and in situations where the size
of the training set is relatively limited (compared to the typical training sets used
in other deep learning tasks such as image recognition).

Similar results have been shown for gesture recognition with wearable sensors
using deep learning techniques by Duffner et al. [49] and Lefebvre et al. [89].

3.2.3 Hybrid activity recognition

Hybrid approaches combine both knowledge-driven and data-driven tech-
niques, in an attempt to benefit from the strength of both while trying to over-
come the drawbacks of one using the other. There are two intuitive ways to
combine these two techniques: we can either improve a data-driven approach
using expert knowledge and models, or we can improve the rules and model of
an expert system using statistically extracted information from empirical data.
We will refer to these two combination approaches as knowledge-enhanced data-
driven approaches and data-enhanced knowledge-driven approaches respectively.
We discuss in more details 3 papers that present such approaches in Section 3.2.3.1,
Section 3.2.3.2, and Section 3.2.3.3.

3.2.3.1 Probabilistic logic programming for activity recognition

In [142], Sztyler et al. present an ADL recognition approach in homes using
ProbLog, a probabilistic extension of Prolog. Prolog itself is a declarative logic
programming language in which we express programs in terms of facts (which
always succeed) and rules (which either succeed or fail, depending on its clauses).
On the other hand, in ProbLog, facts and rules are assigned probabilities of
success, which can be used to compute the probability of success of any query.
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Sztyler et al. propose to use ProbLog to recognize ADL on fixed-sized
windows of sensor events, by programming rules stating that certain sensor
events correspond, with some probability, to certain activity classes. Querying
the memberships of an activity instance to each activity class allows to assign that
instance the activity class for which the membership has the highest probability
of success.

However, unlike purely knowledge-driven approaches, the probabilities as-
signed to facts and clauses in their approach are computed from the frequencies
of occurrence of sensor events during activity classes in a recorded training set.
In that sense, their work is a data-enhanced knowledge-driven approach, which
combines logical reasoning with data extracted from a training set. They show
through this paper that such techniques are thus applicable to activity recognition
in smart homes.

3.2.3.2 Learning situation models in homes

Brdiczka et al. present in [26] a framework for providing context-aware
services in smart homes, based on learning situation models. They define situation
models to be a set of entities (e.g. occupants in a home), the roles played by those
entities (i.e. features extracted from sensor data, such as their posture or whether
they are talking or not), and their relation with each other.

Their framework for providing context-aware services consists in 4 main
steps: first, roles are extracted from sensor data; then, situations are segmented
in an unsupervised fashion from the extracted roles; third, situations are labelled
using supervised machine learning; finally, feedback of occupants on the services
they expect to receive depending on the situation is collected. In this last step,
occupants can provide preferences of expected services for situations that are too
specific for the situation model learned in step 3 (e.g. asking for two different
services when the occupant is using their computer for leisure and when the
occupant is using it for work, but only the subsuming situation “Using the
computer” was learned). In such cases, the subsuming situation is removed from
the learned model and the subsumed situations for which the occupant gave
feedback are learned in a supervised fashion.

In this approach, Brdiczka et al. thus propose a knowledge-enhanced data-
driven approach for situation modelling (which includes activity recognition).
In this work, however, additional knowledge used to improve data-driven tech-
niques is provided not by actual experts, but by the occupants of the smart
home, which give feedback on the services they expect and thus on the set of
situation classes that must be modelled by the system. This paper thus shows that
knowledge-enhanced data-driven approaches for activity recognition can benefit
from knowledge provided not only by the designer of the smart home, which
is the intuitive source of knowledge one first identifies, but also from occupants
themselves. The knowledge they can provide will most likely be more specific
to their particular home and needs than knowledge provided by experts, and
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therefore most likely more valuable (although asking occupants for feedback in a
non-intrusive and non-inconvenient manner is a problem in itself).

3.2.3.3 Activity recognition using visual localization

Wu et al. propose in [160] a vision-based technique for activity recognition in
smart homes. Among the 3 methods they compare, one of them consists in using
a different classifier for each camera used to record data. As such, each classifier
will learn to recognize an activity always from the same viewpoint. In addition,
the authors propose to limit the set of activities of each classifier to those that can
actually be observed from that viewpoint (e.g. “Eating” can only be seen from
the camera pointing at the dining table).

Recognizing activity then consists in selecting the right classifier (i.e. the
right viewpoint) depending on which activity is really occurring. They propose
to select the one in which there are the most extracted spatio-temporal features
during the activity instance, that is intuitively, the viewpoint in which the most
amount of visual changes occur.

This work presents a knowledge-enhanced data-driven approach for activity
recognition in homes. Indeed, knowledge about the set of activity classes that can
be observed by each camera is a necessity for it to be applied, which is assumed to
be given by some expert. This requirement also implies that the models learned
with this approach, as they argue in the paper, is not easily transferable from one
home to the next, since the viewpoints, as well as the sets of observable activities,
will change significantly from one camera to the next.

3.2.4 Discussion

We have seen in this section that both knowledge-driven approaches and
data-driven approaches have been successfully applied to the problem of activity
recognition in smart homes. However, these works also depict the limits of both
approaches. In knowledge-driven approaches, designing rules and ontological
representations of activity in the home can be very costly. Comprehensively
capturing the specificities of each activity class that can occur in the myriad
of different possible home configurations, sensor installations and occupants’
routines also seems very difficult. In short, the number of expertly-designed rules
required for a smart home system to be accurate at recognizing activities in a
specific home will thus be very high [47].

As for data-driven approaches, most techniques currently rely on supervised
machine learning, which typically requires large amounts of labelled data. Al-
though this might not be as big of a problem in certain areas (e.g. object recog-
nition in images, for which we can now find datasets of millions of examples),
this is a very limiting factor in the case of smart homes. Indeed, if one intends
to precisely learn the routines of a specific home, one needs to acquire labelled
data for that home (and not learn a model from generic homes, which might
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be moderately accurate for any home, but never very accurate for any home).
Therefore, the system needs to record activities of occupants for a potentially long
period of time (weeks, months, or even years) in order to gather sufficiently many
activity instances to train the activity recognition approach [47]. During this
time, the system is not operational and thus cannot provide any service based on
activity information. In addition, an expert (which, in most current systems, is
the occupant themselves) will have to label these instances with the corresponding
activity label, which is inconvenient and error-prone especially if there are many
instances.

Through our survey, we identified several approaches that we call hybrid,
where both knowledge-driven and data-driven approaches are combined. These
hybrid approaches seem to be promising for activity recognition in smart homes,
as they represent a compromise between knowledge-driven and data-driven tech-
niques. For example, we can hope that a knowledge-enhanced data-driven tech-
nique will require less training data than purely data-driven techniques, as well as
requiring less knowledge than purely knowledge-based techniques, while main-
taining good activity recognition performances.

Constraining context dimensions based on the activity, as done in [165] (pre-
sented in Section 3.2.1.2) or in [160] (presented in Section 3.2.3.3), is a promising
idea as context dimensions often seem to be closely related. In particular, we can
imagine using these context dimension constraints to simplify the model that
a machine learning classifier has to learn. We present the motivations for our
contributions on such a knowledge-enhanced data-driven approach in Section
3.3.1.

3.3 Place-based activity recognition

In the following section, we present our contributions to the problem of HAR
from sensor data in smart homes, through what we call the place-based activity
recognition approach. We first introduce in Section 3.3.1 the motivations that
led to the construction of this approach. Then, we present the approach itself in
Section 3.3.2. For each of the 3 main computing steps of the place-based approach,
we present some classical algorithms that we will employ to evaluate the place-
based approach in later experiments in Section 3.3.3 (for preprocessing), Section
3.3.4 (for classification), and Section 3.3.5 (for decision fusion). We conclude this
section with a presentation of the results we expect to observe in experiments in
Section 3.3.6.

3.3.1 Motivations

Activity is only one of four primary context dimensions in the home, as
defined in Section 2.1.2.1. Consequently, one can wonder what relationships,
if any, exist between these primary context dimensions of identity, time, place
and activity. Dey and Abowd in [46] discuss the relationships between primary
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and secondary context dimensions, and argue that secondary context is always
indexable on primary context (we propose counter-examples to this in Chapter
5). However, they do not say anything about the relationships between elements
of primary context themselves.

Intuitively, it seems that each of the 4 primary context dimensions are strongly
related: for example, at night time (time dimension), occupants usually sleep
(activity dimension); when an occupant is sleeping (activity dimension) in Bob’s
room (place dimension), that occupant is most likely Bob (identity dimension);
etc.

In particular, the dimension of place seems to greatly influence the dimension
of activity. For example, an occupant tends to associate the bathroom with a
specific set of possible activities (showering, brushing their teeth, etc.); conversely,
an occupant tends to associate the activity of taking a shower with the bathroom.
This strong relationship between activities and places can be simply explained by
the fact that most activities require interactions with specific parts and appliances
of the home, and that these parts and appliances of the home are physically fixed
in specific places. As such, activities are most often only physically performable
in a subset of all places (and in particular, often in only one place).

As argued in Section 3.2, hybrid approaches are promising in smart home
environments. We have seen in [160], presented in Section 3.2.3, that place
information (the occupant’s location in the home) can help improve activity
recognition. Inspired by these works on hybrid approaches and previous obser-
vations on the link between place and activity, we seek to propose an activity
recognition approach that exploits expert knowledge about place (the location of
sensors, and the location of activity classes) to improve performances. However,
contrary to the contributions in [160], we want to avoid designing specific rules
to locate occupants in the home before activity recognition, as this is not easily
generalizable to any home and adds an additional layer of possible errors.

3.3.2 The place-based approach

Let S = {S1, . . . , Sn} be the set of all sensors in the home, and let A be
the set of all activity classes. As we have seen in Section 3.2.2, state-of-the-art
data-driven approaches for activity recognition usually consist in a single classifier
which must recognize the label of the current instance a ∈ A using exclusively
data produced by all sensors of the home S (see Figure 3.2). We will call these
approaches global approaches in the rest of this thesis.

Based on our observations made in Section 3.3.1, we conjecture that recog-
nizing activities in a specific room, instead of the entire home, is a much simpler
task. Let S(i) = {S(i)

1 , . . . , S
(i)
ni } be the set of all sensors in the ith place of the

home, and let A(i) be the set of activity classes which can occur in that place.
A local approach for the ith place consists in a classifier that seeks to recognize
the label of the current instance a ∈ A(i) ∪ {none} using only data produced by
sensors of that place S(i). The addition of the dummy class “none” is necessary
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Classifier

a ∈ A

S1 . . . Sn

Figure 3.2 – Global activity recognition scheme.

(unless it is already part of S(i)), so that the classifier can assign a meaningful label
to the instance, when said instance represents a situation where the occupant is
performing an activity outside of the ith place.

By learning local models for each of the places in the home, we could devise
an activity recognition approach as follows: we first locate the occupant in the
ith place using a localization algorithm; we then recognize the activity of the
occupant using the local model of the ith place. This approach presents the
disadvantage, as mentioned in Section 3.3.1, of requiring a localization algorithm,
which not only adds complexity to the system, but also introduces a potential
source of classification errors. Indeed, if the recognition system mistakenly locates
the occupant in the wrong place, it almost surely will not properly recognize
their activity, as it will use a set of input sensors that most likely did not capture
any information related to that activity, and will only be able to choose among
the classes of that place, which may not even contain the class of the real activity.

We instead propose a place-based approach where all local models are used
simultaneously (see Figure 3.3). Let P be the set of all places in the home, and
let |P| be the cardinal of that set. In our place-based approach, given an activity
instance, local models 1 to |P| will first compute their respective sets of decisions
{∆(1), . . . ,∆(|P|)}, where

∆(i) = {δ(i)1,1, . . . , δ
(i)

1,|A(1)|, . . . , δ
(i)
|P|,1, . . . , δ

(i)

|P|,|A(|P|)|, δ
(i)
none}, (3.1)

and where δ(i)k,j ∈ [0, 1] is the decision of the classifier of the ith place about the

jth activity class of the kth place. In other words, each δ(i)k,j represents the degree
of membership of the current activity instance to the jth activity class of the kth

place, according to the classifier of the ith place (in practice, many families of
classifiers can output such membership degrees). In our thesis, since we decided
that local models would only learn to recognize activity classes that can occur in
their respective place, we have δ(i)k,j = 0 if i 6= k (extensions of this work could
decide otherwise).

The goal of the decision fusion step is to compute the set of fused decisions
∆ = {δ(1)1 , . . . , δ

(1)

|A(1)|, . . . , δ
(|P|)
1 , . . . , δ

(|P|)
|A(|P|)|, δnone} from the sets of decisions
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Figure 3.3 – Place-based activity recognition scheme.

{∆(1), . . . ,∆(|P|)} taken in each place. From ∆, the smart home system can
conclude that the class of the given instance is the ath activity in the pth place if
that class has the maximum decision in ∆, that is:

δ
(p)
a = max(max

j,k
δ
(k)
j , δnone). (3.2)

This decision assumes that the given instance corresponds to only one activity,
as we had assumed in Section 3.1. If we assume that activities can occur simul-
taneously throughout the home, we can modify this decision process such that
multiple activity labels are given to the instance, using the maximum values in ∆.

Special considerations must be taken for class “none”. Indeed, when an
activity occurs in a certain place, we expect all classifiers of other places to decide
in favour of activity “none”, as they are not impacted by the activity. Therefore,
we must make sure that activity “none” is only decided when all classifiers agree
that it is the most likely label. Before deciding on the label of the instance using
Equation 3.2, we thus compute the value of δnone as such:

δnone =

{
0 if ∃ i ∈ P, ∃ (j, k) ∈ A(i) × P, δ(i)k,j > δi,none

1 otherwise
. (3.3)

We discuss in more details each of the place-based approach steps in later
sections: in Section 3.3.3, we discuss the preprocessing necessary before each
local classification; in Section 3.3.4, we present some of the classical families of
classifiers that can be used to perform local classification; in Section 3.3.5, we
present some of the classical decision fusion algorithms that we can employ in our
place-based approach. However, we first discuss in Subsections 3.3.2.1 to 3.3.2.6
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some of the characteristics of our place-based approach, as compared to global
approaches.

3.3.2.1 Required knowledge

Our place-based approach is a knowledge-enhanced data-driven approach, like
the ones presented in Section 3.2.3, in the sense that some expert knowledge is
required to set up the process: the membership of each sensor to places of the
home, as well as the membership of each activity class to places of the home must
be known. This is a downside of the approach, compared to a global approach
that does not require this knowledge. However, some further work (not addressed
in this thesis) could help reduce the cost of acquiring this knowledge.

Sensors installed in the same place could be discovered automatically using
clustering methods. Indeed, if sensors are spatially close to each other, they
will most likely capture data about the same situations, and we will thus find
correlations in the data they collected. Such clusters of sensors could constitute a
basis for the memberships of sensors to places. Those memberships could also
be given in the future by home contractors, assuming that future homes will be
instrumented immediately upon construction. A present-day solution would be
to ask the user of the smart home system to indicate the location of each sensor
they installed (which is possible to do in many current smart home solutions).

As for activities, similar unsupervised methods could be used to try to discover
groups of activity classes among collected data. Such methods are starting to be
studied, as in the works of Cook et al. in [33]. Membership of activity classes
to places could also be set by home experts from a general model of activities
in home (for example, by setting that activity “Showering” can only occur in a
bathroom). Contrary to the works of Wu et al. [160] presented in Section 3.2.3.3,
each model in our place-based approach is associated to a specific place of the
home, as opposed to a viewpoint; many places are similar from one home to the
next, in the sense that the set of activities we can perform in the place of one
home will be similar to the set of activities of the corresponding place in another
home (e.g. cooking-related activities in kitchen-like places). Establishing such sets
of activity classes in places using expert modelling is thus realistically possible,
whereas viewpoint-based approaches cannot benefit from such expertise, as the
set of activities solely rely on the viewpoint of the camera, which can be vastly
different from one home to the next, even if they monitor corresponding places.

3.3.2.2 Localization through place-base activity recognition

Our place-based approach does not need to locate the occupant before recog-
nizing activities. Quite the contrary, it actually locates the occupant as well as
recognize their activity, since each activity class is linked to the place in which it
can occur. Later work (not addressed in this thesis) could investigate the use of
place-based activity recognition to improve localization algorithms, or conversely

50



3.3. PLACE-BASED ACTIVITY RECOGNITION

the use of localization algorithms to improve place-based activity recognition, or
even both in conjunction to improve the global performances of the system.

3.3.2.3 Agnosticism to sensor types, classifier types, and decision fu-

sion algorithms

Our place-based approach is agnostic to the types of sensors installed, in the
home, the classifiers used in each local model, and the decision fusion algorithm
used to combine local models. Any combination of sensors can be used as data
sources for a place, as long as the preprocessing step and the classifier of that place
are tailored to process this data (for example, special considerations must be taken
into account when input data are videos). Any classifier type can be used in a
local model, so long as it can output the set of decisions ∆(i), which is possible
for the vast majority of classical classifier types. Similarly, any decision fusion
method can be used.

This agnosticism is an appreciable benefit of the place-based approach. The
rapid growth of connected objects and sensor capabilities will thus not render
our place-based approach quickly obsolete, but rather always up-to-date in terms
of data collection. Similarly, the extensive recent and future developments in
classification algorithms and decision fusion techniques will always be integrable
in a place-based scheme. On the other hand, a specific global classifier for activ-
ity recognition in smart homes tailored to certain data types will not be able
to integrate future developments on sensor and classification technologies as
seamlessly.

3.3.2.4 Multi-classifier fusion

A direct consequence of the agnosticism of the place-based approach to the
types of classifiers used is that we do not have to restrict each place to use only one
classifier. Since we introduced decision fusion to combine local models together,
we can also use it to combine multiple classifiers in each local model (which is
the classical purpose of decision fusion). Similarly, we can combine multiple
classifiers through decision fusion in a global approach.

Combining multiple classifiers can potentially allow better activity recog-
nition performances, with very limited computing overhead, assuming these
classifiers make different classification mistakes and thus can assist one another.
We will refer to this approach as multi-classifier fusion in the experimental sections.

3.3.2.5 Non-monolithicity

Our place-based approach is non-monolithic in the sense that the local model
of a place is independent of all the other local models. As such, each local
model can be trained and executed independently from all other models, and any
modification to one of the local models is guaranteed to not have any effect on
any of the other local models.
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This modularity of the approach presents obvious benefits in terms of execu-
tion: the place-based approach can be easily parallelized by spreading the training
or run-time execution of each local model to different computing cores. This
should lead to great computing time improvements, if decision fusion is not a
long operation (which it often is not).

Moreover, this modularity is advantageous when the home environment is
changing. Since the training phase of each local model is independent, we can
retrain one local model when changes to the place it monitors occur. For example,
if the occupants bought and installed a new sensor in a particular place, we can
retrain the model of that place to take this new source of data into account,
without changing any other model. More generally, we can retrain each model
independently from the others as time passes and routines of occupants change.

3.3.2.6 Applicability to multi-occupants scenarios

Possible perspectives on the place-based approach (not addressed in this thesis)
include the recognition of simultaneous activities of different occupants in the
home. Using our place-based approach, one could modify the decision step so
that it takes into account the number of occupants present in the home; it then
could recognize multiple simultaneous activities performed by these occupants,
so long as they are located in different places. This would only require changes to
the decision fusion step and not to any other part of the approach.

When using global approaches, this is much less direct of a change. Indeed,
naïvely, a global approach would then need to recognize not activities, but rather
sets of activities. The number of possible sets of activities from A is 2|A|, which
grows exponentially with the number of activity classes. With the place-based
approach, each local model will still recognize activities, and thus the complexity
of the approach is by construction equivalent to mono-occupant situations.

3.3.3 Preprocessing

As our proposed place-based approach is agnostic to the type of classifier used
in each place, it is essential to process raw sensor data before the classification step,
in a way that is well-adapted to the classifier used in each place. We present in
this section 3 preprocessing steps that are often required when the sources of data
are ambient smart home sensors or wearable sensors, and when we use classic
classifiers such as those presented in Section 3.3.4: filling missing values (presented
in Section 3.3.3.1), normalizing data (presented in Section 3.3.3.2), and reducing
noise (presented in Section 3.3.3.3).

In the following subsections, we will denote by st the value of a sensor at
timestep t ∈ J0, T K = {0, 1, . . . , T − 1, T}.
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3.3.3.1 Missing values

Many smart home sensors are autonomous and thus send their data using
wireless protocols. In order to reduce battery usage, these smart home protocols
often do not include acknowledgement mechanisms. As such, it is not uncommon
that some of the frames these sensors send get lost. In particular, some of the
datasets we find in the literature do have a number of missing values, which in
general cannot be processed by classifiers. As such, a preprocessing step is needed
to fill in those missing values. We present in this section 3 classical interpolation
approaches. We present on Figure 3.4 a visual comparison of those 3 approaches.

Let (i, j) ∈ J0, T K2, i < j, be two timesteps between which all values sk, i <
k < j, are missing values.

Last observation carried forward A series of missing values is replaced with
the last value that was not missing:

∀k ∈ Ji+ 1, j − 1K, sk = si. (3.4)

Linear interpolation A series of missing values is replaced with values com-
puted from an interpolated line that passes through vi and vj :

∀k ∈ Ji+ 1, j − 1K, sk = si + (k − i)sj − si
j − i . (3.5)

Spline interpolation A series of missing values is replaced with values com-
puted from interpolated polynomial segments. Cubic splines are some of the
most common splines used for this process [40].

3.3.3.2 Normalization

The range of values sensors can provide in the home can greatly vary, depend-
ing on their type, the environment, or even their calibration. However, such
varying ranges can have a negative impact on the performances of many classi-
fiers. Indeed, classifiers may give more importance to sensors which provide high
absolute values, compared to those that provide values close to 0, even though
they should have equal importance. A normalization step can erase this problem
by updating the values of each sensor such that all sensor ranges are identical. In
this section, we present 2 of the main ways of computing a normalized value s′t
from a value st.

Rescaling We can rescale data from a sensor such that each data point falls into
an interval [a, b] (typically, [0, 1] or [−1, 1]). Let sinf be the infimum and ssup the
supremum of the set of values of s; we have:

s′t = a+
(st − sinf)(b− a)

ssup − sinf
. (3.6)
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Last observation
carried forward

Linear
interpolation

Cubic splines
interpolation

Figure 3.4 – Filling missing data using one of the 3 interpolation methods pre-
sented in Section 3.3.3.1. Known data is represented in dark blue, and interpolated
data is represented in light orange.

The two bounds sinf and ssup can usually be known in advance (e.g. an accelerom-
eter is calibrated such that its output value is always in [−3, 3]). However, it is
not uncommon that those bounds are not known for a sensor, or that one of the
two bounds or both is not finite. In such cases, we can typically estimate sinf and
ssup from the empirically smallest and biggest values found in the training data;
in that case, this means that on new data, the rescaling process can result in values
outside the interval [a, b].

Standardization We can standardize data from a sensor such that they have a
mean of 0 and a variance of 1. Let s be the mean and σ the standard deviation of
the values outputted by the sensor in the training dataset; we have:

s′t =
st − s
σ

. (3.7)
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Raw data
Filtered data

Figure 3.5 – Filtering data using the basic approach presented in Section 3.3.3.3,
with β = 0.3.

3.3.3.3 Noise reduction

Raw sensor data can often be noisy; in particular, wearable sensors such as
accelerometers or gyrometers can pick up micro-variations in gestures that are not
useful to characterize activities. Quite the contrary: such micro-variations can
be learned by the classifier during training to recognize certain activity instance,
which will degrade its generalization performances on unseen data.

There are many different techniques to reduce noise, depending on the type
of data at hand (e.g. specific denoising processes exist for images). An extensive
presentation of noise reduction approaches is presented in [154]. In our work
, we will use a basic filtering method, controlled by a parameter β ∈ [0, 1]. We
filter sensor data as such:

s′t = βst + (1− β)st−1. (3.8)

The case β = 0 corresponds to maximum filtering, where s′t = s0 for any t.
The case β = 1 corresponds to minimum filtering, where s′t = st for any t. Figure
3.5 presents the result of applying this noise reduction method with β = 0.3 (in
light orange) on noisy data (in dark blue). We can see that this method mostly
conserves the shape of the original signal while softening noisy oscillations.
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Figure 3.6 – Example of a MLP with an input layer of 2 neurons, one hidden layer
of 3 neurons, and an output layer of 1 neuron.

3.3.3.4 Conclusion on preprocessing

The usefulness of preprocessing in our place-based approach will highly
depend on the sensors installed in the home as well as the classifiers used in each
place. Some classification techniques such as deep learning methods argue that
there should be as little preprocessing as possible applied to data, because deep
learning classifiers should learn to extract relevant features directly from raw data.

In our thesis, our focus is not on a specific classifier design but rather on a
classification architecture well-fitted to smart home systems. As such, we will
use classical classifiers, which typically require more preprocessing than newer
methods. We present these classifiers in the next section.

3.3.4 Classification

We present in this section some of the classical classifiers of the literature
that can be employed in our place-based approach, as our approach is agnostic
to the types of classifier used. We present, in each subsection, one archetype of
common classifier families: MultiLayer Perceptrons (MLPs) for ANN in Section
3.3.4.1, SVMs for kernel methods in Section 3.3.4.2, Bayesian Networks (BNs)
for probabilistic graphical models in Section 3.3.4.3, and Dynamic Time Warping
(DTW) for geometric similarity measures in Section 3.3.4.4.

Other classification techniques such as decision trees, Hidden Markov Models
(HMMs), conditional random fields, etc., have been employed in the literature
and could thus be used in our place-based approach as well (not addressed in this
thesis).

3.3.4.1 Multilayer perceptrons

A MLP is a feedforward ANN (that is, with no loops) in which the output of
a neuron is fully connected to the input of all the neurons in the next layer. We
give a graphical representation of an example MLP on Figure 3.6.
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Let n(j)i be the ith neuron in layer j, and let y(j)i be the output of this neuron.
The inputs of n(j)i is the set of outputs {y(j−1)1 , . . . , y

(j−1)
Nj−1

} of the Nj−1 neurons

of the previous layer j − 1. We can then compute y(j)i as follows:

y
(j)
i = ϕ

b(j)i +

Nj−1∑
k=1

w
(j−1)
k,i y

(j−1)
k

 , (3.9)

where w(j−1)
k,i is the weight between neuron k of layer j−1 and neuron i of layer j,

where b(j)i is the bias of neuron i of layer j, and where ϕ is the activation function
of the neuron. This activation function is typically a sigmoid function such as
the logistic function x 7→ 1

1+e−x or the hyperbolic tangent function x 7→ 1−e−2x

1+e−2x

[21].
To associate a class to an input, we set the number of output neurons to match

the number of classes 1: the recognized class is then the one corresponding to
the output neuron with the biggest output. The set of these outputs will be the
decisions set ∆ used in our place-based approach.

The weights and biases of the entire network can then be learned in a su-
pervised training step, using the gradient backpropagation algorithm [129] or
its many variants. On the other hand, the topology of the network (number
of layers, number of neurons per layer) is generally set by hand. A number of
heuristics for training ANN efficiently are presented in [86].

Cybenko in [38] proved the universal approximation theorem: an MLP with
one hidden layer of finitely many neurons, using sigmoidal activation function 2,
can approximate any continuous function on compact subsets of Rn. However,
this theorem says nothing about how to find the parameters of the MLP to
approximate a specific function.

3.3.4.2 Support vector machines

SVMs, first introduced in [23], are a generalization of linear classifiers for
2-classes problems.

Suppose we have a vector of input data x = (x1, . . . , xN ). We can construct
a linear classifier using a vector of weights w = (w1, . . . , wN ):

y = wxᵀ + w0. (3.10)

The instance will be classified in class 1 if y > 1, and in class 2 if y 6 −1.
The goal is then to learn the separating hyperplane y = 0 using the training

set (that is, examples of x associated with the class label). Since the training set is

1. Except in 2-classes problems where only one neuron can be used: if the output of that neuron
is in [0, 1], an output closer to 0 will correspond to the first class while an output closer to 1 will
correspond to the second class.

2. Later work by Hornik [68] showed that other functions can be used, under mild assumptions.
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Figure 3.7 – Maximum margin hyperplane on a 2-dimensional training set of 2
classes (squares and triangles), in a linearly separable case. The support vectors
are circled.

finite, there are infinitely many such hyperplanes. In SVMs, the hyperplane that
maximizes the margin between the two classes in the training set is chosen, by
minimizing the norm of w while respecting the constraints of memberships of
the training examples to their classes. The training samples that lie on the margin
are called the support vectors. We give an example of such a separating hyperplane
on Figure 3.7.

Minimizing ‖w‖2 under those constraints can be solved through a variety
of optimization algorithms [21]. In practice, we often use soft margins rather
than hard margins: we allow that some training samples are on the wrong side
of the margin, compared to their labels. In this case, we seek to minimize
‖w‖2 + C

∑P
p=1 max(0, 1− yp(wxᵀ + w0)) instead; when all training samples

are on the right side of the margin, the sum is equal to 0 and the problem is
correctly identical to hard-margin SVMs. Constant C > 0 allows to control the
compromise between the number of training samples on the wrong side of the
margin and the width of the margin itself. Soft-margin SVMs allow to work
with data that is not quite linearly separable; in particular, it can allow better
generalization performances in cases where noise in the data make the theoretical
general margin difficult to find.

In most real-world classification problems, classes are not linearly separable at
all. In such cases, SVMs make use of the kernel trick: we transform the data from
its original space into a space of higher dimension, in which it is more probable
that the problem is linearly separable. More precisely, we now define the output
label as follows:

y = wϕ(x)ᵀ + w0, (3.11)

where ϕ is a non-linear transformation that verifies a number of properties
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described in [21]. We can then find the maximum margin hyperplane using the
same techniques as in the linear case.

It is possible to adapt the standard SVM approach to solve multi-class problems.
For example, one can construct as many SVMs as the number of classes, where
each of these SVMs will be trained to classify one class against all other classes;
we can then combine them in order to get a multi-class classification algorithm
that provides a set ∆ of decisions for each class.

3.3.4.3 Bayesian networks

A BN is a directed acyclic graph which represents a joint probability dis-
tribution of a set of variables. For example, in Figure 3.8, we model a BN
with 5 variables {x1, . . . , x5}, where the directed edges represent conditional
dependencies. The joint probability distribution of this example BN is then:

p(x1)p(x2 | x1)p(x3 | x1)p(x4)p(x5 | x2, x3, x4). (3.12)

In an activity classification task, one of the variables of the BN is the activity
class (say, x1 in our example) and the other variables represent sensor data
({x2, x3, x4, x5} in our example). Classifying an instance, given specific sensor
values for x1, x2, x3, and x4, consists in computing:

argmax
x1

p(x1 | x2, x3, x4, x5). (3.13)

In our place-based approach, the set of decisions ∆ of the BN is the set of
p(x1 | x2, x3, x4, x5) for each value of x1 (that is, each possible class label).

The structure of the BN as well as the conditional probabilities of the BN
can be learned from training data, through various approaches [25]. For example,
measuring conditional independence between two variables in the training set
can imply that there is no edge between those two variables in the BN structure.
Structure learning is a more difficult problem than distribution learning [16].

3.3.4.4 Dynamic time warping

DTW is a geometric approach for comparing 2 time-dependent sequences
of values [135]. Let xt and yt′ be the values of two sensors at timesteps t ∈
J1, T K and t′ ∈ J1, T ′K. In order to compare xt and yt′ , we need a cost measure
c : J1, T K × J1, T ′K −→ [0,+∞); this cost function must output small values
when xt and yt′ are “similar”, and large values if they are “dissimilar” (a geometric
example would be the euclidean distance). We can then compute a cost matrix that
contains the values of c when applied to each couple (xt, yt′) ∈ J1, T K× J1, T ′K.
We present on Figure 3.9 an example of a cost matrix between two sequences
where c is the Manhattan distance.

We can now align sequences together by walking through the cost matrix,
from the start of the sequences (0, 0) to the end of the sequences (T, T ′). More

59



CHAPTER 3. RECOGNIZING ACTIVITIES USING CONTEXT
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Figure 3.8 – A bayesian network of 5 variables. The directed edges represent
conditional dependences.

precisely, we can define a warping path as a sequence p = (p1, . . . , pn), where
pi = (ti, t

′
i) ∈ J1, T K× J1, T ′K. A warping path must respect two conditions:

— boundary condition: p1 = (1, 1) and pn = (T, T ′);
— step size condition: ∀i ∈ J1, n− 1K, pi+1 − pi ∈ {(1, 0), (0, 1), (1, 1)}.

The boundary condition guarantees that the start and end points of both sequences
are necessarily aligned together. The step size condition enforces that all elements
of both sequences are part of the warping path at least once and that there are
no duplicate pairs in p; it also enforces the monotonicity of the path, that is that
ti 6 ti+1 and t′i 6 t′i+1.

The cost cp of a warping path p is the sum of the costs we get when following
the path through the cost matrix:

cp(x, y) =

n∑
i=1

c(xti , yt′i). (3.14)

The DTW distance between two sequences is then the cost of the optimal warping
path, that is the smallest possible cost among all warping paths. For example, on
Figure 3.9, the white line is the optimal warping paths for those two sequences
using the Manhattan distance. Finding this minimum cost is an optimization
problem which can be solved using a variety of techniques [135].

DTW can be applied to activity recognition as follows: we evaluate the
distance between the input instance to a training instance by summing the costs
of the optimal warping paths of each sensor. We can then decide what the label
of the input instance is based on which training instances are the closest to that
input instance, from the previously computed distances. For example, the input
instance can be assigned the label of the closest training instance; it could also be
assigned the label of the class, for which the average of all distances between the
input and training instances of that class is the smallest. The set of these distances
to each class can be thought as the set of decisions ∆ in our place-based approach.
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Figure 3.9 – Cost matrix of two sequences (pictured on the left and below the
matrix) using the Manhattan distance (absolute value of the difference). Low cost
is represented in blue while high cost is represented in red. The white line is the
optimal warping path.

3.3.4.5 Conclusion on classification

As our place-based approach is agnostic to the type of classifier used in each
place, we will experimentally study the performances of the place-based approach
using each of the 4 classifier types presented in this section. Since those 4 classifiers
are significantly different in the way they model activities from sensor data, we
hope to show that the place-based approach performs significantly better than
global approaches with any of these classifier types.

Similarly to classifiers, we present in the next section some classical decision
fusion methods we can use in our agnostic place-based approach.

3.3.5 Decision fusion

We present in this section some decision fusion techniques of the literature
that can be used in our place-based approach. We present in voting methods in
Section 3.3.5.1, stacking methods in Section 3.3.5.2, and probabilistic methods
with Dempster-Shafer Theory (DST) in Section 3.3.5.3 and possibility theory in
Section 3.3.5.4.
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3.3.5.1 Voting

In voting methods, the classifier of each place i gives a vote v(i)k,j ∈ [0, 1] about

the jth activity of the kth place. The fused decision δ(k)j about the jth activity of
the kth place is then:

δ
(k)
j =

1

|P|
∑
i∈P

v
(i)
k,j . (3.15)

Factor 1/|P| is here to ensure that δ(k)j ∈ [0, 1].
We can devise different voting schemes depending on how v

(i)
k,j for all j and

k are computed from ∆(i). The most general scheme, called weighted voting,
computes the votes using a weighting function ϕ : [0, 1] → [0, 1] such that
v
(i)
k,j = ϕ(δ

(i)
k,j). A common voting scheme is that of majority voting, where each

classifier of place i gives a vote of 1 for the class it is most confident in, and 0 to
all other classes:

v
(i)
k,j =

1 if δ(i)k,j = max
l,m

δ
(i)
m,l

0 otherwise
. (3.16)

3.3.5.2 Stacking

Stacking methods, first introduced by Wolpert in [159], consist in solving
the problem of decision fusion as a classification problem. Indeed, we can
view decision fusion as a classification task where input data are the decisions
{∆(1), . . . ,∆(|P|)} from the classifiers of each place, and where the target output
is the set of fused decisions ∆. We can then use any classification methods that
can work with such inputs and target outputs; MLPs, or SVMs, are examples of
such classifiers. These classifiers can be trained using the same training set that is
used to train place-based classifiers, optimized using the same validation set, and
tested using the same test set.

3.3.5.3 Dempster-Shafer theory

DST, also called evidence theory, is a theoretical frame that aims at modelling
uncertainty and imprecision in data. DST emerged from the works of Dempster
[43], which were continued by Shafer [136].

Let 2A = {Ø, {a(1)1 }, {a
(1)
2 }, {a

(1)
1 , a

(1)
2 }, . . . ,A} be the power set of activity

classes A. The mass function mi, associated to the classifier of the ith place, is
defined as:

mi : 2A −→ [0, 1], (3.17)∑
a
(k)
j ∈2A

mi(a
(k)
j ) = 1. (3.18)
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Choosing the right mass function is not an obvious task. For our purposes,
we will only assign non-zero masses to singleton classes, as being the decision of
the classifier for that place, normalized so that Equation 3.18 is respected:

∀a ∈ 2A,mi(a) =


δ
(i)
k,j∑

l∈P
δ
(l)
k,j

if a = {a(i)k,j}

0 otherwise
. (3.19)

This choice alleviates the need for devising more elaborate mass evaluation heuris-
tics; it also greatly reduces the computing times of the next steps in DST decision
fusion, as most images of elements of 2A through mi are 0.

We can then combine the mass functions of all classifiers into a single mass
function m. Smets’ rule [139] is one example of such combination methods:

∀a ∈ 2A,m(a) =
∑

b1∩···∩b|P|=a

∏
i∈P

mi(bi). (3.20)

The fused decisions are then computed using the plausibility function Pl:

δ
(k)
j = Pl({a(k)j }) =

∑
b∈2A,a(k)j ∈b

m(b). (3.21)

3.3.5.4 Possibility theory

Much like DST, possibility theory also aims at modelling uncertainty and
imprecision in data. Possibility theory, mostly developed by Dubois and Prade
[48], is founded on Zadeh’s theory of fuzzy sets [167].

Let µ(i)k,j be the degree of membership of the current instance to the jth

activity class of the kth place, according to the classifier of the ith place. Similarly
to mass functions estimation in DST, choosing the right heuristics to compute
this membership degree is difficult. In this work, we directly assign classifier
decisions to membership degrees, i.e. µ(i)k,j = δ

(i)
k,j . We can then combine the

membership degrees of each classifier into a single set of membership degrees
which will be our fused decisions ∆, using a variety of different methods. We use
here the formula proposed in [52]:

δ
(k)
j =

√√√√√ ∑
i∈P

(wi · µ(i)k,j)2

|P| , (3.22)

where

wi =

∑
p∈P,p 6=i

H0.5(p)

(|P| − 1)
∑
p∈P

H0.5(p)
, (3.23)
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and where
Hα(i) =

1

2−2α

∑
k∈P

∑
j∈Ak

(µ
(i)
k,j)

α(1− µ(i)k,j)α. (3.24)

3.3.5.5 Conclusion on decision fusion

We have presented some of the main decision fusion approaches used in the
literature. As our place-based approach is agnostic to the decision fusion method
used, we will employ each of these methods in our experiments.

In a multi-classifier place-based approach, we expect decision fusion to be only
useful if classifiers make significantly different classification errors, in which case
they can complement each other. If the classifiers of a same place have identical
behaviour, decision fusion will only have an averaging effect, but will most likely
not improve recognition performances.

3.3.6 Expected results

Following the presentation of our place-based approach, we can expect to
obtain a number of results when performing activity recognition experiments on
smart home datasets. In particular, we expect 2 main categories of improvements:
those that are related to the actual recognition performances, and those that are
related to the computing times of the approach.

3.3.6.1 Expected results on recognition performances

Our place-based approach follows the divide and conquer approach to problem
solving, by dividing the modelling task of recognizing activities from sensor data
among multiple classifiers, based on the location of those activity classes and
sensors. Using a global approach, the more sensors and activity classes there
are, the more complex it is for that approach to discover the right relationships
between sensors and activity classes, using limited labelled data. On the other
hand, with our place-based approach, this increase in complexity should be
relatively limited, assuming that the increase in sensors and activity classes is
well-distributed among places of the home. Indeed, the complexity of the model
is split between all places of the home and the decision fusion step; individually,
each model should be relatively simple to learn from limited labelled data.

Therefore, we first conjecture the following:

Hypothesis 3.1. A place-based approach will on average achieve higher activity
recognition performances than a global approach, for any classifier type used.

The high variability in home layouts, sensor installations, and activity habits
of occupants lead us to believe that there will also be a high variability in the
type of classifier that works best to model a place of a home or an entire home.
Multi-classifier fusion allows to circumvent the need for selecting the best type of
classifier beforehand, and instead uses multiple classifiers for each model.
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Therefore, we also conjecture the following:

Hypothesis 3.2. Combining multiple classifier types through decision fusion leads to
better recognition performances, for both place-based and global approaches.

In order to circumvent the need for a preliminary estimation of the location
of an occupant in the home, each place in our place-based approach should have
the possibility of recognizing that nothing is happening, in addition to the other
activity classes of said place. We thus introduce, in each place, an additional class
named “None” that corresponds to this idle state of a place. However, if some
sensors are shared between places (for example, sensors worn by the occupant),
confusions might arise because sensors changes will be observed by multiple
places.

Therefore, we finally conjecture the following:

Hypothesis 3.3. Class “None”, which corresponds to the absence of any activity, will
be difficult to model by a place-based approach.

3.3.6.2 Expected results on computing times

In much the same way that divide and conquer strategies lead to efficient
sorting algorithms (e.g. merge sort [77]), we can expect our proposed place-based
approach to have favourable behaviour in terms of computing times, compared
to a global approach. In particular, since modelling is split between the different
places of the home, we can expect that each place will individually be much
simpler to model, and thus much faster to learn. In addition, we can assume that
the decision fusion step will always be negligibly fast to execute, since its number
of inputs will be small for most realistic homes.

Therefore, we can conjecture the following:

Hypothesis 3.4. It will take less time to effectively train a place-based activity recog-
nition approach compared to a global approach on a given dataset.

For similar reasons, we can expect that activity recognition at run time will
also be faster in the place-based approach. However, we expect the gap in speeds
between a place-based approach and a global approach to be smaller in this case
compared to training times. Indeed, machine learning techniques for which
training times increase immensely as the complexity of the problem increases (e.g.
neural networks) typically do not slow down by a large factor because of this
complexity during run time.

Nevertheless, we conjecture the following:

Hypothesis 3.5. It will take less time to recognize an activity at run time for a
place-based approach compared to a global approach.
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3.4 Experiments

In order to empirically analyse the behaviour of the place-based approach we
proposed in Section 3.3, we have performed a number of experimental evaluations,
using 2 of the datasets presented in Section 2.3: the Opportunity dataset and the
Orange4Home dataset. The first set of experiments we performed, as reported
in Section 3.4.1, shed light on the recognition performances of our approach and
thus on Hypotheses 3.1, 3.2, and 3.3. The second set of experiments we performed
is related to the computing times of the place-based approach, so as to empirically
validate Hypotheses 3.4 and 3.5.

In the following experiments, data were preprocessed as follows: missing
values were replaced using cubic spline interpolation. A low-pass filter with
β = 0.1 was applied to the data in order to reduce the influence of noise. Data
were standardized such that the mean value of each sensor was 0, and the standard
deviation of each sensor was 1. For classifiers which require fixed-size input
vectors, feature vectors were created by resampling each instance into 20 timesteps
of sensor values, and then by concatenating those 20 timesteps one after the other.

The implementations of MLPs, SVMs, and BNs that we used in these exper-
iments come from the WEKA library [63]. In order to reproduce the results
we report in this section on those classifiers, one must thus refer to the default
parameters of their WEKA implementations. For some of the main parameters
that we controlled in our experiments, we report the values we used at the bottom
of each table.

3.4.1 Activity recognition performances

In this section, we compare the activity recognition performances of our place-
based approach with a global approach, using different classical classifier types
and decision fusion methods. Our goal is to study the validity of Hypotheses 3.1,
3.2, and 3.3, and if they are valid, the conditions that are required for this validity.

We have no guarantee that all activity classes will be equally as frequent in
smart homes; in fact, it is highly probable that some classes are more frequent
than others. Using simple non-weighted accuracy to compare activity recognition
approaches can thus lead to spurious comparisons, in cases where a few activity
classes are much more frequent than others in the datasets we use: in those cases,
a classifier can have great accuracy by performing well on those frequent classes,
even if it performs terribly bad on other classes. Such a situation is not desirable
to provide context-aware services in smart homes, since this would mean that
service quality would highly depend on the activity of the occupant, instead of
being stable regardless of the activity.

Therefore, we use a weighted F1 score (which we will simply refer to as
F1 score in the rest of the thesis) to compare performances, instead of simple
accuracy. This performance measure gives equal weight to classes, regardless of
the number of instances they contain. Given a set of activity instances Xa with
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true label a for each activity class a ∈ A, this F1 score is computed as:

F1 =
∑
a∈A

2

|Xa|
· Precision(a) · Recall(a)

Precision(a) + Recall(a)
, (3.25)

where Precision(a) is the ratio between the number of instances of a correctly
classified as a and the number of all instances classified as a, and where Recall(a)
is the ratio between the number of instances of a correctly classified as a and the
number of all instances of class a.

In the following subsections, the best results are typeset in bold in tables.

3.4.1.1 Performances on the Opportunity dataset

For reference, some of the results reported in this section were previously
published in [36].

The Opportunity dataset, which was presented in Section 2.3.1.1, is the first
dataset of activities in the home that we use to evaluate the recognition accuracy of
our proposed place-based approach. This dataset presents the benefit of exposing
the data of both wearable sensors as well as ambient sensors, which will allow
to evaluate the behaviour of our approach in situations where both such sensor
categories are recorded by the smart home system.

As mentioned in Section 2.3.1.1, the Opportunity dataset offers 5 different
labels at each recorded timestep. Although activity labels are available, we argue
that too few instances of those activity classes are available in the Opportunity
dataset for a proper experimental evaluation. In the following experiments on the
Opportunity dataset, we will thus study the accuracy of our place-based approach
with respect to the action labels, and not the activity labels.

There are 17 classes of such actions labelled in the Opportunity dataset. In
addition, an 18th class, labelled “None”, corresponds to instances during which
no action is performed. Locations of action classes and of sensors, which are
required to apply our place-based approach, are not explicitly given in this dataset.
Nevertheless, we identified 3 distinct places in the experimental environment in
which the Opportunity dataset was recorded: the Table, the Kitchen, and the Exits
(see Figure 3.10).

Action classes and sensors 1 are thus distributed among those 3 places in the
following way:

— Table: contains all 12 sensors attached to the objects placed on the table, as
well as the 19 sensors worn by the occupant. The following action classes
can occur in this place: “Clean table”, “Drink from cup”, “None”.

— Kitchen: contains the 18 sensors attached to the fridge, 3 drawers, dish-
washer, and the light switch, as well as the 19 sensors worn by the occupant.
The following action classes can occur in this place: “Open fridge”, “Close

1. Location tags data as well as quaternions data were not used due to reported noisiness in the
documentation of the dataset and related papers.
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Figure 3.10 – The 3 places we identified in the environment where the Opportunity
dataset was recorded: the Table, the Kitchen, and the Exits.

fridge”, “Open dishwasher”, “Close dishwasher”, “Open drawer 1”, “Close
drawer 1”, “Open drawer 2”, “Close drawer 2”, “Open drawer 3”, “Close
drawer 3”, “Toggle switch”, “None”.

— Exits: contains the 2 sensors attached to the 2 exit doors, the sensor placed
on the lazy chair next to one of the doors, as well as the 19 sensors worn by
the occupant. The following action classes can occur in this place: “Open
door 1”, “Close door 1”, “Open door 2”, “Close door 2”, “None”.

We evaluate our approach using a 10-fold random cross-validation. Each
action class of each fold contains 72 training instances, 22 test instances, and
18 validation instances. Those 3 sets of instances are used as is typically done
in machine learning: the training set is used to learn the model. The test set is
used to evaluate the performances of our approach on data that was never seen
during training. The validation set is used to select the best parametrization of
each classifier or decision fusion method: the learned models are first evaluated
on the validation set; the parameters which yield the best performances on this
validation set are used for the evaluation of the model on the test set. This allows
to avoid a bias in the evaluation phase, by not optimizing the parameters of each
model for the instances that we compare our models on. Instances are selected
randomly among the 4 occupants recorded in the dataset.

Performance of classifiers in each place We report in Table 3.1 the F1 scores
of 4 classical classifiers (MLP, SVM, BN, and DTW) on each of the 3 different
places (Table, Kitchen and Exits) in the Opportunity dataset. This first set of
results allow us to observe a disparity in performances depending on classifier
types. For example, we see that the DTW is significantly worse than the other 3
classifiers in the place Kitchen (84.58%± 1.38% compared to 91, 79%± 1.27%

68



3.4. EXPERIMENTS

Classifier

Place MLP SVM BN DTW

Table 98.97%± 0.48%1 98.77%± 0.54%2 98.70%± 0.48% 98.50%± 0.44%
Kitchen 94.06%± 1.58%1 93.78%± 1.32%2 91.79%± 1.27% 84.58%± 1.38%

Exits 99.15%± 0.39%1 99.24%± 0.34%2 98.34%± 0.62% 98.25%± 0.81%
Parameters:

1 80 hidden neurons, 100 epochs, 0.2 learning rate, 0.1 momentum.
2 C = 1000, γ = 0.01.

Table 3.1 – F1 scores of classifiers for each place in the Opportunity dataset.

for the BN). Those results also show that classification performances can highly
vary between places. Here, recognizing actions in the Kitchen seems significantly
more difficult, for all classifiers, than recognizing actions in the 2 other places
(e.g. 94.06%± 1.58% compared to 98.97%± 0.48% and 99.15%± 0.39% for the
MLP).

Such a gap could be in part explained by the number of input sensors of a
place; in this case however, the Kitchen has a similar number of sensors as the
other 2 places. It could be in part explained by the number of different classes
to model; in this case, 12 action classes can occur in the Kitchen, which is indeed
more than the 3 classes in place Table and 5 classes in place Exits. Finally, it could
be in part explained by the complexity of modelling the classes from the sensors
available; in this case, there are multiple action classes that will lead to similar
sensor data: for example, wearable sensors will most likely produce similar data
for both actions “Open drawer 1” and “Open drawer 2”.

Comparison between the place-based and global approaches We report in
Table 3.2 the F1 scores of the place-based approach, when all places are modelled by
the same classifier type, and of the global approach where one of the 4 previously
mentioned classifier type is used to globally model actions in the Opportunity
dataset. These results show that the place-based approach is on average better
performing than the global approach. However, the gap between the global and
the place-based approach is not statistically significant, as the standard F1 score
deviation of every single classifier type is big enough that the intervals of F1 scores
partially cover one another (e.g. 92.52%± 1.25% compared to 90.21%± 1.62%
for the MLP). For the BN, we even observe that the average F1 score of the place-
based approach is lower than in the global approach (89.14%± 1.27% compared
to 90.61%± 1.37%).

On the other hand, we observe that the standard deviation, for each classifier
type, is smaller in the place-based approach than in the global approach. This is
most probably because of the decision fusion step, which tends to average out the
results.

69



CHAPTER 3. RECOGNIZING ACTIVITIES USING CONTEXT

Classifier

Approach MLP SVM BN DTW

Global 90.21%± 1.62%1 90.05%± 1.64%2 90.61%± 1.37% 75.03%± 2.53%
Place-based 92.52%± 1.25%3 91.78%± 1.37%4 89.14%± 1.27%5 83.55%± 1.44%6

Parameters for the global approach:
1 500 hidden neurons, 200 epochs, 0.2 learning rate, 0.1 momentum.
2 C = 100, γ = 0.0005.

Decision fusion for the place-based approach (the parametrization of each place’s classifier is reported in
Table 3.1):

3 SVM stacking with C = 100, γ = 0.01.
4 MLP stacking with 100 hidden neurons, 100 epochs, 0.2 learning rate, 0.1 momentum.
5 MLP stacking with 20 hidden neurons, 100 epochs, 0.2 learning rate, 0.1 momentum.
6 SVM stacking with C = 1, γ = 0.1.

Table 3.2 – F1 scores of classifiers using the global approach or the place-based
approach on the Opportunity dataset.

Classifier

MLP SVM BN︸ ︷︷ ︸
Approach Fusion

Global 91.62%± 1.59%1

Place-based 92.70%± 1.26%1

Classifiers’ parameters: see Table 3.1 and Table 3.2.
Decision fusion parameters:

1 SVM stacking with C = 1, γ = 0.1.

Table 3.3 – F1 scores of decision fusion on three different classifier types for both
the global approach and the place-based approach on the Opportunity dataset.

Multi-classifier fusion We report in Table 3.3 the F1 scores of the place-based
approach, when 3 different classifiers (MLP, SVM and BN) are fused for each
place, and of the global approach, when those 3 same classifier types are fused.
We did not include the DTW in this experiment, as its previous results were
significantly worse than the other 3 classifier types. We observe that, as with
the results reported in Table 3.2, the place-based approach is on average better
than the global approach but with no real statistical significance (92.70%± 1.26%
compared to 91.62%± 1.59%). Moreover, we see that using 3 different classifiers,
instead of just one, leads to marginal performance improvements. For example,
the place-based approach with one MLP per place obtained the best previous
performance with an F1 score of 92.52% ± 1.25% (as reported in Table 3.2),
whereas the place-based approach with 3 classifiers per place obtained a score of
92.70%± 1.26%.
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Confusion between classes We report on Figure 3.11 the confusion matrix of
one test fold of the multi-classifier place-based approach, which obtained the
overall best results (92.70% ± 1.26% F1 score). We can observe two distinct
phenomena: first, we see that action classes that are intuitively close to each other,
such as “Open drawer 1”, “Close drawer 1”, “Open drawer 2”, etc., lead to the most
confusion. Indeed, as discussed previously with the results reported in Table 3.1,
such actions will most likely generate similar wearable sensor data. Considering
that, in all 3 places, there is a majority of wearable sensors (12 ambient and 19

wearable in Table, 18 ambient and 19 wearable in Kitchen, 3 ambient and 19

wearable in Exits), it is expected to see that even the best approach has trouble
differentiating between each of those action classes.

The second phenomenon we can observe from this confusion matrix is that
the other main source of confusions seems to be the class “None”. As anticipated
in Hypothesis 3.3, this class is difficult to model for a place-based approach
because it correspondents to situations where nothing is happening in that place
in particular, which can be many different classes of actions in other places and
thus many different patterns of sensor data. Indeed, in a situation where the
occupant performs an action in one place, other places should recognize class
“None”, despite potentially observing sensor data that occurs in other actions.
This problem is exacerbated on the Opportunity dataset considering the number
of wearable sensors, which are thus the main source of information of each place
during training.

Discussion This first set of experiments we reported on the Opportunity
dataset sheds some light on the performances of our proposed place-based ap-
proach. First, we observed that some places will be harder to perform well on
than others, for a variety of reasons such as the number of data sources, the num-
ber of target classes, or the similarity between classes. Through our place-based
approach, it is possible to work on specifically enhancing the performances on
one place, while ignoring other places where the place-based approach performs
well; this is not possible with a global approach in which attempts at improving
performance on one place will have unpredictable effects on the performance on
other places. Our proposed place-based approach is thus probably well-adapted in
situations where some of the places in the home are harder to model than others.

The results we obtained showed no statistically significant difference in per-
formance between our place-based approach an the global approach, albeit the
place-based approach was on average slightly better. However, the place-based ap-
proach seems to be more stable than a global approach, as the standard deviations
reported are quite smaller. Using multiple classifiers per place seem to not have
much impact on the performances of the place-based approach.

We think that the high number of wearable sensors in the Opportunity
dataset can be a major reason as to why using a place-based approach did not
improve performances compared to a global approach. Indeed, since our place-
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Figure 3.11 – Confusion matrix of one fold of test of the place-based approach
reported in Table 3.3 on the Opportunity dataset.

based approach does not presuppose knowledge of the location of the occupant,
each place has to use the wearable sensors as data sources. In this dataset, each
of the 3 places has a majority of wearable sensors (12 ambient and 19 wearable
in Table, 18 ambient and 19 wearable in Kitchen, 3 ambient and 19 wearable in
Exits). Therefore, the main source of data for a place are sensors which provide
information both when the occupant is in that place but also when they are not:
this can easily lead to confusions, especially with class “None”, as was shown on
Figure 3.11 where the place-based approach would often either mistaken an action
as “None” or mistaken “None” for an action. The specific problems related to
class “None” may be addressed using instance rejection as in [18], or by modelling
the dissimilarity between “None” and other classes (not addressed in this thesis).

Therefore, we propose to evaluate the recognition performances of our place-
based approach on Orange4Home, which, as presented in Section 2.3.2, is a

72



3.4. EXPERIMENTS

dataset that does not contain any wearable sensors.

3.4.1.2 Performances on the Orange4Home dataset

For reference, some of the results reported in this section were previously
published in [37].

The Orange4Home dataset was recorded during 4 consecutive weeks, in much
the same way data from a real smart home system would be collected. As such,
we chose to evaluate the performances of our place-based approach not through a
cross-validation protocol, but rather using a more realistic training protocol that
could be used in a real smart home system: the first few days or weeks of data are
used to train the model, such that it can be operational as quickly as possible; the
performances of this model are then judged on future data, in the temporal sense
(and not, as in a cross-validation protocol, on future data in the sense that it has
not been seen yet, but disregarding when it was collected compared to training
data). As such, we decided to use the first 2 weeks of data to train models on the
Orange4Home dataset, the 3rd week of data as a validation set, and the 4th week
of data as a test set.

Comparison between the place-based and global approaches We report in
Table 3.4 the F1 scores of the place-based approach and the global approach when
only one classifier type (either the MLP or the SVM) is used (first two columns
of the table). We observe this time a larger gap between the place-based approach
and the global approach: the place-based approach obtained an F1 score of 93.05%
using MLPs in each place, whereas the global approach with one large MLP
obtained a score of 77.85%. The same observation can be done for the SVM,
albeit with a smaller margin (92.08% compared to 89.61%).

These results corroborate our suggestion that wearable sensors negate the
benefits of our place-based approach. On the Orange4Home dataset where such
sensors are not present, our place-based approach seems significantly more accu-
rate. Moreover, the Orange4Home dataset contains significantly more sensors,
places, and activity classes (236, 8, and 27 respectively) than the Opportunity
dataset (52, 3, and 18 respectively). Therefore, it will be harder for a global ap-
proach to properly model the relationship between sensors and activity classes on
the Orange4Home dataset, whereas the place-based approach is less insensitive to
the number of sensors and activity classes if the number of places is high enough,
as described in Section 3.3.6.

Multi-classifier fusion We report in the last column of Table 3.4 the F1 socres
of the place-based approach and of the global approach when both the MLP and
SVM are used simultaneously. Much like the results reported in Section 3.4.1.1,
we observe that using multiple classifiers per place marginally improves the
performances of the place-based approach (93.29%) compared to the individually
best classifier type (93.05% for the MLP).
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Classifier

MLP SVM︸ ︷︷ ︸
Approach MLP SVM Fusion

Global 77.85% 89.61% 89.61%1

Place-based 93.05%2 92.08%3 93.29%2

Decision fusion for the global approach:
1 Possibility theory fusion

Decision fusion for the place-based approach:
2 DST fusion
3 Majority vote fusion

Table 3.4 – F1 scores of classifiers using the global approach or the place-based
approach on the Orange4Home dataset.

Confusion between classes We report in Table 3.5 the list of confusions made
by the multi-classifier place-based approach on the Orange4Home dataset during
the test phase, for which it obtained an F1 score of 93.29%. We can observe
that in the majority of cases (5 times out of 7), the right place is recognized even
though the activity class itself is not. If misclassification errors were distributed
uniformly at random among places, we would not observe the same bias: for the
first instance (“Cleaning” in the Bathroom), 3 other classes can occur in the same
place (“Showering”, “Using the sink”, and “Cleaning”), and 26 classes other than
“Cleaning” in the Bathroom can occur globally in the home. As such, this instance
would have a 3/26 probability of being misclassified as an activity class that occurs
in the same place. The same reasoning for the other 6 misclassified instances leads
to a probable number of instances misclassified as an activity class that occurs
in the same place of (6× 3 + 2)/26 ≈ 0.77, which is significantly less than the
5 cases we observe here. This indubitably shows that our place-based approach
is biased towards same-place misclassifications: if the approach misclassifies an
activity instance, it will likely classify it as an other activity that occurs in the
same place. This bias can actually be beneficial in smart home systems, as we will
argue in Chapter 5.

3.4.1.3 Conclusions on recognition performances

We first showed through these experiments that a place-based approach is on
average better performing than a global approach on the 2 datasets we used, as
hypothesized in Hypothesis 3.1. Although this difference is relatively insignificant
on a dataset where wearable sensors are prominent, the gap is much larger on
a dataset containing exclusively ambient sensors, which are the desired types of
sensor installations in general public smart home systems as argued in Section 2.2.

We then showed that multi-classifier fusion leads to better performances
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Ground truth Prediction

Place Class Place Class

Bathroom Cleaning Bedroom Dressing
Bathroom Using the sink Bathroom Using the toilet
Bathroom Using the sink Bathroom Using the toilet
Entrance Leaving Bedroom Napping
Kitchen Preparing Kitchen Cleaning
Kitchen Preparing Kitchen Cleaning
Kitchen Preparing Kitchen Cleaning

Table 3.5 – Confusions made by the multi-classifier place-based approach on the
Orange4Home dataset in the test phase.

for both place-based and global approaches, as anticipated in Hypothesis 3.2.
However, this improvement is very marginal and it can be argued that it is not
worth the added complexity. Nevertheless, if computing power is not limited,
multi-classifier fusion is a free improvement, as it requires no additional data
sources.

Finally, we showed that, when activity “None” is part of the set of activity
classes to recognize, this class generates a lot of confusions and is hard to model.
In particular, when many wearable sensors are used as data sources, a place-based
approach will be even more confused. Indeed, when the occupant performs
an activity in one place, other places will observe all the changes reported by
the wearable sensors, and thus be confused into thinking that something is
happening in the place they are monitoring too. Hypothesis 3.3 is thus verified,
and exacerbated in situations with wearable sensors.

3.4.2 Computing times

For reference, some of the results reported in this section were previously
published in [36].

Beyond recognition performances, the other benefits of the place-based ap-
proach we anticipated are related to computing times. We conjectured in Hy-
potheses 3.4 and 3.5 that both the training phase and activity recognition at run
time will be faster with the place-based approach compared to the global approach.
To verify this hypothesis, we will study the computing times of these phases that
we recorded during the experiments on recognition performances. All of the
computing times we report in this section were recorded on a 4-cores Intel® Core™
i7 2.8 GHz processor with 16 GB of RAM.

Computing times on the Opportunity dataset We report in Table 3.6 the
training and test times of 3 different types of classifiers (MLP, SVM, BN) for
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each of the 3 places and for the global approach on the Opportunity dataset. The
computing times of the decision fusion step (regardless of the decision fusion
method used) are negligibly small compared to the other computing times; they
are thus not reported in the table and ignored in our analysis. We will ignore the
DTW in the following discussions, even though it requires no training time, as it
is much too slow compared to the other 3 classifier types in the test phase.

Assuming that our place-based approach is executed on a multi-core com-
puting architecture (either on a multi-core processor, or on multiple computing
devices in a network), we can parallelize the training phase or the recognition
phase at run time of our place-based approach: all places are computed simultane-
ously (which therefore requires as many cores as there are places); the computing
time of the place-based approach is thus the computing time of the slowest place
(assuming decision fusion and parallelization overheads take a negligible amount
of time). In our experiments, the computing times of our place-based approach
are thus always significantly shorter, both in the training and test phase, than a
global approach. For example, training a place-based approach using MLPs will
on average take 947.65 seconds (because place Table is the slowest one), whereas
training a global approach that uses a MLP on average take 11250.06 seconds,
which is more than 10 times longer. Similarly, recognizing at run time all test
activity instances will take on average 12.49 seconds for the place-based approach
using SVMs (because place Kitchen is the slowest one), when it will take a global
approach that uses a SVM 29.47 seconds.

In the multi-classifier scenario, the same behaviour can be observed. In the
global approach, the 3 classifiers can be parallelized; we thus need on average as
much time as the slowest of these classifiers (for example, 11250.06 seconds for
training because of the MLP). As for the place-based approach, we can parallelize
the places; we thus need on average as much time as the slowest place, which
computing time is the sum of the computing times of the 3 classifiers (for example,
947.65 + 24.42 + 19.06 = 991.13 seconds because place Table is the slowest). We
see that the place-based approach is thus once again faster than a global approach
in this experiment, even in the test phase: the global approach takes 29.47 seconds
to complete (because the SVM is the slowest), while the place-based approach
takes 9.84 + 12.49 + 6.71 = 29.04 seconds (because place Kitchen is the slowest).

Since there are 396 instances of activities per fold, any of the approaches ex-
perimented here will be able to process an activity instance at run time in a time
much shorter than the duration of an activity instance itself. For example, our
multi-classifier place-based approach will take on average 29.04/396 = 0.073 sec-
onds to process an activity instance, which is sufficiently short to be unnoticeable
by an occupant.

Computing times on the Orange4Home dataset We report in Table 3.7 the
training and testing times of 2 different types of classifiers (MLP, SVM) for each
of the 8 places and for the global approach on the Orange4Home dataset. If we
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Model

Classifier Phase Table Kitchen Exits Global

MLP Training 947.65± 160.77 732.83± 60.04 561.71± 30.78 11250.06± 1593.57
Test 12.64± 1.56 9.84± 1.22 8.49± 1.99 20.70± 1.19

SVM Training 24.42± 0.23 19.11± 0.16 12.75± 0.23 35.37± 0.48
Test 6.56± 0.06 12.49± 0.13 4.21± 0.03 29.47± 0.96

BN Training 19.06± 0.34 13.87± 0.28 11.34± 0.25 26.49± 0.37
Test 8.75± 0.06 6.71± 0.13 5.49± 0.07 11.73± 0.10

DTW Training 0 0 0 0
Test 4116.70± 262.37 3256.30± 199.21 2937.00± 174.20 5011.10± 335.78

Parameters: see Table 3.1 and Table 3.2.

Table 3.6 – Average computing times (in seconds) of classifiers during the training
and test phases for each model, for an entire fold of cross-validation on the
Opportunity dataset.

assume that we have as many computing cores as the number of places (here,
8), we arrive to the same conclusions on the Orange4Home dataset as we did on
the Opportunity dataset: the training and test times of the place-based approach
are significantly shorter than a global approach. For example, it takes 23.73
seconds to train the place-based approach using MLPs (because place Kitchen is
the slowest), when it takes 319.34 seconds for a global MLP.

However, having as many computing cores as the number of places (for exam-
ple 8 on the Orange4Home dataset) might not always be plausible. Nevertheless,
we can still parallelize the place-based approach even if there are more places
than available computing cores: for example, with 3 computing cores, we can
spread the 8 places of the Orange4Home dataset among the 3 cores, such that
2 cores sequentially process 3 places each, and 1 core sequentially processes the
remaining 2 places. The worst-case scenario is when the 3 places that are the
longest to compute are computed by the same core. For example, the worst-case
scenario when training MLPs in the place-based approach using only 3 cores is
when the Kitchen, the Living room and the Bedroom are computed on the same
core, which would take here 23.73 + 13.57 + 12.89 = 50.19 seconds.

We report in Table 3.8 the worst-case computing times of the place-based
approach on the Orange4Home dataset when we have 1 to 4 computing cores
available. We see (in bold) that we can obtain shorter computing times than the
global approach (as reported in Table 3.7) in all cases with only 4 computing
cores, which is 2 times less than our first assumption of 8 cores. With only 3

cores, the place-based approach is faster than the global approach in all but the
SVM training case, where it is only 1.34 seconds slower (29.39 seconds compared
to 28.05 seconds).

The previous computing times occur in worst-case scenarios. In a real system,
some simple criteria would allow to optimize the partition of places among
computing cores, such that the maximum time required by any of the cores is
minimal: for example, the more sensors are in a place, or the more activity classes
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Classifier

MLP SVM

Model Training Test Training Test

Entrance 7.00 2.10 7.42 2.02
Kitchen 23.73 3.05 10.87 2.92

Living room 13.57 2.66 9.56 2.56
Toilet 5.92 1.93 6.83 2.02

Staircase 5.37 1.89 6.50 1.80
Bathroom 11.53 2.39 8.24 2.43

Office 9.72 2.23 7.92 2.15
Bedroom 12.89 2.56 8.96 2.47

Global 319.34 9.81 28.05 10.20

Table 3.7 – Average computing times (in seconds) of classifiers during the training
and test phases for each model on the entirety of the Orange4Home dataset.

can occur in a place, the more complex the model will be for this place. Therefore,
we could share places based on those criteria such that places with many sensors
and activity classes and places with few sensors and activity classes are computed
on the same core, while places with an average number of sensors and activity
classes are grouped together; this way, no computing core will be significantly
slower than the rest. Using this method, it seems that we can divide by at least a
factor of 2 the number of computing cores required to parallelize our place-based
approach, compared to the number of places.

3.4.2.1 Conclusions on computing times

In this second set of experiments, we observed that, as anticipated in Hypothe-
ses 3.4, the training times required by a place-based approach are significantly
smaller than for a global approach, for any of the tested classifier types. In partic-
ular, for some classifier types like the MLP, where training times increase greatly
with the number of inputs and output classes, this gap can be very large. In much
the same way, the execution times at run time of a place-based approach are also
smaller than for a global approach, as conjectured in Hypothesis 3.5.

However, for these hypotheses to be valid, parallelization is necessary, using as
many computing cores as places in the home. Yet in practice we showed that we
can divide the number of required cores by at least a factor of 2 in the worst-case,
and thus by a bigger factor using simple heuristics for distributing places on
computing cores based on the number of input sensors and output classes of each
place. Parallelization capabilities is thus not a very limiting barrier. Approaches
such as multi-agent systems and fog computing could be applied to orchestrate
this place-based parallelization.
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Classifier

MLP SVM

Number
of cores Training Test Training Test

1 89.73 18.81 66.30 18.37
2 61.72 10.66 37.63 10.38
3 50.19 8.27 29.39 7.95
4 37.30 5.71 20.43 5.48

Table 3.8 – Average computing times (in seconds) of the place-based approach
on the Orange4Home dataset depending on the number of available computing
cores, in worst-case scenarios where all slowest places are running on the same
core. Times typeset in bold are those that are smaller than the corresponding
times for a global approach.

3.5 Conclusions

We presented in this chapter the second contribution of our thesis: place-based
activity recognition. We experimentally evaluated this approach on two different
datasets and showed significant improvements, compared to global approaches, in
activity recognition performance as well as computing times.

Improvements in activity recognition performance are essential in order
to increase the usefulness of context-aware smart home systems to occupants.
Incorrectly identifying situations can lead to inappropriate services, which is
unacceptable for general public users. As such, our place-based approach is more
well-adapted to such general public smart home systems.

Improvements on computing times are also valuable. Indeed, low computing
complexity means that activity recognition can possibly run on relatively cheap
hardware, including objects that are part of the sensor network themselves,
instead of expensive home automation boxes or cloud-based solutions. This
implies in particular that our place-based approach is applicable for local smart
home solutions that do not process personal data in the cloud, which is generally
desired for privacy reasons.

We argued that our place-based approach, because of its modularity, is well-
adapted to the current ecosystem of smart home technologies and scientific
improvements in AI. Indeed, this approach is agnostic to the classifiers used in
each place or the sensors installed. Evolutions in the sensor installation or the
routines of occupants can be integrated by the approach at the place level, instead
of having to modify the entire model of the home. Moreover, this modularity
also means that simultaneous activity recognition in different places is a natural
perspective for the place-based approach, whereas it is unclear what a good strategy
for this would be when starting from global approaches.
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Recognizing activities using our place-based approach is the first necessary
step to provide our example service of communication assistance to occupants,
assuming that availability for communication highly depends on the activity of
occupants. However, this service should not only be able to estimate the current
availability of occupants, but also predict their future availabilities, in order to give
recommendations to correspondents. In Chapter 4, we thus study the problem
of activity prediction, from a series of previous activity instances recognized for
example by the place-based approach. We present new context-based prediction
models that take the specificities of smart home environments into account. We
evaluate those contributions on state-of-the-art smart home datasets, as well as on
the Orange4Home dataset.
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CHAPTER 4

Predicting activities using context

F
uture context information is essential to allow a smart home to an-
ticipate the needs and behaviour of its occupants. Such anticipation
is necessary to provide a number of context-aware services, such as

a communication assistant that advises outsiders about the future availability
for communication of occupants of the home. Therefore, smart home systems
must be able to predict future context situations, and thus, must be able to
predict future activities that its occupants will perform. Following preliminary
assumptions and a more precise definition of the activity prediction problem,
presented in Section 4.1, and a survey of activity prediction strategies for smart
home published in the state of the art, presented in Section 4.2, we present in
Section 4.3 the third major contribution of our thesis, the PSINES (short for Past
SItuations to predict the NExt Situation) Dynamic Bayesian Network (DBN),
and intermediary contributions, which seeks to improve the prediction accu-
racy of a state-of-the-art algorithm using context information and smart home
specificities. We experimentally evaluate this new approach in Section 4.4.

4.1 Problem statement and preliminary assumptions

Before presenting our contributions on the problem of activity recognition,
we first need to define what we mean precisely by activity prediction. This is the
object of Section 4.1.1. We also state, in Section 4.1.2 the assumptions we make
about to simplify this problem.
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A1 A2 ?

i− 1 i i+ 1

Sequence prediction

An An An

ti−1 ti ?

. . .

Occurrence prediction

Figure 4.1 – Comparison between predicting the next activity label at timestep
i+ 1 in a sequence, and predicting the next occurrence time ti+1 of a particular
class An.

4.1.1 Activity prediction

In this chapter, we study the problem of activity prediction. However, we
find, in the literature, many different uses of the term “activity prediction”, that
refer to seemingly different problems. In cause is the word “prediction” which
is quite often overloaded, especially in the research field of machine learning.
Merriam-Webster provides the following definition of the verb “to predict”:

Definition: Predict (Merriam-Webster [3])
To declare or indicate in advance; especially: foretell on the basis of observation,
experience, or scientific reason.

This definition clearly includes a notion of precedence, that is, that the prediction
occurs in advance, or in other words that the object of the prediction will occur
after the prediction itself.

This definition clearly does not fit the use of “activity prediction” to designate
a number of studied problems which do not include this notion of precedence.
One such problem is that of activity recognition, which we studied in Chapter 3.
In papers related to this problem, “predicting” is often used to mean “recognizing”
or “classifying”. This is not the problem we study in this chapter.

Another such problem is that of recognizing activities as early as possible
using partial data. Multiple papers refer to this problem as “activity prediction”,
such as [130, 65, 92]. This problem, however, is more akin to activity recognition
using the entire instance data, since the goal is to affect the activity label that best
fit the current recorded data, even if future data might still represent the same
instance. This is not the problem we study in this chapter.

We do find, in the literature of smart homes, 2 distinct problems that fit the
definition of activity prediction. The first problem consists in predicting, for each
possible activity class, the time of occurrence in the future of the next instance of
that class. As far as we know, and as the authors claim in the paper, this problem
was first introduced by Minor et al. in [102] (in which they call this problem
“activity prediction”). Lago et al. also study this problem in [83]. Let us call this
problem “occurrence prediction” for the remainder of this section.

The second problem consists in predicting the next future activity instance
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that will occur after the current activity. This problem is studied in multiple
papers such as [164, 72, 62, 111]. Let us call this problem “sequence prediction”
for the remainder of this section.

Both problems seem, at first, to answer different questions: occurrence pre-
diction allows to answer questions such as “when will the occupant cook next?”,
whereas sequence prediction allows to answer questions such as “what activity
will the occupant do after he’s done cooking?”. Yet, we can show that sequence
prediction can be solved using an occurrence predictor, while the opposite is
not directly possible. In occurrence prediction, the algorithm predicts, for each
activity class, the next time at which it will occur. Given this set of occurrence
time for each activity class, we can derive the next activity that the occupant will
perform (the sequence prediction problem) by observing which activity class will
occur the soonest (assuming a closed-world scenario where the complete list of
possible activity classes is known). Using a sequence predictor, we can recursively
predict a sequence of future activities long enough such that it contains each
activity class at least once. However, we would still not know the times at which
these activities will occur, and would thus require an additional algorithm to solve
the occurrence prediction problem.

As such, solving the occurrence prediction problem is more desirable than
only solving the sequence prediction problem. On the other hand, the generality
of the occurrence prediction problem can be problematic: sequence prediction,
being a simpler problem, might be tractable using available smart home data,
while occurrence prediction might not be. In particular, predicting time values
intuitively seems more difficult than predicting activity labels. This difficulty
might be one of the reasons why there are many more works on sequence
prediction in the literature of smart homes compared to occurrence prediction.

For these reasons, we will study, in this chapter, the problem of sequence
prediction, which we will simply call activity prediction in the rest of the thesis.

4.1.2 Assumptions

In the following section, we explicitly state some of the hypotheses we make
about the activity prediction problem (as defined in Section 4.1.1). These as-
sumptions were either already made for the activity recognition problem, or
follow from our study of activity recognition. Justifications for some of these
assumptions can thus be found in Chapter 3.

4.1.2.1 Single-occupant situations

We assume that only one person occupies the home at all times (although that
person can change). This assumption was already made for activity recognition
in Section 3.1.1.
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4.1.2.2 Information on identity

We assume that the context dimension of identity is given before the pre-
diction step, or equivalently, that the identity of the occupant is not considered
important for activity prediction. This assumption was already made for activity
recognition in Section 3.1.2.

4.1.2.3 Existence of an activity recognition model

We assume that we have at our disposal an accurate activity recognition model,
which can identify activity instances given sensor data. This assumption allows us
to potentially predict activities using previously recognized activities, instead of
having only raw sensor data at our disposal. This assumption can be met using
for example the place-based activity recognition approach studied in Chapter 3
(this approach also provides information about place, which can then also be used
for activity prediction).

4.1.2.4 Sequentiality of activities

We assume that activity instances necessarily follow one another sequentially.
In other words, we assume that two activities cannot occur simultaneously, i.e.
the occupant never performs two activities in parallel. This assumption was
already made for activity recognition in Section 3.1.4.

4.2 State-of-the-art approaches

In the following section, we present in more details a number of contributions
on the problem of activity prediction. We mostly focus on works applied to
smart environments. We base our survey on the definition of activity prediction
we chose in Section 4.1.1. As such, we will review contributions where the goal
is to predict the class of the future activity instance based on current and past
situations and sensor data.

Similarly to the problem of activity recognition, machine learning techniques
are often used for activity prediction. Their ability to automatically learn the
right model from labelled data constitutes an obvious advantage. Moreover,
such labelled datasets are also required for activity recognition based on machine
learning techniques. Therefore, a machine learning algorithm for prediction
can benefit from the same labelled training dataset that was constructed for the
purpose of the preliminary activity recognition step.

In addition, we find a large number of contributions related to the manip-
ulation of sequences of symbols: sequence matching, compression algorithms,
itemsets mining, etc. Such techniques, originally applied to classical problems
on data compression, database exploration, data mining, etc., can be applied to
activity prediction in smart homes fairly straightforwardly.
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In Section 4.2.1, we discuss works based on sequence mining techniques. In
Section 4.2.2, we present contributions that combine both mining and machine
learning algorithms. In Section 4.2.3, we review papers that propose machine
learning approaches for activity prediction. Finally, in Section 4.2.4, we dis-
cuss the benefits and drawbacks of each approach, in anticipation for our own
contributions on activity prediction, in Section 4.3.

4.2.1 Sequence mining

A major category of activity prediction algorithms studied the literature of
smart home research are related to the manipulation of sequences of symbols.
Sequence matching, compression, itemsets mining, pattern mining, association
rule mining, etc., are all example of general categories of algorithms applied to
the problem of activity prediction in smart homes. In fact, in a survey of activity
prediction in homes by Wu et al. in 2017 [161], we exclusively find algorithms
from these categories.

This predominance is understandable due to the long history of research on
the extraction of patterns in sequences of symbols, which reach all the way back
to Shannon’s work on the entropy of information [137]. A large number of
well-established algorithms for compression, itemsets mining, pattern mining,
etc., that were designed for other applications, are thus applied to the problem
of activity recognition in homes. Classical examples of such algorithms include
Apriori [6], Minepi and Winepi [95], FP-Growth [64], Eclat [168], etc. In Apriori,
the discovery of frequent itemsets relies on the property that the subset of a
frequent itemset is necessarily frequent. As such, one can first establish the list
of frequent (according to some support value) itemsets of 1 element, and then
recursively generate new candidate itemsets, with one more element, from the
previous list of frequent itemsets, avoiding the generation of necessarily infrequent
itemsets. Many related algorithms rely on similar generation techniques. For
example, in order to discover episodes in temporal data, the Winepi algorithm
consists in applying Apriori following a preliminary step that turns a temporal
sequence of data into a discrete transaction using a fixed-size sliding window.

We thus find a number of different papers that employ such techniques for
activity prediction in smart homes [92, 96, 62, 39, 110, 27, 147]. We discuss in
more details 2 papers that present such approaches in Section 4.2.1.1 and Section
4.2.1.2.

4.2.1.1 Active LeZi

Gopalratnam and Cook propose in [59] a sequence prediction algorithm that
relies on data compression techniques, called Active LeZi. This predictor is based
on the LZ78 text compression algorithm, which incrementally parses sequences
of symbols to construct a dictionary of symbol phrases. Drawbacks of LZ78
include slow convergence, which was already tackled by Bhattacharya and Das
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in [20] with the LeZi update technique. Active LeZi is an improvement on both
LZ78 and LeZi update to address convergence slowness, by using sliding windows.
The authors prove a number of theoretical results on the convergence rate and
complexity of Active LeZi, compared to previous solutions.

The main application domain Gopalratnam and Cook apply Active LeZi to
is smart home. In particular, they consider their approach suitable for predicting
activities of occupants, which is useful for services such as home automation.
In their experiments, they study the behaviour of Active LeZi, not directly on
human activity prediction, but rather on interaction prediction. The goal is to
predict, from a sequence of previous events, the next change observed by a device
(e.g. a door sensor detects that its door is now opened). They show that Active
LeZi can obtain reasonable prediction performance, especially when the top five
predictions made by the algorithm are considered.

This first work shows that compression-based techniques can be applicable
to event prediction in smart homes, and possible directly to activity prediction
(although it was not tested in experiments). The large body of work on com-
pression techniques and identification of symbol sequences in general can thus be
exploited for prediction problems in smart homes.

4.2.1.2 SPEED

In [9], Alam et al. present a sequence prediction algorithm called SPEED.
Previous compression techniques such as Active LeZi, presented in Section 4.2.1.1,
are based on general sequences of data and do not take into accounts the properties
of smart home data sources and specificities in human behaviour. SPEED, on the
other hand, is designed specifically for the problem of activity prediction in smart
homes, and thus takes into consideration certain properties. For example, as this
work limits itself to “On/Off” sensors, we can identify episodes of data collected
between an “On” event and a “Off” event of one sensor, that correspond to home
interactions.

SPEED constructs a decision tree which contains the identified episodes in
a sliding window over the data sequence. This decision tree corresponds to a
finite-order Markov model. This decision tree can be used to infer the probability
of occurrence of a specific symbol after having observed a specific window of
data. Alam et al. present a number of theoretical results on the time and space
complexities of SPEED. In particular, they show that it converges faster than
Active LeZi and leads to more accurate prediction, while requiring more data
storage for the decision tree.

Efforts in improving convergence rates of sequence prediction algorithms
allow the application of such techniques to smart home datasets. Indeed, we have
seen in previous chapters that acquiring large amounts of labelled data in smart
homes is not realistic. As such, algorithms which require less data to converge
are more easily applicable in such situations. Moreover, such algorithms that
comprehensively extract all patterns from data sequences can be prohibitively
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slow on long sequences, which may limit their usefulness with regards to smart
home services that require fast activity prediction times.

4.2.2 Machine learning prediction with preliminary sequence

mining

In the previous section, we discussed works that use sequence matching,
compression algorithms, and itemset mining for activity prediction. These papers
benefit from the extensive body of work on symbol manipulation and data mining,
and the theoretical grounds for such approaches.

These techniques are generally agnostic to the actual source of data on which
they are applied. On one hand, this means that they can be applied on any
sequence-based data regardless of the actual problem tackled. In particular, this
means that they can be applied to smart home activity prediction, as we have seen
in the previous section. On the other hand, this also means that these approaches
cannot be straightforwardly modified to integrate a priori knowledge about home
environments.

As such, some authors have proposed to use a combination of sequence
matching techniques in conjunction with machine learning algorithms, which
can adapt to the specificities of data sources. In this case, sequence matching is
used to extract well-supported patterns in the data to construct features, which
are then learned on by the machine learning algorithm to predict activities. We
discuss in more details 2 such papers in Section 4.2.2.1 and Section 4.2.2.2.

4.2.2.1 Discovering behaviour patterns for activity prediction

Fatima et al. propose in [51] a two-step module for activity prediction in
smart homes. In the first step, sequence pattern mining is applied in order to
discover temporal patterns of activity sequences. A support threshold allows to
prune sequences of activities that are too infrequent in the dataset. According
to the authors, this step allows to find significant behaviour patterns that occur
frequently on different days, and that thus may be used to model the routine of
occupants.

In the second step, a Conditional Random Field (CRF) is employed to model
activity sequences for activity prediction. CRFs are generative probabilistic
graphical models that allow to capture directed dependencies between variables,
such as activities. Sufficiently supported sequences of activities found in the first
step are used to train the CRF. In particular, Fatima et al. propose to only use
supported sequences of 8 to 10 consecutive activities to predict future activities,
and discard shorter supported sequences. They show in their experiments that
their two-step method leads to better prediction accuracy compared to a HMM.

In this paper, it is argued that, in order to predict future activities, it is
necessary to observe long sequences of past activities. Using such sequences of
8 to 10 activities seem to allow graphical models such as CRFs to model the
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problem of activity prediction. In short, this work suggests that a future activity
is determined not by its immediately preceding activity, but rather by a complete
sequence of preceding activities, i.e. activities might not follow the first-order
Markov property.

4.2.2.2 Itemset mining and temporal clustering for prediction

In [163], Yassine et al. propose a three-step process for activity prediction
in smart homes. First, an itemset mining strategy is used to identify frequently
supported patterns that relate activities to appliance usage in collected data. The
extraction algorithm they use is based on FP-Growth and is presented in more
details in [138].

While the first step focuses on finding appliance-to-appliance and appliance-
to-activity relationships, the second step is used instead to find appliance-to-time
relationships. In particular, the goal is to discover, in recorded data, the usage
time of appliances with respect to various temporal elements: hour of day, time
of day, weekday, week of the year, month of the year. An incremental k-means
strategy is used to cluster appliances with similar temporal usages together.

Finally, the third step aims at predicting activities from these appliance-to-
appliance frequent patterns and appliance-to-time relationships. In order to do
so, they propose to use a BN in which these appliance and temporal associations
are modelled in the BN’s structure. The BN can predict the most probable
future appliance usages, and thus, future activities based on appliance-to-activity
relationships identified in the first step.

Contrary to the works of Fatima et al. presented in Section 4.2.2.1, the
approach presented in this work is aimed at AAL and healthcare applications.
The ability of such systems to predict future activities of occupants allow the
implementation of multiple valuable services. In particular, it allows the detection
of deviations from standard routines (e.g. the occupant does not perform the
activity that we predicted they would do), which may indicate degradation in
health or well-being. It also allows to provide anticipatory services which can
remind the occupant about certain health-related events (e.g. remind the occupant
that they will soon need to take their medication, if we predicted that this is the
next activity they should do based on their past behaviour).

4.2.3 Machine learning

In Section 4.2.2, we discussed works that use machine learning algorithms
for prediction, after a preliminary sequence mining step. This sequence mining
step is typically used to extract a number of features (such as sensor use per time
period).

However, modelling human routines in homes from a theoretical standpoint,
especially when there is such variability in smart home environments (different
sensor installations, different home layouts, etc.). As such, it is not guaranteed that
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hand-crafted features, extracted using sequence mining, will actually be valuable
to model activity prediction for all homes, let alone be optimal.

Therefore, we find several works that directly use machine learning techniques,
without any preliminary sequence matching. Most works are based on graphical
models (such as HMMs) as in [11, 94, 74, 104, 118, 164]. We do find some
examples of deep learning approaches (such as Long Short-Term Memory neural
networks (LSTMs)) applied to activity prediction, as in [71, 31, 76]. We discuss
in more details 2 papers that present graphical prediction approaches in Section
4.2.3.1 and Section 4.2.3.2.

4.2.3.1 Anticipatory temporal conditional random fields

In [79], Koppula and Saxena propose an activity prediction scheme from
video data. Applications targeted by this work revolve around robotics, rather
than smart home systems. The goal in such use cases is to anticipate, using visual
data that could come from an autonomous robot, the future actions of a person in
order to adapt its interactions, responses, and understanding of the environment.

The approach proposed by the authors consists in using human pose and
surrounding objects to infer future actions. More precisely, a first step seeks
to infer the functionality of objects in the frame of view, depending on how
the object is interacted with (e.g. an object might be “drinkable” if it is often
found near a human’s mouth). By doing so, we can obtain a heatmap of object
functionalities for a specific viewpoint, by observing the possible positions of
such objects over time.

In a second step, the current and past situations are modelled using à CRF,
which integrates variables representing human poses, object functionalities, object
locations, and sub-activities (or tasks, as we call them in our thesis). An antici-
patory temporal CRF is then generated to model a possible future situation, by
extending the previous CRF with trajectories and future poses, functionalities,
locations, and sub-activities. In order to predict properly, the system generates
as many anticipatory temporal CRFs as there are possible future situations. The
most probable one is then selected as the prediction the system makes about the
future activity.

Contrary to previous activity prediction methods presented in Section 4.2,
the approach of Koppula and Saxena is designed to consider every possible future
situation before actually predicting the most likely one. While there may be some
situations where this would be computationally prohibitive, such an approach
might be applicable in smart home environments, in which knowledge about the
home and the occupants can help eliminate logically impossible scenarios, and
thus avoid illogical activity prediction. For example, certain activities may be only
physically performable in certain places (an assumption which we exploited in our
place-based approach in Chapter 3); we can therefore eliminate certain possible
future situations depending on the place in which the occupant is predicted to be.
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4.2.3.2 CRAFFT dynamic bayesian network

Nazerfard and Cook present in [111] an activity prediction approach based on
DBNs, called CuRrent Activity and Features to predict next FeaTures (CRAFFT).
In this model, 4 input variables are used to predict the future activity: the current
activity, the current place where the occupant is situated, the current time of day,
and the current day of week. These variables are direct representations of 3 of the
primary context dimensions in the home, as we defined them in Section 2.1.2.1:
activity, place, and time. As such, their approach uses purely contextual data, and
does not directly use sensor data for activity prediction.

The particularity of CRAFFT’s structure is that the future activity is not
directly predicted from these 4 contextual variables. In fact, the future place, the
future time of day, and the future day of week of the next activity are predicted
from these 4 variables. Then, the future activity is predicted using these 3 new
inputs in addition to the initial 4 observations. Nazerfard and Cook, through an
experimental study, argue that this particular 2-step DBN architecture leads to
better activity prediction performance than a more naïve direct prediction from
the 4 context variables.

In a sense, this approach can be seen as a primary context prediction approach
(excluding identity), which is more general than activity prediction. Indeed, by
predicting future place and time information before predicting the future activity,
the DBN actually anticipates a more complete situation than just the activity.

4.2.4 Discussion

We have seen in this section that both sequence matching and machine learning
techniques have been successfully used for activity prediction in smart homes. In
some works, a combination of both methods has also been proposed.

The large corpus of available work on sequence matching techniques, com-
pression algorithms, itemsets mining, etc., can be transferred on the problem
of activity prediction in smart homes. We generally have a good understanding
of the behaviour and complexities of such techniques, which can offer some
guarantees on a prediction system based on such algorithms (e.g. in terms of
running time). On the other hand, these approaches are generally fairly rigid, in
that they aim at finding temporal relationships in data regardless of the actual
environment in which these data were recorded. As such, it is difficult to adapt
such algorithms to take into account some a priori knowledge about smart homes,
as we had done in our place-based activity recognition approach (e.g. known sets
of possible places in the home, location of sensors, etc.). Therefore, some works
use sequence matching in order to construct some features from data, which is
then used to train a machine learning algorithm that performs the actual activity
prediction step.

In approaches based on machine learning, it seems that most techniques used
rely on graphical models such as CRFs or DBNs. These algorithms typically
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include explicit temporal relationships between elements of the model, which
makes them well-suited for prediction problems, compared to other approaches
such as MLPs or SVMs, where temporality is not modelled.

The CRAFFT prediction algorithm of Nazerfard and Cook, presented in
Section 4.2.3.2, presents a particularly interesting approach. Their predictive
architecture uses the primary context that we had identified in Section 2.1.2.1,
in the form of activity, place, time of day, and day of week variable nodes in a
DBN. In addition, the use of a DBN makes CRAFFT an especially attractive
approach to use as a basis on which to experiment various improvements for
activity prediction. Indeed, one can extend CRAFFT through the introduction
of new variable nodes and edges between variables, based on the specificities of
smart home environments. In particular, one can extend this model with nodes
that represent other context dimensions such as availability, and therefore propose
a model that provides context prediction in general, rather than just activity
prediction. Such context prediction can serve a number of context-aware services
such as our communication assistant service based on availability, which we will
discuss in Chapter 5.

Our contributions to the problem of activity prediction, presented in Section
4.3, are thus based on CRAFFT. We will present a number of different extensions
of CRAFFT, based on smart home heuristics, which should improve prediction
accuracy compared to the original CRAFFT model.

4.3 Context-based activity prediction

In the following section, we present our contributions to the problem of
activity prediction in smart homes, as defined in Section 4.1. We first introduce
the algorithmic basis for our contributions, through the predictive model of
Nazerfard and Cook [111] which we had identified in Section 4.2. Then, we
present 4 direct contributions to this initial model: in Section 4.3.2.1, we discuss
the use of sensor data for activity prediction; in Section 4.3.2.2, we argue on using
non-Markovian prediction models; in Section 4.3.2.3, we propose to model the
cognitive state of the occupant to improve prediction accuracy; in Section 4.4.5, we
expose a complete prediction model that combines the 3 previous contributions.
We conclude this section with a presentation, in Section 4.3.3, of the results we
expect to observe in activity prediction experiments.

4.3.1 The CRAFFT dynamic bayesian network for activity pre-

diction

In this section, we discuss the basis for our contributions on the problem of
activity prediction. In Section 4.3.1.1, we give a concise introduction to DBNs,
which we will use as our prediction algorithm. In Section 4.3.1.2, we present in
more details the activity prediction scheme used by Nazerfard and Cook in [111]
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Figure 4.2 – A DBN of 5 variables between timesteps i and i+ 1.

(mentioned in Section 4.2). Their DBN architecture for activity prediction, called
CRAFFT, will constitute the basis for our own contributions.

4.3.1.1 Dynamic bayesian networks

DBNs are an extension of BN (which were presented for activity recognition
in Section 3.3.4.3) in which temporal dependences between variables from one
timestep (sometimes called timeslice) to the following timestep can be represented.
DBNs are thus suitable for prediction problems.

More formally, DBNs respect the homogeneous first-order Markov property,
that is, dependencies between variables can only exist [69] inside a timestep (like a
normal BN) or between two immediately consecutive timesteps. DBNs are called
dynamic because they model the temporal evolution of variables; the topology
of the graph itself does not change over time. As such, a DBN can be seen as
a couple of two BNs, one which describes the initial distribution of variables
(that is, the distribution of variables at time 0), and one which describes the
transitions between two timesteps (which will be independent of time because of
the homogeneous first-order Markov property).

DBNs possess two different types of parameters: the conditional probabilities
of transition of variables, and the topology of the network itself [100]. The same
techniques can be used in both DBNs and BNs to learn conditional probabili-
ties from a training set. Expectation-Maximization or related gradient descent
algorithms can be used to compute the initial conditional probabilities in a DBN,
taking into account that these parameters must be tied between timesteps (a
concept that does not exist in regular DBNs) [107]. Much like regular BNs,
automatically learning the optimal topology of a DBN is a difficult problem.

Let us take the example of the DBN represented in Figure 4.2. Let Xi =

{x(1)i , x
(2)
i , x

(3)
i , x

(4)
i , x

(5)
i } be the set of variables of this DBN at timestep i, and

let Pa(x
(j)
i ) be the set of parents of variable x(j)i . We can then describe the joint
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Figure 4.3 – Topology of the CRAFFT DBN between timesteps i and i + 1 as
reported in [111].

probability p(Xi+1 | Xi) from one timestep to the next as follows:

p(Xi+1 | Xi) =
∏

xi+1∈Xi+1

p(xi+1 | Pa(xi+1)) (4.1)

= p(x
(1)
i+1 | x

(1)
i )

× p(x
(2)
i+1 | x

(4)
i , x

(5)
i , x

(1)
i+1)

× p(x
(3)
i+1 | x

(1)
i+1)

× p(x
(4)
i+1)

× p(x
(5)
i+1 | x

(2)
i+1, x

(3)
i+1, x

(4)
i+1).

4.3.1.2 The CRAFFT and CEFA dynamic bayesian networks

Nazerfard and Cook introduce in [111] the CRAFFT DBN topology for
activity prediction, which we illustrate on Figure 4.3. Four variable nodes are
introduced in this DBN architecture:

— Ai, the Activity class performed at timestep i;

— Pi, the Place where the activity occurs at timestep i;

— Hi, the Hour of the day when the activity occurs. These values are dis-
cretized into 6 ranges of hours: [0, 3], [4, 7], [8, 11], [12, 15], [16, 19], and
[20, 23];

— Di, the Day of the week when the activity occurs, from 1 (Monday) to 7
(Sunday).

These 4 variables directly correspond to 3 of the primary context dimensions
in the home: activity, place, and time. The CRAFFT model thus only uses
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Figure 4.4 – Topology of the CEFA DBN between timesteps i and i + 1 as
reported in [111].

primary context information to predict future activities. Sensor data are thus
ignored in this prediction model.

The choice of edges between nodes in the same timestep and edges between
two consecutive timesteps relies on empirical observations by Nazerfard and
Cook on smart home datasets. Examples of situations are given to justify, for
example, the introduction of edges between Hi and Pi+1 or Di and Pi+1.

The particularity of the CRAFFT DBN is that the future activity Ai+1 is not
directly predicted from the observed variables (Ai, Pi, Hi, and Di). Instead, a
first step consists in predicting the contextual features of the next activity Pi+1,
Hi+1, and Di+1, which are then used in conjunction with Ai to predict Ai+1.

A simpler but more intuitive DBN structure for activity prediction that
Nazerfard and Cook present in [111] is the CurrEnt Features and activity to
predict the next Activity (CEFA) DBN, which we illustrate on Figure 4.4. While
this architecture contains the same primary context variables, the future activity
Ai+1 is directly predicted from the currently observed features Ai, Pi, Hi, and
Di.

In their experiments, Nazerfard and Cook show that the CRAFFT DBN is
significantly more accurate for activity prediction than the CEFA DBN, on 3

datasets of activities in smart homes. They also show that the CRAFFT DBN is
more accurate than standard classifiers such as SVMs and MLPs used as predictors.
In Section 4.4.1, we reproduce these experiments on 5 new datasets of activities in
smart homes to see if the same observations can be made.

4.3.2 Beyond CRAFFT: PSINES and intermediate models

In this section, we present 4 contributions to the problem of activity pre-
diction. Starting from the CRAFFT DBN, we discuss ways to improve the
prediction accuracy of this predictor, based on the specificities of activities of
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occupants in homes.
In Section 4.3.2.1, we propose to extend the CRAFFT architecture by intro-

ducing variables related to sensor data. We hope that valuable information for
activity prediction can be found in such data sources, and that as such, discarding
them as in the standard CRAFFT model is detrimental to prediction performance.

In Section 4.3.2.2, we propose to extend the influence of previous activities
on the future activity by introducing additional edges in the CRAFFT DBN. By
doing so, we hope to circumvent the Markovianness of activity sequences forced
in CRAFFT, which intuitively is not a property held by daily living routines in
homes.

In Section 4.3.2.3, we propose to introduce additional nodes related to the
cognitive state of the occupant. We argue that such a variable has a great impact
on the choices of activities the occupant decides to perfom, and that such a new
node should thus improve prediction accuracy.

Finally, in Section 4.4.5, we present PSINES, a combination of all 3 previous
propositions into one predictive DBN.

4.3.2.1 SCRAFFT: sensor-enhanced prediction

In the standard CRAFFT topology, the 4 variables used to predict future
activities only inform the model about the previous activity, as well as place
and time information. While these data points indeed seem essential, as part of
the primary context, for activity prediction, they do not expose much of the
specificities of realization of activities by the occupant. Indeed, any variation in
behaviour by the occupant, which may suggest particular routine patterns, or
indicate changes in activity sequences, will be hardly detectable using only these
4 data points. While some instances could be indicative of such variations (for
example, when the hour of the day at which the occupant performs an activity
indicates a branching from routine to another), it ultimately seems that more data
would be needed to retrieve such patterns of change.

In activity recognition, much of our input data comes from sensors installed
throughout the home. In CRAFFT, such sensor data are not part of the DBN
topology. Yet, the information of current activity (and possibly current place, at
least in our place-based activity recognition approach), which are main variables
of the CRAFFT model, are typically inferred from these sensor data, as we
have seen in Chapter 3. As such, additional information about sensors can be
introduced in the CRAFFT topology at no cost, since these sensors are already
necessary for the activity recognition step.

On one hand, introducing sensor data in the CRAFFT model could inform
the predictor about way the occupant performs the activity, which may indicate
which activity they will do next. On the other hand, the 4 variables of the standard
CRAFFT DBN intuitively should be the primary sources of information used to
predict activities. As such, if one variable was introduced for each installed sensor,
we might drown the more important data points into noise.
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Figure 4.5 – Topology of the SCRAFFT DBN between timesteps i and i+ 1.

Therefore, we propose the Sensors CRAFFT (SCRAFFT) DBN, where new
nodes are introduced to represent sensor aggregates. We illustrate a certain version
of SCRAFFT on Figure 4.5. In this particular version of SCRAFFT, we find 3

new variables, compared to CRAFFT:

— Oi, the number of Openings of doors, cupboards, etc., during the activity
at timestep i;

— Li, the number of Light events recorded during the activity at timestep i;

— Mi, the number of Motion events recorded during the activity at timestep
i.

Other version of SCRAFFT could be proposed with different sensor-related
variables, or different aggregation techniques other than counting the number
of events. The architecture we present here is influenced by the types of sensors
available in the datasets we study in our experiments, presented in Section 4.4.
We propose to quantize each sensor variable into 3 categories: “low”, “medium”,
and “high”, depending on the number of events recorded.
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Similarly to place, hour of the day, and day of the week, these 3 sensor
aggregate nodes influence their own future value at the next timestep, and are
conditionally dependent on the activity node. The same 2-step prediction scheme
used in CRAFFT is used in SCRAFFT, with Oi+1, Li+1, and Mi+1 being pre-
dicted along with Pi+1, Hi+1, and Di+1 before predicting Ai+1.

4.3.2.2 NMCRAFFT: non-Markovian prediction

Standard DBNs respect the first-order Markov property, as discussed in Sec-
tion 4.3.1.1. As such, the CRAFFT model, which is a DBN, respects the same
property. Therefore, in that predictive model, the future activity to predict is
only influenced by the immediately preceding timestep. In particular, it is only
influenced by the immediately preceding activity performed, and not by any
other previous activities.

Intuitively, routines of daily living of occupants should not respect the first-
order Markov property. Let us take the example of the standard day routine in
Orange4Home (presented in Section 2.3.2.2 on Figure 2.11). If we consider the
activity “Going up”, we see that multiple different activities can occur after it:
“Showering”, “Computing”, and “Using the sink”. As such, it will be difficult
to predict which activity comes after “Going up” if the predictor cannot access
previous information. While other context information such as the hour of the
day, used in CRAFFT, could disambiguate situations in some cases, it may be
too limited in general (e.g. “Going up” then “Showering” and “Going up” then
“Computing” both occur in the early morning in Orange4Home). We expect such
non-Markovian situations to be common place in home routines.

On the other hand, we also expect that overfeeding the predictor with past
information may decrease its performance. Indeed, the influence of past activities
on the future activity should intuitively decrease the farther we go back in
time. For example, activity information from previous days might not be very
relevant to predict activities from a subsequent day, and might actually confuse
the prediction algorithm.

Therefore, we propose to modify the CRAFFT DBN in order to circumvent
the limitations induced by respecting the first-order Markov property. We thus
introduce the Non-Markovian CRAFFT (NMCRAFFT) topology for activity
prediction, in which the future activity depends not only on the immediately
preceding activity, but on the last d activities that occurred. We call d the non-
Markovian depth of the d-NMCRAFFT model.

We illustrate the 3-NMCRAFFT structure on Figure 4.6. We see that Ai+1 is
conditionally dependent not only on Ai, but also on Ai−1 and Ai−2, since the
non-Markovian depth used here is 3. In addition, Ai is also dependent on Ai−2,
for symmetry reasons. The dependences between each consecutive activities
already existed in the CRAFFT topology.

More generally, in a d-NMCRAFFT DBN, the future activity Ai+1 is condi-
tionally dependent on the previous d activities, and a previous activity Aj , j ∈
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Figure 4.6 – Topology of the 3-NMCRAFFT DBN, between timesteps i− 2 and
i+ 1.

Ji− d+ 1, iK is connected to the previous j − (i− d+ 1) activities. In particular,
this means that the 1-NMCRAFFT DBN is actually identical to the standard
CRAFFT DBN.

Since regular DBNs respect the first-order Markov property, and although
some works seek to relax this constraint and allow non-Markovian edges as in
[44], the NMCRAFFT structure typically cannot be implemented in most DBN
libraries. A simple solution to circumvent this constraint consists in duplicating
activity nodes: for the example of the 3-NMCRAFFT, nodes Ai−2 and Ai−1 can
be duplicated in timestep i. In this timestep, the edges between these nodes and
Ai and Ai+1 can be introduced like in a standard DBN. Additional edges between
timesteps i and i + 1 are added to link activities from one timestep to the next
(for example, the duplicated node Ai−1 in timestep i is linked to the duplicated
node Ai−2 in timestep i+ 1).

4.3.2.3 CSCRAFFT: modelling a cognitive state of the occupant

In previous sections, we proposed to improve the CRAFFT DBN by introduc-
ing new nodes and edges related to sensor data (in SCRAFFT) or past context data
(in NMCRAFFT). In any of these 3 models, we seek to predict future activities
through rather indirect relationships: for example, in NMCRAFFT, we state that
the future activity depends on past activities, when such dependence is in fact
merely statistical and not, in a sense, a relationship of causation. For example, the
fact that an occupant is always “Eating” after “Cooking” does not mean that the
activity “Cooking” causes activity “Eating”.

In fact, the real cause of transitions from one activity to another is the
occupant themselves: their will, their mood, their behaviour, etc., will ultimately
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drive them to perform an activity. In many cases, they will perform activities
in a logical sequence with no deviation from what we expect to be normal
(such as “Eating” after “Cooking”). In these cases, sensor and context data will
contain should be sufficient to accurately predict activities. However, when the
occupant’s mood or will has a noticeable effect in the activity they choose to
perform (e.g. “Telephoning” after “Cooking”, because they remembered that
they have an important call to make), such sensor and context-based prediction
strategies might not be as accurate.

Evidently, measuring the will, the mood, etc., of an occupant is much more
problematic than acquiring smart home sensor data or than inferring context
data such as activity. There are no convenient modalities currently to record
brain activity (helmets used to capture electroencephalograms are prohibitively
cumbersome and very costly), and even if such modalities existed, learning a
model linking brain activity to actual activity production in the home seems
significantly out of reach as of today.

Nevertheless, we do find in the literature some works that include, in their
model, the mental state of a user [70, 87]. Most of these papers are related to
HCI and robotics; to the best of our knowledge, no such work exists for activity
prediction in smart homes. In particular, we find the works of Mihoub and
Lefebvre in [101], in which they tackle the problem of feedback prediction for
public presentations through the use of a DBN architecture that includes the
cognitive state of the orator. In this study, they show that the inclusion, in the
DBN, of a node representing the cognitive state of the speaker does increase
the feedback prediction accuracy of the model. This node can be latent, that
is, unobserved and thus predicted by the DBN; this thus alleviate the need for
recording brain activity. They also propose to discover a priori the observations
for this cognitive state node, by applying different clustering algorithms on the
rest of the data sources, with varying number of clusters (and thus cognitive state
classes).

Therefore, we propose the Cognitive State CRAFFT (CSCRAFFT) DBN,
in which a node representing the cognitive state of the occupant is introduced in
the standard CRAFFT structure. We illustrate CSCRAFFT on Figure 4.7. The
cognitive state of the occupant Ci at timestep i influences the current and future
activity Ai and Ai+1, as well as their future cognitive state Ci+1. This node can
either be latent or observed following a clustering step, as in [101].

Naturally, regardless of the latent or observed status of the cognitive state
node, we have no guarantees that this newly introduced variable will reify the
actual cognitive state of the occupant (which is itself an ill-defined concept).
Nevertheless, we hope that introduction of such a node with these specific depen-
dencies to activities will capture additional information that relates consecutive
activities together.
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Figure 4.7 – Topology of the CSCRAFFT DBN between timesteps i and i+ 1.

4.3.2.4 PSINES

Our final contribution to the problem of activity prediction consists in a
model which combines the contributions of the previous 3 proposed models:
SCRAFFT, NMCRAFFT, and CSCRAFFT. This new model, which we call
Past SItuations to predict the NExt Situation (PSINES), is thus a DBN whose
topology is initially based on CRAFFT and that includes sensor aggregate nodes,
non-Markovian edges between activities, as well as cognitive state nodes. We
illustrate PSINES on Figure 4.8.

In this combined model, we extend the non-Markovian structure of edges
between activity classes to the cognitive state nodes. Indeed, since these nodes
directly influence activities, it seems natural that they follow the same non-
Markovian pattern.

Partial combinations of models are also possible. For example, one can
combine NMCRAFFT and CSCRAFFT, and not include sensor aggregate nodes
from SCRAFFT. We will still refer to such partial combinations as PSINES. In
experiments, different combinations of models can thus be used for different
homes, depending on the improvements observed on each model separately from
the others. For example, if the occupant of a particular home holds very erratic
and changing routines, the inclusion of NMCRAFFT might be detrimental
to prediction performance; we would thus not include it in PSINES for that
particular home. For another home where the occupant follows very structured
routines, NMCRAFFT should lead to better prediction accuracy; in that case, we
would thus include it in PSINES.
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Figure 4.8 – Topology of the PSINES DBN between timesteps i− 2 and i+ 1.

4.3.3 Expected results

We proposed in Section 4.3 a number of new DBN topologies for activity pre-
diction that extend the CRAFFT model of Nazerfard and Cook [111]. The first
of these new topologies, SCRAFFT, contains additional nodes that are directly
linked to sensor data. We indeed expect that discarding all sensor information and
exploiting only 4 high-level context information (activity, place, hour of the day,
day of the week) is too limiting, and that some insight about the routine of the
occupant, and thus their future activity, can be found in lower-level sensor data.
In addition, we expect that this increase in input dimensionality will improve
DBNs training, since it seems that there would be too few different possible input
configurations using only the 4 context nodes originally in CRAFFT.

Therefore, we conjecture the following:

Hypothesis 4.1. The SCRAFFT DBN, through the introduction of sensor aggregate
nodes, will achieve higher activity prediction accuracy than the standard CRAFFT
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DBN.

The second of these new topologies, NMCRAFFT, was proposed after ob-
serving that routines of daily living should intuitively not follow the Markov
property. In the CRAFFT DBN, only the last activity has influence on the future
activity, which we expect does not reflect the reality of routines of occupants.

Therefore, we conjecture the following:

Hypothesis 4.2. Routines of activities of occupants of homes do not have the Markov
property. As such, the NMCRAFFT DBN will achieve higher activity prediction
accuracy than the standard CRAFFT DBN.

The third topology, CSCRAFFT, was proposed in order to explicitly include
in the DBN model a representation of the cognitive state of the occupant. In
particular, such a cognitive state node can be latent, that is unobserved, yet still
influence the prediction of the DBN, which is essential as there are obviously no
convenient and reliable method to objectively measure such cognitive information
currently.

Therefore, we conjecture the following:

Hypothesis 4.3. The CSCRAFFT DBN, through the introduction of a node repre-
senting the cognitive state of the occupant, will achieve higher activity prediction
accuracy than the standard CRAFFT DBN.

The final proposed topology, PSINES, is the result of combining the previous
3 topologies into one. We expect that the conjunction of all 3 contributions will
model activity prediction more accurately than the initial CRAFFT DBN on
which it is based.

Therefore, we finally conjecture the following:

Hypothesis 4.4. PSINES will achieve the highest prediction accuracy of all DBN
topologies previously mentioned.

4.4 Experiments

In the following section, we experimentally study the behaviour of the various
DBN models for activity prediction discussed in Section 4.3. In Section 4.4.1, we
first examine the performances of the CEFA and CRAFFT model, in order to
corroborate (or contradict) the claims made by Nazerfard and Cook in [111].
In Section 4.3.2.1, we study the performances of the SCRAFFT DBN, linked to
Hypothesis 4.1. In Section 4.3.2.2, we evaluate the effect of non-Markovian depths
on activity prediction through the NMCRAFFT DBN, which sheds light on 4.2.
In Section 4.3.2.3, we experiment on the effect of introducing a cognitive state
node on prediction accuracy, in relation with Hypothesis 4.3. Finally, in Section
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4.4.5, we study the performances of the full PSINES model, in order to validate
Hypothesis 4.4.

We used the implementation of DBNs provided by Murphy in the Bayes Net
Toolbox for MATLAB [106].

For these experiments, we used 5 of the CASAS datasets (discussed in Section
2.3.1.2): HH102, HH103, HH104, HH105, and HH106, available on the CASAS
project website [1]. Each of these 5 datasets contains the activities of only one
occupant, along with the collected sensor data. These 5 datasets were all collected
during the same time period ( June to August 2011): as such, we can use the same
training protocol for all datasets, and more meaningful comparisons from one
dataset to the other can be made. The datasets respectively contain 30, 28, 32, 30,
and 33 different activity classes (the vast majority of which are shared between
datasets), such as “Sleep”, “Bathe”, or “Watch TV”. In these datasets, we generally
do not have information on the location of the occupant. As such, the place node
in the tested models will always have a constant value of 1.

Much like in our activity recognition experiments on Orange4Home, we use
a realistic temporal training protocol, where the first weeks of data are used as a
training set and a validation set, and where the last weeks are used as the test set.
On the CASAS datasets here, which all span the same time period, the training
set spans from June 20, 2011 to July 7, 2011 (inclusive); the validation set spans
from July 8, 2011 to July 17, 2011; the test set spans from July 18, 2011 to August 7,
2011.

For the last experiments in Section 4.4.5 on PSINES, we also used the Or-
ange4Home dataset. In order to check the feasibility of our communication
assistance service, we indeed need to evaluate the performances of an activity
prediction approach on a dataset for which we can study availability prediction,
which we discuss in Chapter 5.

4.4.1 Prediction performance with classical classifiers, CEFA,

and CRAFFT

We report in Table 4.1 the prediction accuracy of the CRAFFT and CEFA
models introduced in [111]. We also report in this table the prediction accuracy
of a MLP, a SVM, and a BN, whose input vector contain the same features as the
CRAFFT and CEFA models (previous activity, place, hour of the day, day of the
week), as presented in Section 4.3.1.2.

Prediction performance seems to highly vary from one CASAS dataset to
another: for example, the future activity is accurately labelled on average 47.69%
of the time on the HH103 dataset, while we only reach an average accuracy of
17.10% on the HH102 dataset. This suggests that the inherent difficulty of each
dataset is quite different among the 5 CASAS datasets we chose. This difficulty
probably stems from the occupant themselves: it will be easier to predict future
activities for occupants with highly regular routines compared to occupants with
more erratic routines.
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Nevertheless, this first set of experiments allows us to empirically verify the
claims made by Nazerfard and Cook in [111]: we observe that, for all but the
HH103 dataset, the CRAFFT DBN model is significantly more accurate than
the CEFA DBN model (29.59% prediction accuracy on average compared to
26.36%). These results corroborate the findings of Nazerfard and Cook made on
other datasets, that predicting future features before predicting the future activity
is more accurate than directly predicting the future activity with DBNs.

However, contrary to the results in [111], the CRAFFT DBN is not always
more accurate than other classical classifiers here. On average, the accuracy of
CRAFFT (29.59%) lies, in our experiments on the CASAS datasets, between the
accuracy of a MLP (28.51%) and the accuracy of a SVM (31.39%). Therefore, we
cannot confirm using our experiments that the CRAFFT DBN is significantly
more accurate for activity prediction in smart homes compared to other prediction
techniques that rely on classical classifiers.

All in all, we see that the prediction accuracy on any of the 5 tested datasets
is quite low. The best predictor on the easiest dataset (the SVM on HH103)
only reaches a prediction accuracy of 49.66%, which is an obviously unacceptable
accuracy if we were to use such a system to provide context-aware services. Indeed,
if we use our example communication assistance service, it would not be able to
provide valuable information to people wishing to correspond with an occupant
of the home: if the system is wrong about future activities (and thus availabilities)
of the occupant, it cannot accurately indicate future times at which that occupant
will be available. This first set of results indicates that the problem of activity
prediction in smart homes is significantly more difficult than the problem of
activity recognition.

Still, accuracies obtained here are significantly better than predicting uni-
formly at random the next activity: for a dataset of 30 classes (such as HH102 and
HH105), such a random predictor would achieve an accuracy of 3.33%, which is
significantly worse than all other predictors we tested.

Therefore, further work is required to greatly improve the prediction perfor-
mance of such approaches. In the next experiments, we study the effect of some
changes we can apply to the CRAFFT DBN architecture so as to improve its
accuracy.

4.4.2 Sensor-enhanced prediction

We report in Table 4.2 the prediction accuracy of the SCRAFFT model
(presented in Section 4.3.2.1) on the CASAS datasets. We also included in this
table the prediction accuracy of the original CRAFFT model (which were already
reported in Table 4.1) for comparison. Quantization bounds for the 3 sensor
aggregates (Openings, Lights, and Motion) for each datasets were obtained by
applying the k-means algorithm to obtain 3 clusters (corresponding to the 3

quantized values “low”, “medium”, and “high”) on the training part of the dataset.
We can see that the SCRAFFT DBN is significantly more accurate than the
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Dataset

Predictor HH102 HH103 HH104 HH105 HH106 Average

MLP 17.74%1 49.24%1 31.91%2 18.29%3 25.36%1 28.51%
SVM 20.44%4 49.66%5 33.21%6 27.24%6 26.38%7 31.39%
BN 10.03% 45.25% 28.56% 11.75% 23.11% 23.74%

CEFA 16.20% 48.16% 28.67% 18.28% 20.47% 26.36%
CRAFFT 21.11% 46.13% 30.96% 25.22% 24.54% 29.59%

Average 17.10% 47.69% 30.66% 20.16% 23.97% 27.91%
Parameters:

1 150 hidden neurons, 100 epochs, 0.2 learning rate, 0.1 momentum.
2 200 hidden neurons, 100 epochs, 0.2 learning rate, 0.1 momentum.
3 175 hidden neurons, 100 epochs, 0.2 learning rate, 0.1 momentum.
4 C = 10000, γ = 0.001.
5 C = 100, γ = 0.01.
6 C = 1000, γ = 0.001.
7 C = 10, γ = 0.01.

Table 4.1 – Prediction accuracy of the CRAFFT and CEFA DBNs described in
[111], as well as MLP, SVM, and BN using the same input data.

CRAFFT DBN on all but the HH102 dataset. For example, on the HH103
dataset, the accuracy gap is greater than 4% (50.25% compared to 46.13%).

This suggests that, in the majority of cases, sensor data, even when aggregated,
brings valuable information to predict future activities, as anticipated in Hypothe-
sis 4.1. As such, the task of activity prediction may not be optimally solved when
we discard all sensor data, as is done in the original CRAFFT model. On the
other hand, we see that introducing these sensor aggregate nodes in the DBN
topology actually degrades performance on the HH102 dataset. There are thus
cases where using sensor data would actually be detrimental to accurate activity
prediction.

Based on previous observations, we can hypothesize that predicting future
activities directly from raw sensor data may lead to even more accurate predictions
(as aggregation does potentially remove salient information). DBNs are not the
most well-adapted methods to process raw sensor data; other algorithms, such
as LSTMs, may be used for activity prediction from raw data instead. These
techniques usually require a large training set to be accurate, as the feature space
when working on raw data is much larger than when working on higher-level
context information (which is the case in SCRAFFT). As we discussed in Chapter
3, obtaining extensive training datasets in smart homes aimed at the general public
is largely unrealistic.

While additional sensor data seems to improve activity prediction, the perfor-
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Dataset

Model HH102 HH103 HH104 HH105 HH106 Average

CRAFFT 21.11% 46.13% 30.96% 25.22% 24.54% 29.59%
SCRAFFT 20.00%1 50.25%2 31.66%3 26.45%4 27.62%5 31.20%
Quantization bounds (x, y), low < x 6 medium 6 y < high:

1 Openings: (2, 5), Lights: (54, 195), Motion: (89, 292).
2 Openings: (1, 1), Lights: (20, 65), Motion: (32, 125).
3 Openings: (4, 13), Lights: (39, 137), Motion: (102, 459).
4 Openings: (2, 6), Lights: (58, 240), Motion: (54, 192).
5 Openings: (2, 3), Lights: (41, 170), Motion: (77, 319).

Table 4.2 – Prediction accuracy of the CRAFFT and SCRAFFT DBNs on the
CASAS datasets.

mances of the original CRAFFT model are sufficiently close to the SCRAFFT
model to conclude that the majority of information used to predict activities
comes from the 4 context nodes used in CRAFFT: activity, place, hour of the
day, and day of the week. Predicting activities exclusively from raw sensor may
thus not be as accurate as the SCRAFFT approach. Further work on predicting
activities from both context dimensions and raw sensor data may shed some light
on which data sources are required for optimal activity prediction.

4.4.3 Non-Markovian prediction

We report in Table 4.3 the prediction accuracy of the NMCRAFFT model
(presented in Section 4.3.2.2) with varying non-Markovian depth on the CASAS
datasets. We provide in Figure 4.9 a graphical representation of these results.
We can observe 3 different trends between non-Markovian depth and prediction
accuracy, depending on the dataset:

1. Prediction accuracy decreases when non-Markovian depth increases. This
trend is observed on HH102. The best result (21.11% for HH102) is thus
obtained with the 1-NMCRAFFT model, that is, the original CRAFFT
model presented in [111].

2. Prediction accuracy increases and reaches its peak at a non-Markovian depth
of 2, and then decreases for larger depths. This trend is observed on HH104
and HH105. The best results (31.60% for HH104 and 25.48% for HH105)
are thus obtained with the 2-NMCRAFFT model, when the future activity
class conditionally depends on the previous 2 activity classes.

3. Prediction accuracy increases and reaches its peak at a non-Markovian depth
of 3, and then decreases for larger depths. This trend is observed on HH103
and HH106. The best results (51.08% for HH103 and 27.75% for HH106)
are thus obtained with the 3-NMCRAFFT model, when the future activity
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Dataset

Depth HH102 HH103 HH104 HH105 HH106 Average

1 21.11% 46.13% 30.96% 25.22% 24.54% 29.59%
2 19.27% 49.81% 31.60% 25.48% 26.29% 30.49%
3 18.72% 51.08% 30.27% 24.71% 27.75% 30.51%
4 18.72% 50.96% 29.66% 24.59% 25.71% 29.93%

Table 4.3 – Prediction accuracy of the NMCRAFFT DBN with varying non-
Markovian depth on the CASAS datasets.

class conditionally depends on the previous 3 activity classes.

We see in these trends that in 4 out of 5 datasets, non-Markovian models
perform better than the Markovian CRAFFT approach. Indeed, prediction
accuracy increases on all datasets but HH102 when using a 2-NMCRAFFT
model compared to CRAFFT. Trend 3 shows that for some datasets (HH103
and HH106), prediction accuracy is even higher with a 3-NMCRAFFT model.
However, the 4-NMCRAFFT model is less accurate for all 5 datasets, compared
to the 5-NMCRAFFT model.

These observations are well condensed in the average results we obtain on the
CASAS datasets: prediction accuracies for the 2-NMCRAFFT model (30.49%)
and the 3-NMCRAFFT model(30.51%) are nearly identical, while prediction
accuracies for the CRAFFT model (29.59%) and the 4-NMCRAFFT model
(29.93%) are worse.

These results suggest that activity sequences do not, on average, have the
Markov property, as we anticipated in Hypothesis 4.2. However, we observed
that the home and occupants monitored by the system have a great impact on
this result. In particular, it seems that for some homes (such as in the HH102
dataset), the routine of the occupant is for the most part a Markov process,
contradicting Hypothesis 4.2. In other homes, the ideal non-Markovian depth
to use for activity prediction can vary, although depths of 4 and more seem
detrimental to prediction accuracy on the CASAS datasets. Therefore, estimating
the optimal non-Markovian depth for a specific home is essential, and should be
the focus of future work in activity prediction for smart homes (not addressed in
this thesis).

4.4.4 Cognitive states for prediction

We report in Table 4.4 the accuracy of the pre-clustered CSCRAFFT model
(presented in Section 4.3.2.3) on the CASAS datasets, where the cognitive state
node is pre-labelled using the k-means clustering algorithm. We performed the
experiments with 5, 10, and 20 clusters (i.e. possible states for the cognitive state
node).
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Figure 4.9 – Prediction accuracy of the NMCRAFFT DBN with varying non-
Markovian depth on the CASAS datasets.

We observe that the pre-clustered CSCRAFFT DBN is approximately as
accurate as the CRAFFT DBN, or even slightly worse than the CRAFFT DBN
depending on the number of states. For a number of states of 10, the pre-clustered
CSCRAFFT model is a full percent less accurate than the CRAFFT model
(28.43% compared to 29.59%).

We present on Figure 4.10 the prediction accuracy of the latent CSCRAFFT
model (presented in Section 4.3.2.3) on the CASAS datasets, where the cognitive
state node is unobserved. The accuracy of the original CRAFFT model is included
in the figure for comparison. We performed the experiments with a varying
number of possible states for the cognitive state node, from 2 to 20. We report in
Table 4.5 the best, worst, and average prediction accuracy of CSCRAFFT on each
dataset.

Much like for the NMCRAFFT model, we observe three different trends,
depending on the dataset:

1. Prediction accuracy is mostly unaffected by the latent cognitive state node.
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Number
of states

Dataset

HH102 HH103 HH104 HH105 HH106 Average

5 21.38% 45.25% 30.96% 25.22% 24.44% 29.45%
10 20.02% 45.37% 29.46% 23.83% 23.47% 28.43%
20 21.02% 46.26% 30.34% 23.58% 23.76% 28.99%

CRAFFT 21.11% 46.13% 30.96% 25.22% 24.54% 29.59%

Table 4.4 – Prediction accuracy of the pre-clustered CSCRAFFT DBN on the
CASAS datasets.

Dataset

Model HH102 HH103 HH104 HH105 HH106

Best 22.47% 46.64% 30.96% 25.73% 24.73%
Worst 21.38% 45.50% 30.87% 25.22% 23.67%
Average 21.90% 45.99% 30.96% 25.49% 24.17%

CRAFFT 21.11% 46.13% 30.96% 25.22% 24.54%

Table 4.5 – Prediction accuracy of the CSCRAFFT DBN with unobserved latent
nodes on the CASAS datasets.

This trend is observed on HH104.

2. Prediction accuracy of CSCRAFFT is on average better than CRAFFT.
This trend is observed on HH102 and HH105.

3. Prediction accuracy of CSCRAFFT is on average worse than CRAFFT.
This trend is observed on HH103 and HH106.

However, we can note that the best configuration of CSCRAFFT (i.e. the right
number of states) is always better than CRAFFT for each dataset (except for
HH104 where they have identical accuracies). Hypothesis 4.3 is thus somewhat
verified, although the improvements in prediction accuracy seem smaller in this
case.

Indeed, the improvements in prediction accuracy with the latent CSCRAFFT
DBN are quite smaller than those obtained with SCRAFFT or NMCRAFFT.
While the theoretical motivation for introducing such a node are sound (the
routine of the occupant will necessarily be influenced by their mental state, their
thoughts, etc.), and while introducing such a node in a DBN model has lead to
improvements in prediction accuracy in previous works of the literature [101], it
does not seem to be as straightforwardly applicable to smart home situations. One
possible explanation is that the relationship between the routine of the occupant
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Figure 4.10 – Prediction accuracy of the latent CSCRAFFT DBN with varying
number of states for the latent cognitive state node on the CASAS datasets.

and their cognitive state is much more complex than in other application domains
(such as oral presentations as in [101]), such that no pattern for this relationship
can be learned by the DBN from contextual data about the home.

4.4.5 Combined model for prediction

We report in Table 4.6 the prediction accuracy of the combined PSINES
DBN on the CASAS datasets. We also report the previous best results for the
CRAFFT, SCRAFFT, NMCRAFFT, and CSCRAFFT DBNs.

This final set of experiments shows that combining all 3 improvements (sensor
aggregate nodes, non-Markovianness, and cognitive state nodes) into one model
leads on average to a model that is more accurate than any other DBN predictor
we have tested, as we anticipated in Hypothesis 4.4. For example, PSINES reaches
a prediction accuracy of 52.03% on HH103, which is almost 1% higher than the
accuracy of the second best DBN (3-NMCRAFFT with 51.08%), and nearly 6%
higher than the initial CRAFFT DBN of Nazerfard and Cook (46.13%). PSINES
performs worse than another tested DBN only on HH105 in our experiments,
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Dataset

Model HH102 HH103 HH104 HH105 HH106 Average

CRAFFT 21.11% 46.13% 30.96% 25.22% 24.54% 29.59%
SCRAFFT 20.00% 50.25% 31.66% 26.45% 27.62% 31.20%

NMCRAFFT 21.11% 51.08% 31.60% 25.48% 27.75% 30.51%
CSCRAFFT 22.47% 46.64% 30.96% 25.73% 24.73% 30.11%

PSINES 22.47%1 52.03%2 32.19%3 26.07%4 28.49%5 32.25%
Parameters:

1 1-NMCRAFFT + 13 latent states CSCRAFFT.
2 SCRAFFT + 3-NMCRAFFT + 3 latent states CSCRAFFT.
3 SCRAFFT + 2-NMCRAFFT + 2 latent states CSCRAFFT.
4 SCRAFFT + 2-NMCRAFFT + 6 latent states CSCRAFFT.
5 SCRAFFT + 3-NMCRAFFT + 16 latent states CSCRAFFT.

Table 4.6 – Prediction accuracy of the CRAFFT, SCRAFFT, NMCRAFFT,
CSCRAFFT, and combined PSINES DBNs in their best configurations on the
CASAS datasets.

Model Orange4Home

CRAFFT 61.68%
2-NMCRAFFT 87.74%
3-NMCRAFFT 88.57%

CSCRAFFT 63.55%
PSINES 89.52%

Table 4.7 – Prediction accuracy of different models on the Orange4Home dataset.

where it still comes second after SCRAFFT (26.07% against 26.45%).

4.4.5.1 Orange4Home

We applied the PSINES DBN to the Orange4Home dataset, using, like in
our activity recognition experiments, the first 2 weeks of data as a training set,
the third week as validation set, and the last week as the test set. We present
the results of this experiment in Table 4.7. PSINES reaches on this dataset a
prediction accuracy of 89.52%. The standard CRAFFT model, on the other
hand, only reaches an accuracy of 61.68%, which is substantially less.

The main improvements in prediction accuracy on this dataset come from
the inclusion of non-Markovian previous activities. Indeed, 2-NMCRAFFT and
3-NMCRAFFT obtain prediction accuracies of 87.74% and 88.57% respectively,
which is close to the performance of the full PSINES model. On the other
hand, the inclusion of cognitive state nodes through CSCRAFFT only marginally
improves accuracy: CSCRAFFT with 6 states by itself reaches a prediction
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accuracy of 63.55%.
The importance of introducing non-Markovianness to the prediction model

can be easily illustrated in the Orange4Home dataset. Let us take the example
of the activity “Going up” in the Staircase. If we only use this activity as well
as related context information of place, hour of the day, day of the week, as
in CRAFFT, it is obviously very difficult to predict what the occupant will
do because multiple rooms can be reached and thus multiple activities can be
performed once the user changed floor (although hour of the day and day of the
week might give some hints as to why the occupant was going upstairs). On
the other hand, if the predictor knows the previous 2 or 3 activities that the
occupant was doing before going upstairs, it will most likely have an easier time
identifying a part of the routine of the occupant and thus predict accurately their
next activity.

Most confusions thus occur when the occupant abruptly changes their routine
in an unexpected manner. For example, PSINES incorrectly predicts that the
occupant will perform “Preparing” in the Kitchen on Tuesday 21, 2017, when in
fact the occupant decided to leave the home to have lunch. In another example,
PSINES predicts twice, on Tuesday 21, 2017 and Wednesday 22, 2017, that the
occupant will be “Watching TV” in the Office at the end of the day, when they
in fact will be “Going down” directly because they decided to skip watching TV
those two days. In both of those examples, these changes in routine had never
occurred before in the training set, and thus could not be learned by PSINES.

All in all, we see that, using the PSINES model, we obtain a predictor that
reaches fairly acceptable prediction accuracy on the Orange4Home dataset, which
is a necessity for our communication assistance service. This service would not
be implementable if we were using the standard CRAFFT approach, which does
not predict activities sufficiently accurately.

4.5 Conclusions

We presented in this chapter the third contribution of our thesis: PSINES,
a context-based activity prediction model. We experimentally evaluated this
approach, as well as intermediary contributions, on 5 datasets of the literature.
We showed that each partial contribution can improve prediction accuracy, and
that PSINES is the most accurate model we tested on these datasets, on average.
We obtained similar results on the Orange4Home dataset.

First, we showed that sensor data can be valuable for activity prediction,
in addition to context data. These findings may influence the choice of sensor
installations and prediction algorithms used in smart home systems that require
activity prediction capabilities.

Second, we also showed that routines of daily living do not, generally, respect
the first-order Markov property. As such, predictors that inherently are first-
order Markov models (such as the original CRAFFT model) will be limited in
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their prediction capabilities. Non-Markov models exhibit, in our experiments,
significantly more accurate prediction performances.

Third, we showed that the introduction of a latent node, meant to represent
the cognitive state of the occupant, can lead to slightly more accurate models.
However, improvements are smaller than the other two contributions, and mod-
elling (such as the optimal number of cognitive state classes) seems difficult.
Further work is required to investigate the effects of introducing such latent nodes
in DBN-based activity prediction models in smart homes.

Finally, we showed that the combination of these 3 contributions, PSINES,
is the most accurate model we have studied for activity prediction in homes,
according to our experiments. Ultimately, we saw that each specific dataset (and
therefore, each specific home) requires a specific prediction model. Indeed, we
have seen in our experiments that each of our contributions has significantly
varying effects on activity prediction, due to the variety of different occupant
behaviours and home environments. Therefore, we suggest that smart home
systems which require activity prediction capabilities must construct their own
prediction model independently of other homes, and not use a generic model that
would be applied to any home.

Predicting future activities is the second necessary step to provide our example
service of communication assistance to occupants. In order to provide such a
service reliably, high prediction accuracy is essential. Our contributions to
the problem of activity prediction are thus valuable for such a service. While
prediction accuracy, despite our contributions, was still relatively low on the
CASAS datasets, it can be considered acceptable on Orange4Home (89.52%),
which is the only dataset, as far as we know, that also contains ground truth
of availability for communication of an occupant. In Chapter 5, we thus study
the problem of availability prediction, from previously recognized and predicted
activities and related context information. We propose a new availability inference
scheme that allows the implementation of such communication assistance services.
We evaluate the accuracy of this availability inference model on the Orange4Home
dataset. We discuss the implementation of such communication assistance services,
based on our experimental results.
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CHAPTER 5

Inferring availability using context

C
ontext-aware smart home services require primary context informa-
tion to operate properly. As such, activity recognition, studied in
Chapter 3, and activity prediction, studied in Chapter 4, are necessary

components of a smart home system. However, primary context might not
always be sufficient to provide any context-aware service. For example, a com-
munication assistant that manages incoming communications from outside the
home will require secondary context information. In particular, it will require
information about the availability of the home’s occupants to be interrupted
by an incoming communication. To illustrate the implementation of complex
context-aware smart home services that require secondary context information,
we thus study the problem of availability inference in this chapter. We properly
define this problem and the assumptions we make in Section 5.1. Following a sur-
vey of state-of-the-art studies on availability inference, in Section 5.2, we present
in Section 5.3 our contributions on availability inference, which propose to esti-
mate availability directly from other context dimensions, and in particular from
activities, correspondents, and modalities of communication. We experimentally
evaluate this availability inference approach in Section 5.4.

5.1 Problem statement and preliminary assumptions

In the following section, we define more precisely what we mean by avail-
ability inference in Section 5.1.1. We state the assumptions we make about this
problem in Section 5.1.2.
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5.1.1 Availability inference

In this thesis, we define availability inference as the problem of estimating
the current availability (sometimes called “interruptibility” in the literature)
for communication of an occupant based on current context and sensor data
collected in the home. By availability for communication, we mean the degree
of acceptability for interrupting the occupant in their home activity due to an
incoming communication attempt from outside the home. A similar view of the
problem is to predict the likelihood that the occupant will answer an incoming
communication given their current situation and past behaviours.

We thus do not consider the problem of estimating the availability for commu-
nications which occur inside the home, such as communications between different
occupants of the home. Such situations require the recognition of simultaneous
occupants’ activities, identification of occupants, etc., which we did not address
in this thesis either for the problem of activity recognition in Chapter 3 or the
problem of activity prediction in Chapter 4.

We do not study the problem of directly predicting future availabilities of an
occupant, which seems to be a more difficult problem. Here, we propose to tackle
the problem of current availability estimation first. We can actually derive an
availability prediction system given a current availability inference approach and a
future situation prediction system. Indeed, one can first predict future situations,
and then infer the availability of an occupant on these situations to obtain an
availability prediction system. For example, if we assume that availability highly
depends on activity, we can use our activity prediction contributions presented
in Chapter 4 in conjunction with our contributions in availability inference
in this chapter to construct an availability prediction approach. We do not
experimentally study this combination in this thesis.

5.1.2 Assumptions

In this section, we state the main hypotheses we make about the problem of
availability inference (as defined in Section 5.1.1). Most of these assumptions were
already made in for activity recognition and prediction. Justifications for these
assumptions can thus be found in Chapter 3 and Chapter 4.

5.1.2.1 Single-occupant situations

We assume that only one person occupies the home at all times (although that
person can change). This assumption was already made for activity recognition
and activity prediction.

5.1.2.2 A priori identification

We assume that the smart home already has the capability of identifying the
occupant in the home. For availability estimation, we cannot realistically assume
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that the availability of an occupant is independent of their identity.

5.1.2.3 Sequentiality of activities

We assume that activity instances necessarily follow one another sequentially,
i.e. the single occupant cannot perform two activities in parallel. This assumption
was already made for activity recognition and activity prediction.

5.2 State of the Art

5.2.1 Availability in professional environments

Professional environments are a prime example of application domains where
estimating the availability of people for communication is valuable. Indeed, shar-
ing availabilities between employees allows them to meet and communicate at
opportune times, and reduce inappropriate interruptions that would decrease
productivity [144]. Many classical methods and habits have been employed to
signify availability in professional environments: sharing professional schedules,
leaving one’s office door closed when unavailable, changing one’s availability
status on the professional instant messaging system, etc. As such, offices and pro-
fessional environments have been the main focus of research works on automatic
availability estimation [151].

We present 3 papers related to availability estimation in professional environ-
ments in Section 5.2.1.1, Section 5.2.1.2, and Section 5.2.1.3.

5.2.1.1 Inferring availability from posture and computer usage

Tanaka et al. present in [144] an availability estimation approach for profes-
sional offices that relies on information on head posture and interactions on the
computer. Indeed, based on previous literature studies, they note that static head
postures tend to reflect the degree of engagement between a user and their work
task. Furthermore, concentration on one’s task might be captured by the relative
stillness of the head.

Computer interactions are also used to help determine availability. Examples
of monitored interactions include keystroke events, mouse events, or transitions
between computer applications. Tanaka et al. suggest that head posture will help
reduce availability inference error in cases where the user is doing a task that
does not require their computer (in which case computer interactions are absent)
or for computer tasks with similar interaction patterns yet different availability
implications.

The availability inference approach proposed by Tanaka et al. consists in
binarizing each of the previously mentioned data sources and then summing
them. A number of thresholds (2 in their work, where availability can take 3

different values) is used to decide whether the user is available or not based on
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this sum. Binarization of variables is performed using preliminary cluster analysis
on training data, during which binarization thresholds can be found.

5.2.1.2 Communication modality recommendations

In [54], Fogarty et al. propose a new communication client for workplaces
which suggests appropriate communication modalities depending on the availabil-
ity of one’s colleague. This system, called MyVine, is intended to replace instant
messaging applications typically used in professional settings. These applications,
despite usually providing rudimentary availability information, are typically not
context-aware in the sense that they do not take into account all relevant context
information about the user in order to infer availability. Instead, these systems
typically rely on professional schedules and computer interaction (in the binary
sense), which provide only a limited view of a user’s potential availability.

Fogarty et al. propose to enhance such systems mainly through the analysis
of speech: detecting whether a user is speaking or not can be an important
indicator of their availability. Much like previous systems, computer activity and
schedule information are also used. Door opening sensors are also included in
the availability inference approach: intuitively, employees who keep their office
doors closed are most likely not available.

MyVine can thus expose information about availability and appropriate com-
munication modalities based on these data sources and simple rules. This work
defends the idea that availability for communication necessarily has to be linked
to specific communication modalities. In other words, users may have different
availabilities depending on the communication modality used. In particular, the
more unavailable a user seems to be, the more MyVine will tend to suggest asyn-
chronous modalities (such as e-mails) rather than synchronous modalities (such
as instant messaging or face-to-face meetings) to communicate.

5.2.1.3 Scheduling e-mail delivery based on availability

Kobayashi et al. propose in [78] an e-mail delivery system that aims at limiting
inappropriate interruptions at work. The authors argue that e-mails delivery
should be delayed when a user’s availability is low, so as to not disrupt their focus
on a potentially demanding task. However, e-mails should not be delayed for too
long either, so that communication is not hindered either. Productivity could
indeed still decrease if e-mails are delayed too much yet delivered at times where
users are available.

User availability is in this case estimated solely from computer interaction
data. Kobayashi et al. propose to segment computer interaction into to distinct
cases: moments when the user is switching between applications, and moments
of stable use of a single application. The first case corresponds to situations where
the user will probably be available, while the second case corresponds to situations
where the user will probably be unavailable. Multiple interaction indicators are
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used, such as keyboard and mouse usage, currently active window, number of
simultaneously open applications, etc.

Kobayashi et al. experimentally show that delaying the delivery of e-mails
based on users’ availability significantly decreases their feeling that they were
interrupted by an e-mail. As such, this work is an example that a communication
assistance service that manages and potentially delays incoming communication
can in fact be beneficial to users. Applications of these principles to communica-
tion modalities other than e-mails, and in smart home environments, are yet to
be investigated.

5.2.2 Availability on smart phones

The democratization of smart phones in recent years has changed the way
people communication with each other. Smart phones have become the main
communication device for most of the population, due to its portability as well
as the diversity of communication modalities integrated (phone calls, instant
messaging, e-mails, etc.). However, mobile notifications can be very disruptive
[131]. As such, estimating the availability for communication of smart phone
owners has become another focus point of research on availability estimation, in
addition to professional environments.

Estimating availability for communication on a smart phone presents new
challenges that do not typically exist in professional environments. First, the
only ambient sensors available are those that are included on the smart phone;
in professional environments, offices themselves can be instrumented to help
observe the behaviour of users (and thus help infer their availability). Second,
the environment itself evolves during the day and is usually not known, since the
smart phone follows the movements of its owner; in professional environments,
the environment is relatively unchanged from one timestep to another. Third, the
behaviour of the users covers the entire day, and thus multiple different situations;
in professional environments, users are here for work and their behaviours and
activities will thus be relatively controlled.

We discuss 2 papers on availability estimation on smart phones in Section
5.2.2.1 and Section 5.2.2.2.

5.2.2.1 Reducing mobile disruption in face-to-face conversations

Mayer et al. present in [97] a new approach for reducing the impact of
smart phone disruptions (in particular incoming phone calls) on a face-to-face
conversation. In this work, Mayer et al. propose to use an eye tracking system
to evaluate the level of investment of a user in the conversation. Much like for
head posture in Section 5.2.1.1, they argue, based on past works, that gaze is an
important indicator of a user’s interest in a conversation, and thus an indicator of
their availability for mobile phone disruptions.

In their study, Mayer et al. conduct a set of experiments where 2 persons
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have a conversation, while one of them has a mobile phone equipped with their
proposed approach. After the experiments, they conduct interviews to evaluate
the level of disruptiveness felt by user, depending on various configurations of
their approach. These interviews help them make recommendations on the design
of interaction models (for example to dismiss or accept phone calls) that are less
disruptive during conversations.

An obvious drawback of this approach is the use of an eye tracking system,
which are generally cumbersome, and not always portable. We feel that such
sensors should not be used to evaluate availability of users for these reasons, even
though they might provide valuable insight on availability.

5.2.2.2 Inferring partial availability to answer notifications

In [152], Turner et al. propose a new approach to model the availability
of smart phone owners to consume notifications. Contrary to previous works,
which assume binary reactions to notifications, they propose a multi-step model
of availability where a user can either give a null, partial, or complete response
to a notification. Reachability corresponds to the user noticing a notification.
Engageability indicates partial response to the notification, which can be aban-
doned midway if they decide that the notification is not worth being interrupted.
Receptivity corresponds to the user completely answering a notification.

The authors propose to infer the reachability, engageability, and receptivity
of users to notifications using a J48 decision tree. This decision tree is trained to
infer these 3 elements from a dataset of various smart phone data sources, such
as acceleration data, audio volume, orientation, or charging state. Experimental
results suggest that partial availability to notifications constitute a significant
portions of interruptions. As such, using a system that can infer such partial
answers should significantly reduce the number of misclassifications, compared to
previous systems that predict binary availability.

Turner et al. suggest that, in addition to other previously identified informa-
tion such as activity, location, or calendar data, the sender of the notification
could prove to be an important factor to estimate the receptivity of a user to a
notification.

5.2.3 Availability in homes

Inferring the availability of home occupants for communication is a prob-
lem that combines several aspects of availability estimation in professional en-
vironments and on smart phones. Much like professional environments, the
environment is relatively fixed and can be equipped with ambient sensors (as we
have seen in previous chapters) that can help capture more information about
the availability of occupants. The smart phone of a home occupant can itself be
used in addition to these ambient sensors to provide more information related to
availability.
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The variability of situations in homes, like for smart phones, is quite a bit
larger than in professional environments. Moreover, these situations and the
corresponding collected data are highly dependent on the actual occupants them-
selves, which have particular habits and routines. In a professional environment,
we can expect most users to exhibit shared habits due to their workplace’s culture.
As such, in professional environments, we can design availability inference ap-
proaches which rely on expert rules that are applied by users (such as indicating
unavailability by closing their office door, or through their professional sched-
ule). Such approaches do not seem well adapted to personal homes where each
household has different routines, habits, and no particular constraints to change
them.

We present 2 papers on availability estimation in homes in Section 5.2.3.1 and
Section 5.2.3.2.

5.2.3.1 Estimating availability through audio-visual features

Takemae et al. propose in [143] an availability inference approach to help
manage remote communication attempts in the smart home, much like our
communication assistance service example. This approach relies on audio and
visual data, on which they propose to extract a number of audio-visual features:
voice power, frequency of changes in voice power, motion near a table area,
changes in the location of occupants, etc.

Availability is then estimated using a support vector regression algorithm
(based on the SVM). Their experiments highlight some correlations between
truth values of availability and availability computed by their approach. These
results suggest that audio and visual data provide some insight on the availability
of occupants in homes.

However, as discussed in Chapter 2, recording audio and visual data is gener-
ally unacceptable in smart homes. Issues of privacy and acceptability created by
these modalities of data collection mean that it is unlikely that a general public
smart home system will contain such sensors. As such, we should ideally strive
to not use these modalities for availability estimation.

5.2.3.2 Correlations between context dimensions and availability

Nagel et al. report in [108] a set of statistical studies on the link between avail-
ability for communication at home and other context dimensions. In particular,
they study the influence of identity, place, activity, and companionship (e.g. the
number of people with the target occupant) on availability for communication.
Experimental results show that some occupants are more often available than
others, that some places are highly correlated to availability while other places are
not, and that some activities are useful to infer availability. Nagel et al. assume that
the context dimension of time should be an important factor to infer availability,
but their study does not highlight this assumption.
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In a following paper by Nagel et al. [109], they introduce the notion that
availability should not be shared identically depending on the potential correspon-
dent. For example, an occupant might want to disclose their availability fully
to their close family, while not sharing any availability information to simple
acquaintances.

Through these 2 papers, Nagel et al. experimentally showed that context
information can be used to infer availability in homes.

5.2.4 Discussion

We have seen in this section that the problem of availability estimation can be
quite different depending on the application it is used in.

In professional environments, users respect a number of shared habits of
their workplace. In addition, explicit availability indicators such as professional
schedules are usually available. This makes it possible to infer availability using
rule-based systems.

Such approaches cannot be easily applied when estimating availability on
smart phones or in homes. Indeed, these two cases present much more variability
in terms of possible situations, and personalization to specific users appears to
become essential. Statistical methods that use training data thus may be better
adapted in this cases.

In particular, we saw that Nagel et al. suggest to infer availability in homes
from high level context dimensions such as place and activity. Takemae et al.
used low-level features exctracted from sensor data instead, which we believe will
be less useful for availability inference. Indeed, it is unclear that availability for
communication will significantly influence atomic actions of occupants, in the
same way that the activity they aimed to do will.

Many of the works we surveyed dealt with a single communication modality,
such as e-mails or phone calls. Fogarty et al. proposed instead a system that actu-
ally suggests preferable communication modalities depending on the availability
of occupants. Extending this idea, we believe that availability inference should
take into account the modality used to initiate the communication. For example,
an occupant will probably be more available to receive an e-mail than to receive a
phone call when they are sleeping at night.

Similarly, Nagel et al. suggested that occupants of homes might not want
to share their availability identically depending on the potential correspondent.
Extending this idea, we believe that availability inference should take into account
the correspondent that attempts to communication with the occupant. For
example, an occupant will probably be more available for their close family than
for a stranger.

Our contributions to the problem of availability estimation thus rely on
modelling availability as a function of other context dimensions. We will extend
the list of important context dimensions with correspondents and modalities,
which were not directly considered by other works. We will reuse our activity
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recognition and prediction contributions presented in Chapter 3 and Chapter 4
to obtain necessary information on availability.

5.3 Availability as a function of context

In this section, we present our contributions to the problem of availability
inference. We begin by introducing our general context-based availability in-
ference methodology in Section 5.3.1. Then, we discuss in more details about
the 3 secondary context dimensions required by an availability inference system:
correspondents (in Section 5.3.2), modalities of communication (in Section 5.3.3),
and availability (in Section 5.3.4). Finally, we present in Section 5.3.6 a number of
possible assumptions about our context-based availability inference approach. We
will experimentally check the validity of these assumptions in order to support
our availability inference general methodology.

5.3.1 Availability as a function of context

Primary context, as presented in Section 2.1.2.1, contains 4 context dimensions
that are often necessary to provide context-aware services. However, primary
context is not always sufficient. Other context dimensions are often required to
provide such services. In [46], Dey and Abowd claim that all context dimensions
that are not primary dimensions (which they call second level context) can
be indexed by primary context. For example, the ambient temperature for an
occupant can be found by querying the temperature sensor which is in the same
place as the occupant; ambient temperature is thus in this case indexed by place.

Although this claim is reasonable for many context dimensions, it is possible
to find examples of services which require non-primary context dimensions that
cannot be indexed on identity, time, place or activity. One example of such a
service is a communication assistant which manages incoming communications
from outside. This service would advise outside correspondents on appropriate
times at which to initiate communications, propose to use other communication
modalities that would be preferable for the receiving occupant, or even automati-
cally translate a communication from one modality to another (for example, turn
an incoming call into an SMS using speech-to-text algorithms).

To ensure such functions, this communication assistant requires information
about the primary context: the identity of the occupant that the outsider is trying
to communicate with is obviously required; the time at which this communication
is initiated may have an impact on the acceptability of that communication; the
current location of the occupant has an impact on the available communication
modalities; the activity of the occupant may impact the types of communication
modalities that can be used (e.g. an occupant taking a shower cannot answer
a phone call but can receive a mail). In addition to this primary context, the
communication assistant also requires information about the correspondent which
initiated the communication, about the communication modality initially used by
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that correspondent, and about the availability of the occupant being called. The
correspondent and the communication modality usually cannot be indexed on
primary context dimensions since the communication is initiated from outside
the home, and thus potentially independently of any event that is monitored by
the smart home. The claim of Dey and Abowd that all non-primary context
dimensions are indexable on primary context is thus not always true. In general,
the context dimensions needed to provide a particular smart home service will be
a superset of the primary context.

More formally, we thus define the availability of an occupant α ∈ AV to be
the image through a function Av

Av : I × T × P ×A× C ×M −→ AV, (5.1)

of the corresponding context tuple (identity, time, place, activity, correspondent,
modality) in I × T × P ×A× C ×M.

5.3.2 Correspondents

In theory, any person initiating a communication can be considered to be
part of the set of correspondent values. In practice however, the number of
possible correspondents would be very high in such a case. The occupant would
have to indicate their availability preferences for every person that has or may
communicate with them, which in most cases will be too inconvenient.

As such, we propose to use categories of correspondents, so that each corre-
spondent can be placed in one of these categories. The occupant will thus only
have to indicate their availability for each of the category, instead of every single
individual correspondent. We have identified the following categories of corre-
spondents for which an occupant might choose significantly different availability
preferences:

— Close relatives;

— Distant relatives;

— Professional colleagues;

— Professional supervisors;

— Friends;

— Acquaintances;

— Strangers.

These categories are fairly similar to those identified by Nagel et al. in [109].
In future smart home systems, allowing occupants to create their own cor-

respondent categories might allow more accurate availability estimation. For
example, an occupant might have very specific availability preferences for certain
individuals who would need to be in their own category (e.g. their spouse).
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5.3.3 Modalities of communication

Similarly to correspondents, listing each possible modality of communication
will often result in a list too large for convenient availability labelling. In much the
same way, we thus propose to use categories of modalities. In modalities, different
hierarchies can be identified: first, we can differentiate synchronous modalities
from asynchronous modalities; second, we can separate modalities in each of these
2 categories based on the physical medium used to communicate (voices, videos,
or text); last, we can further divide these subcategories based on the type of
devices used. Such subdivisions lead to the following hierarchical domain of
values of modality:

— Synchronous
— Voice

— Landline phone
— Mobile phone
— Computer

— Video
— Mobile phone
— Computer

— Text
— Mobile phone
— Computer

— Asynchronous
— Voice

— Landline phone
— Mobile phone

— Text
— Mobile phone
— Computer

In practice, categories of modality will change over time, as technology and
standard uses evolve. Nevertheless, we will use this hierarchy of categories in our
thesis as we expect it to cover most communication modalities currently used.

5.3.4 Values of availability

There does not seem to be a consensus on what values should be used to
represent the availability of a person. We find the following non-exhaustive list of
domains of values in various papers:

— 3-point scale (“Low”, “Medium”, “High”) [78];

— 4-point scale (“Highly unavailable”, “Unavailable”, “Available”, “Highly
unavailable”) [54];

— 5-point scale (from “Highly unavailable” to “Highly available”) [53, 41];

— 5-point relative scale (from “Least interruptible” to “Most interruptible”)
[143];

— 4 qualitative values (“For a quick question”, “For a discussion”, “Soon”,
“Not at all”) [105].
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As far as we have seen, these domains of values are chosen with no particular
justifications. We even find two different scales in [54] and [53], even though
both works share authors, with seemingly no justification for this change. In a
survey by Turner et al., the same observation is stated: there does not seem to be
any consensus on which domain of values to use for availability; both increasing
scales and qualitative sets are used, with no clear justifications [151].

Therefore, we decided to adopt the following scale of availability values:
−2: Definitely unavailable;
−1: Preferably unavailable;

0: No opinion, does no know;
1: Preferably available;
2: Definitely available.

This scale has intrinsic advantages both for occupants’ convenience as well as
algorithmic processing. Indeed, this scale contains both hard decisions (“Definitely
unavailable”, “Definitely available”) and soft decisions (“Preferably unavailable”,
“Preferably available”) on availability. This allows an occupant some flexibility
depending on how available they feel. Moreover, the occupant can choose to not
give an opinion on their availability. This is important from a user standpoint, as
one’s own availability is often difficult to evaluate. The symmetry of the scale
simplifies this evaluation of availability: the occupant can compare their current
situation to previous ones and assign opposite availability to opposite situations
and similar availability to similar situations. From a computing standpoint, this
scale is numeric and ordered. As such, regression and similar numerical techniques
can be applied on availability data in a meaningful way.

5.3.5 Inferring availability

It is not clear which function Av, as defined in Section 5.3.1, will best model
the relationships between primary (identity, time, place, activity, correspondent,
modality) and the availability of an occupant. In our thesis, we initially propose
the following simple inference approach, which we illustrate on Figure 5.1:

1. much like for activity recognition and prediction, we assume that there is
only one occupant in the home, or that we have an identification system at
hand;

2. we use our place-based activity recognition approach to obtain information
about place p and activity a for the current situation;

3. we select a correspondent-modality couple (c,m);
4. we retrieve the availability values in the training set for all situations

(p, a, c,m);
5. the inferred availability for the current situation is the average of all previ-

ously retrieved availabilities.
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Figure 5.1 – Availability inference workflow.

Experimentally evaluating the performances of this averaging approach will
allow use to get baseline results on availability inference and thus on the difficulty
of this problem. Context information about time is not directly used in this
inference function, although activities in particular can indirectly be related to
time. Nevertheless, future work (not addressed in this thesis) should focus on
introducing time information in the inference process, and on the design of a
more complex availability inference function in general.

5.3.6 Labelling complexity under various assumptions

In our thesis, we chose to model availability as a function of various context
dimensions. In particular, we conjectured that activities, correspondents, and
modalities will greatly influence the availability of an occupant. However, in-
troducing such dependencies between availability and these context dimensions
means that more labelled input data is required to infer availability accurately.
Moreover, it requires that an accurate activity recognition system is available
(which, as we have seen in Chapter 3, is not a given).

Therefore, in order to validate the importance of introducing such depen-
dence between availability and activities, correspondents, and modalities, we
propose 4 simplifying assumptions one can make about our model. We will then
experimentally study the performances of availability inference under each of
these 4 assumptions in Section 5.4.4, compared to our initial approach under no
assumption.

Let (I, T, P,A) ∈ I × T × P ×A be a set of given identity, time, place, and
activity of a situation. We can then construct the following 4 assumptions:

Assumption 5.1 (Modality independence). For a given correspondent C ∈ C, the
availability of an occupant is independent of the modality used, i.e. ∀(m1,m2) ∈
M2,Av(I, T, P,A,C,m1) = Av(I, T, P,A,C,m2).
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Assumption 5.2 (Correspondent independence). For a given modalityM ∈M,
the availability of an occupant is independent of the correspondent initiating the com-
munication, i.e. ∀(c1, c2) ∈ C2,Av(I, T, P,A, c1,M) = Av(I, T, P,A, c2,M).

Assumption 5.3 (Correspondent-and-Modality independence). The availabil-
ity of an occupant is independent of the correspondent initiating the communi-
cation and independent of the modality used, i.e. ∀(c1, c2) ∈ C2,∀(m1,m2) ∈
M2,Av(I, T, P,A, c1,m1) = Av(I, T, P,A, c2,m2).

Assumption 5.4 (Activity independence). For a given correspondent C ∈ C
and modality M ∈ M, the availability of an occupant is independent of the ac-
tivity that they are performing, i.e. ∀(a1, a2) ∈ A2,Av(I, T, P, a1, C,M) =
Av(I, T, P, a2, C,M).

Under each of these 4 assumptions, the initial averaging approach for avail-
ability inference changes slightly: the availability of an instance from activity
class a ∈ A, for a couple of correspondent and modality (c,m) ∈ C ×M, is the
average (rounded to the closest integer) of

Assumption 5.1: all availabilities with correspondent c of instances of a in
the training set;

Assumption 5.2: all availabilities with modality m of instances of a; in the
training set;

Assumption 5.3: all availabilities for all couples, regardless of their correspon-
dent and modality, of instances of a in the training set;

Assumption 5.4: all availabilities for the couple (c,m) of instances of activity
classes that can occur in the same place as a in the training set.

Under each of these 4 assumptions, the number of availability values required
by the system is different. For example, under the modality independence assump-
tion, it is sufficient to label availability once for all modalities, if the activity and
correspondent are fixed. In general, the number of availability values required is

No assumption: |A| × |C| × |M|;
Assumption 5.1: |A| × |C|;
Assumption 5.2: |A| × |M|;
Assumption 5.3: |A|;
Assumption 5.4: |P| × |C| × |M|.

As such, if any of these assumptions is valid (i.e. they don’t greatly decrease
availability inference performances), the number of labels required for availability
would highly decrease. This would greatly improve the acceptability of a commu-
nication assistance service based on availability inference, since labelling is one of
the main constraints imposed on occupants by such a system. In particular, given
the number of categories of correspondents (7) and modalities (11) we identified,
and given an average number of 20 activity classes, there would be 1540 different
combinations to label, which is too large.
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5.4 Experiments

In the following section, we experimentally study the performances of our
availability inference approach using the Orange4Home dataset. We present
the availability labelling process in Orange4Home in Section 5.4.1. In Section
5.4.2, we discuss which metrics to use to evaluate the performance of availability
inference. In Section 5.4.3, we analyse the performances of our availability
inference approach, following a place-based activity recognition approach. In
Section 5.4.4, we examine the validity of various independence assumptions we
established in Section 5.3.6. Finally, in Section 5.4.5, we study the impact of the
activity recognition step on the performances of the availability inference step.

For reference, some of the results reported in this section were previously
published in [37].

5.4.1 Availability for communication in Orange4Home

In order to evaluate the performances of our availability inference approach,
we need a labelled datasets of activities and availability for communication in the
home. As far as we know, no such dataset existed in the literature. Therefore,
we chose to label information about availability during the Orange4Home data
collection, in addition to the labelling of activities which we had presented in
2.3.2.

The categories of correspondents, modalities, and availability values used
in Orange4Home are those presented in Section 5.3. Since the number of
Correspondent-Modality couples is high (7 correspondent and 11 modalities
= 77 couples), it would be quite cumbersome to label each possible couple with
an availability value every time an activity instance is performed. Therefore,
the occupant initially selected their preferred availabilities for each activity class
before the data collection phase started. An example of such preset availabilities
for activity “Watching TV” in the Living room is presented in Table 5.1.

The Occupant thus only had to marginally change their availability as they
desired, before beginning an activity. Such predefined availabilities allowed the
occupant of the Orange4Home dataset to label in situ their availability at the same
time as activity, instead of labelling availability after the data collection phase.
As such, their recorded availability should better represent their actual desired
availability at the time they performed their activities. In addition, labelling
all Correspondent-Modality couples for each activity instance, while being only
cumbersome in a research project, is an unrealistic task to ask in a real general
public smart home system, given the number of possible couples.

5.4.2 Evaluation metrics

In activity recognition or prediction, evaluating the correctness of a decision
is usually straightforward: either the decision is correct (i.e. it corresponds to
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Synchronous Asynchronous

Voice Video Text Voice Text

Correspondent L M C M C M C L M M C

Close Relatives −1 1 −2 −2 −2 2 −2 0 0 2 2
Distant Relatives −1 1 −2 −2 −2 2 −2 0 0 1 2
Prof. colleagues −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 2
Prof. supervisors −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 2

Friends −1 1 −2 −2 −2 2 −2 0 0 1 2
Acquaintances −1 1 −2 −2 −2 1 −2 0 0 −1 2

Strangers −1 1 −2 −2 −2 1 −2 0 0 −1 2

Table 5.1 – Preset availabilities for activity “Watching TV” in the Living room in
the Orange4Home dataset.

reality), or it is not. For availability inference, we need to take into account a
number of subtleties.

The first of those subtleties lies in the gradation scale used to measure avail-
ability. In our thesis, we use an ordered scale of 5 grades, presented in Section
5.3.4, from “Definitely unavailable” (−2) to “Definitely available” (2). Inference
errors on such an ordered scale are thus quite different from errors on discrete sets
of classes, as in activity recognition and prediction where errors are all binary.

Indeed, in availability inference, some errors are worse than others. For
example, mistaking “Definitely available for “Definitely unavailable” can lead to
unacceptable situations where a communication assistant would interrupt the
occupant inappropriately based on that incorrect availability estimation. On the
other hand, mistaking “Definitely available” for “Preferably available” is a more
acceptable error, as in both cases the occupant is available. Formally, we thus
require that availability inference errors with large absolute values (e.g. 4 when
mistaking “Definitely available” for “Definitely unavailable”) should penalize
the inference method more than errors with small absolute values (e.g. 1 when
mistaking “Definitely available” for “Preferably available”).

The Root Mean Square Error (RMSE) is a measure commonly used to evaluate
regression models. RMSE attributes more weight to errors with large absolute
values, due to its quadratic terms. Let X be the set of activity instances evaluated.
We have

RMSE =

√
1

|X |
∑
i∈X

(xAvi −Avi)2. (5.2)

As such, RMSE seems to be a good choice to evaluate the performance of avail-
ability inference.

However, the second subtlety in measuring the performance of an availability
inference approach lies on the duration of activities. Indeed, inferring an incorrect
availability from an activity instance is much worse if that activity instance is
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particularly long. For example, if the system incorrectly deduces that the occupant
is “Definitely unavailable” during an activity that lasts 4 hours, when they in fact
are “Definitely available”, then a very long segment of time of availability is lost,
which can lead to unnecessary communication delays between the occupant and
their correspondents. If such a mistake occurs for a short activity, then it will
have less impact on the quality of the communication assistance service provided
to the occupant.

Such a relationship between errors and durations of activities is not captured
by the standard RMSE. Therefore, we propose to use a Duration-Weighted Root
Mean Square Error (DWRMSE):

DWRMSE =

√∑
i∈X

wi(xAvi −Avi)2, (5.3)

wi =
di∑

j∈X
dj
,

where di is the duration of activity instance i. Ifwi = 1
|X | for all i ∈ X , DWRMSE

is strictly equivalent to RMSE. DWRMSE penalize large absolute errors as well
as errors for long activity instances, which are both desirable for availability
inference.

In addition, we also report the error rate in experiments, that is the number
of inferred availabilities that are not equal to ground truth, divided by the total
number of inferred availabilities (i.e. 1− accuracy). The error will complement
the DWRMSE: the former will indicate the number of availability inference
errors, while the latter will indicate how bad these errors are.

5.4.3 Availability inference following activity recognition

We report in Table 5.2 the DWRMSE and error rates of our availability
inference approach averaged for each category of correspondents and modalities.
The necessary preliminary activity recognition step was fulfilled by an MLP
place-based approach, which was the most accurate single-classifier method on
Orange4Home with an F1 score 93.05% (full results in Table 3.4) as reported in
Section 3.4.1.2. The same training protocol is used: the first 2 weeks of data serve
as a training set, the third week as a validation set, and the last week as the test set.

We can first observe that the average error rate is quite small (0.015), despite
using a simple averaging Av function (as described in Section 5.3.5). This suggests
that, for the most part, the occupant did not change their availability preferences
a lot from one activity instance to the next on average.

However, we can see that not all categories of correspondents and modalities
are equally well inferred. For example, “Professional colleagues” and “Professional
supervisors” have significantly lower error rates (0.002 and 0.006 respectively)
than “Close relatives” or “Distant relatives” (0.019 for both). A possible expla-
nation is that availability for colleagues is almost always exclusively limited to
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DWRMSE Error rate

Correspondent Close relatives 0.126 0.019
Distant relatives 0.119 0.019
Prof. colleagues 0.222 0.002
Prof. supervisors 0.147 0.006
Friends 0.128 0.020
Acquaintances 0.489 0.023
Strangers 0.137 0.019

Modality Sync. Voice landline 0.067 0.007
Sync. voice mobile 0.133 0.007
Sync. voice computer 0 0
Sync. video mobile 0.220 0.003
Sync. video computer 0.220 0.003
Sync. text mobile 0 0
Sync. text computer 0 0
Async. voice landline 0.152 0.037
Async. voice mobile 0.180 0.048
Async. text mobile 0.521 0.044
Async. text computer 0.380 0.022

Average 0.232 0.015

Table 5.2 – DWRMSE and error rate of availability inference averaged by corre-
spondent, by modality, and on average, based on an MLP place-based activity
recognition step.

working hours and identical from one day to the next, which is not the case for
relatives. Despite lower error rates, the DWRMSE for “Professional colleagues”
and “Professional supervisors” is actually larger (0.222 and 0.147 respectively)
than for “Close relatives” and “Distant relatives” (0.126 and 0.119 respectively).
This indicates that, in the rare situations where availability for colleagues differs
from the typical preferences of the occupant, the change is quite important: no-
tably, we can conjecture that the occupant rarely becomes “Definitely available”
in a non-working situation where they typically are “Definitely unavailable”, and
vice-versa for working situations. Such changes cannot be well-captured by a naïve
averaging inference.

In general, we observe that “Close relatives”, “Distant relatives”, and “Friends”
have the lowest DWRMSE. These categories are emotionally closer to the oc-
cupant than the other 4 categories of correspondents. As such, the occupant
might not be as inclined to indicate that they are “Definitely unavailable” for such
people, which limits the possibility of large inference errors.

Similarly, we see that asynchronous modalities have much worse error rates
and DWRMSE compared to synchronous modalities on average. This can be
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explained by the fact that synchronous modalities require, as their name suggests,
direct and real-time interactions. This imposes restrictions on the availability
of the occupant, depending on the environment. For example, it is physically
impossible to answer a landline phone call, located in the living room on the
ground floor, while showering in the bathroom on the first floor. Therefore, many
availability values for such synchronous modalities are implicitly imposed by the
activity performed, which will reflect in the preferences set by the occupant.
For asynchronous modalities, no such real-time interaction constraint exists; the
occupant can therefore change their availability more freely.

Such observations should, in theory, be learned by the availability inference
system during the training phase. However, many such changes occur sporadically,
and might not have been captured in the training data. Moreover, our simple
averaging approach is probably too naïve to fully capture such subtle changes in
availability patterns.

5.4.4 Dependence of availability to other context dimensions

In this section, we experimentally study the behaviour of our availability infer-
ence approach under each of the 4 independence assumptions presented in Section
5.3.6: Modality independence (Assumption 5.1), Correspondent independence
(Assumption 5.2), Correspondent-and-Modality independence (Assumption 5.3),
and Activity independence (Assumption 5.4).

Under each of these 4 assumptions, the number of availability values the occu-
pant has to preset or choose from, in the Orange4Home dataset, is respectively

Assumption 5.1: 20 activities× 7 correspondents = 140;
Assumption 5.2: 20 activities× 11 modalities = 220;
Assumption 5.3: 20 activities = 20;
Assumption 5.4: 8 places× 7 correspondents× 11 modalities = 616.

These numbers are all orders of magnitude smaller than the initial 1540 possible
values to choose from if none of those assumptions are made. Lowering the
number of availability values to preset and choose from is important to improve
the acceptability and usability of services that rely on this information. The goal
of the following experiments is thus to see whether these assumptions can be
made without degrading availability inference too greatly.

We report in Table 5.3 the DWRMSE and error rates of availability inference
under each of these 4 assumptions, compared to ground truth given by the
occupant under no such independence assumptions. We see that error rates and
DWRMSE under each of these 4 assumptions are greatly degraded, compared
to our first results when no assumption was made (0.015 error rate and 0.232
DWRMSE, as reported in Table 5.2). We can note in particular that the error
rates under Assumption 5.2 (Correspondent independence) and Assumption 5.3
(Correspondent-and-Modality independence) are close to 50% (42.7% and 48.9%
respectively), which is obviously unacceptable if we were to use this inferred
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DWRMSE Error rate

Modality independence 1.226 0.268
Correspondent independence 1.002 0.427
Correspondent-and-modality independence 1.393 0.489
Activity independence 0.637 0.151

Table 5.3 – DWRMSE and error rate of availability inference under various
independence assumptions.

availability to provide services. Therefore, we can conclude that Assumption 5.2
and Assumption 5.3 are not valid on Orange4Home.

The error rate under Assumption 5.1 (Modality independence) is significantly
smaller (0.268) than the previous 2 assumptions. However, it remains more than
17 times greater than the initial error rate we obtained under no assumption 0.015.
Moreover, despite reaching a significantly lower error rate, availability inference
under the Modality independence assumption presents higher DWRMSE than
under the Correspondent assumption (1.226 compared to 1.226). This behaviour
can be explained by the fact that long activities often imply preferred modalities of
communication. For example, in Orange4Home, “Computing” in the Office and
“Napping” in the Bedroom are typically long activity classes. In both cases, these
activities specifically impact the choice of preferred modalities: when working
on their computer, the occupant prefers synchronous communications related
to their work; when napping, the occupant refuses any disruptive synchronous
communication modalities. Under the modality independence assumption, these
specificities cannot be captured and will thus degrade the quality of service for
the occupant. Therefore, we can conclude that Assumption 5.1 is not valid on
Orange4Home.

Finally, we observe that both the error rate and DWRMSE are the smallest
(0.151 and 0.637 respectively) under Assumption 5.4 (Activity independence),
among the 4 independence assumptions. This suggests that activity is less impor-
tant for availability inference than correspondents and modalities identification.
Nevertheless, the error rate observed is still 10 times greater than our initial results
0.015; making this assumption thus greatly degrades performance. Moreover,
we conjecture that information about place partially captures the relationship
between activity and availability. Indeed, the set of possible activities is limited
to the place in which the occupant is. As such, their availability can be in part
deduced from their location. For example, if the occupant is in the Bathroom,
their availability will be similar for most Correspondent-Modality couples regard-
less of the actual activity they are performing, due to physical constraints of the
room and behavioural similarities between activities that can occur in that place.
Therefore, we can conclude that Assumption 5.4, while possibly acceptable, lead
to high degradation in availability inference performance on Orange4Home.
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DWRMSE Error rate

Correspondent Close relatives 0.087 0.007
Distant relatives 0.081 0.007
Prof. colleagues 0.222 0.003
Prof. supervisors 0.147 0.007
Friends 0.091 0.008
Acquaintances 0.483 0.011
Strangers 0.119 0.008

Modality Sync. Voice landline 0.067 0.007
Sync. voice mobile 0.133 0.007
Sync. voice computer 0 0
Sync. video mobile 0.220 0.003
Sync. video computer 0.220 0.003
Sync. text mobile 0 0
Sync. text computer 0 0
Async. voice landline 0.119 0.019
Async. voice mobile 0.131 0.019
Async. text mobile 0.497 0.013
Async. text computer 0.372 0.009

Average total 0.220 0.007

Table 5.4 – DWRMSE and error rate of availability inference using true labels of
activity averaged by correspondent, by modality, and on average.

5.4.5 Impact of activity recognition on availability estimation

We report in Table 5.4 the DWRMSE and error rates of our availability
inference approach, when true activity labels are used instead of an imperfect
activity recognition step. We can see that the error rate (0.007) is approximately
two times smaller than in our previous experiments with an activity recognition
step (0.015 as reported in Table 5.2). On the other hand, the DWRMSE are quite
close in both cases (0.220 compared to 0.232).

This observation suggests that the majority of availability inference errors
caused by incorrect activity recognition occur for short activities, which will not
penalize the DWRMSE much. Indeed, the 8 errors made by the MLP place-based
classifier occurred on short activity classes: “Cleaning” in the Bathroom, “Using
the sink” in the Bathroom (twice), “Leaving” in the Entrance (thrice), “Preparing”
in the Kitchen, and “Cleaning” in the Living room. Each of these activity classes
have short durations on the order of a few minutes. These misclassifications
are thus visible on the error rate for availability inference, but don’t have much
impact on the DWRMSE.

We observe the same relative disparities in error rates and DWRMSE between
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different categories of correspondents and modalities that we had already noted
in Section 5.4.3. These differences are thus mostly due to the occupant’s will to
change their preferences, rather than side-effects of incorrect activity recognition.
Therefore, a more elaborate availability inference algorithm should try to take into
account that certain categories of correspondents and modalities are intrinsically
more difficult to infer availability from. This is not currently captured by our
averaging algorithm.

5.5 Conclusions

In this chapter, we presented our contributions on the problem of availability
inference from context data, which is necessary in order to provide a context-aware
communication assistance service in the home. We discussed how such specific
services may require more than just primary context data (in this case, availability,
correspondents, and modality), and how we can use activity recognition and
prediction, which were the subject of Chapter 3 and Chapter 4, to help infer
availability.

Based on our experiments we conclude that availability is indeed depen-
dent not only on primary context dimensions of place and activity, but also
on secondary context dimensions of correspondent and modality. Assuming
independence from any of these 4 context dimensions leads to drastic degrada-
tions in availability inference performance. We have seen that a simple averaging
approach is sufficient to infer availability with very little error rates. However,
this approach does not seem to be able to capture subtle changes in availability
preferences of the occupant from available context data. As such, further work is
required to design more elaborate inference techniques, or to introduce new data
sources to improve inference.

In this chapter, we decided to include 7 categories of correspondents and 11

categories of modalities. Taking into account the varying number of activity
classes and places in a home, this leads to a large number of possible availability
preferences depending on the value of each context dimension. This number
of possibilities that need availability labelling is prohibitively large for a general
public smart home system. Further work is thus required to either reduce the
number of categories of correspondents and modalities (e.g. by combining some
together), or to improve the ease of interaction for labelling availability in a
general public smart home system (e.g. by analysing the actions of occupants in
real communication situations).

As discussed in Section 5.4.4, while activity is an important factor for correctly
inferring availability, place is already a key element of information for availability
inference. Activities that occur in the same place tend to have similar availability
preferences. Therefore, we recommend that the activity recognition approach
used for availability inference is biased such that when it misclassifies an activity
instance, it tends to decide in favour of another activity class of the same place.
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As we have seen in Section 3.4.1.2, our place-based activity recognition approach
does have this bias.

We have seen in Section 5.4.5 that our place-based approach tends to mostly
misclassify short activity instances. Such misclassifications have little impact on
DWRMSE, which we argue is a good indicator of performance for availability
inference. Indeed, if availability for long-duration activities were incorrectly
inferred, a communication assistant would not provide the appropriate service
for long monolithic segments of time, which is less acceptable than for short-lived
activities. Therefore, we recommend to concentrate effort on improving activity
recognition for activities with long durations, rather than activities with short
durations. Further work is required to see if our place-based activity recognition
approach possess such bias, or if long activities in the Orange4Home dataset were
simpler to recognize for reasons other than the approach’s intrinsic behaviour.

Observing the reactions of occupants to incoming communications in the
home could constitute a basis for future availability inference systems and dataset
collection campaigns. Indeed, a predictive model of availability could benefit
from feedback generated based on whether the occupant actually answered the
commmunication (and thus was really available) or not. Similar ideas have been
proposed for example by Smith et al. in [140].

Further work is required to evaluate the performance of availability inference
following an activity prediction step. In this chapter, we only experimentally
studied the behaviour of availability inference on current activity recognition.
Accurate availability prediction is indeed necessary to implement a communi-
cation assistant with anticipatory capabilities. In addition, the PSINES activity
prediction model we proposed in Chapter 4 could be enhanced to include variable
nodes modelling availability. We would thus obtain a more direct availability
prediction model which might prove to be more accurate.

In this thesis, we assumed that the home only contained one occupant at a
time. As such, we ignored the problem of estimating availability of an occupant
when they are already interacting with another occupant of the home. Such direct
interactions surely have a major impact on availability for communication.
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CHAPTER 6

Conclusions and perspectives

T
his chapter concludes the thesis with a summary of our contributions
and their impact on the research domains of activity recognition, activ-
ity prediction, availability estimation, and smart homes in general. We

finally discuss the limitations of our work and suggest new perspectives to address
these problems.

6.1 Contributions and impact

The overarching idea of this thesis, upon which each of our contributions lies,
is that context dimensions in the home are all interrelated. As such, we can use
some of the knowledge we have on certain context dimensions to facilitate the
discovery of other context dimensions. We illustrate this idea through our first
contribution: the place-based activity recognition approach, which we discuss in
more details in Section 6.1.1. Our contribution to activity prediction, through the
PSINES DBN which we discuss in Section 6.1.2, also relies on this idea. Finally,
we show how additional context dimensions, not part of primary context, can
also be inferred from other context dimensions as well, through our contribution
on availability inference, discussed in Section 6.1.3.

6.1.1 Place-based activity recognition

We proposed the place-based structure for activity recognition, where a priori
context information on the location of sensors and activities are used to help
in the recognition of activities and location of occupants. We argued that the
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modular structure of the place-based approach allows for more accurate activity
recognition, since classifiers can learn simpler place-based models and can be
chosen among a variety of state-of-the-art classifiers, depending on the home. We
experimentally showed that the place-based approach is indeed more accurate
on 2 different datasets. We also showed that the place-based approach requires
significantly shorter computing times, especially in the supervised training phase.

Improving activity recognition accuracy is an essential step in the development
and acceptance of general public context-aware smart home systems. Activity is
indeed an essential part of primary context, on which many potential services
could rely. Incorrect activity recognition can imply inadequate services and thus
low user satisfaction.

The modularity of the place-based approach and its training speed allows more
flexibility in the supervised training phase of models. Using smaller place-based
models, we can retrain only parts of the recognition system at a time, much faster,
thus reducing downtimes and avoiding periods where the system does not provide
any service (compared to a situation where a global model has to be trained all
at once). This is especially useful in smart home environments where users may
change their routines over time, or may change their sensor installation, which
require retraining the recognition model.

6.1.2 Predicting activities using PSINES

We proposed to extend the CRAFFT DBN of Nazerfard and Cook [111] for
activity prediction through 3 subcontributions, resulting in the PSINES DBN.
We argued that the introduction of aggregated sensor data in PSINES will improve
its prediction performance. We proposed that introducing non-Markovianness
in the relationships between past and future activity instances will also improve
prediction performance. Finally, we introduced a node modelling the cognitive
state of the occupant in PSINES, to model the relationship between the will of the
occupant and the activity they perform. We experimentally showed, on 6 different
datasets, that each of these 3 subcontributions do improve activity prediction
compared to CRAFFT, and that PSINES which uses all 3 improvements reaches
on average the best prediction performances.

These results first show that activity prediction approaches in smart homes
should not discard sensor data, which can contain valuable information that con-
text dimensions do not capture. These results also show that non-Markovianness
is essential to properly model the routines in most homes, which will not be
properly captured by state-of-the-art first-order Markovian approaches. Modelling
the cognitive state of occupants seems theoretically important, but marginally
improves prediction performances. This may be explained by the fact that such
cognitive states cannot be measured by sensors currently, so that we used latent
nodes in our model, which necessarily bring less information than observed data.
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6.1.3 Availability as a function of context

In accordance with our basic principle of interdependence between context
dimensions in the home, we proposed to model the availability of occupants in
homes as a function of other context dimensions. In particular, we showed that
place, activity, correspondents, and modalities greatly impact the availability of
an occupant. We experimentally showed that availability inference can be quite
accurate with simple averaging strategies, assuming activity and place recognition
are accurate.

We demonstrated through this contribution that secondary context dimen-
sions can be inferred from primary context dimensions and other secondary
context dimensions. Therefore, we reinforce through this study the idea that
accurate primary context recognition and prediction are essential to provide
context-aware smart home services, which will almost always rely on these con-
text dimensions. In particular, we thus justify the need for further efforts on
improving activity recognition and prediction approaches.

6.1.4 Orange4Home: a dataset of activities and availabilities

in the home

We constructed a new dataset of activities and availabilities for communication
in the home, called Orange4Home. Our data collection protocol allowed for
the recording of realistic and varied routines through a large number of diverse
ambient smart home sensors. We aimed at creating a new dataset with rich sensor
and context data, that is representative of potential smart home environments that
may exist in the future. We freely share this dataset with the scientific community
[5].

As far as we know, Orange4Home is the only dataset containing labelled
availability for communication in an instrumented home. By sharing this dataset,
we thus hope to spark more interest on the problem of availability estimation in
smart homes.

6.2 Limitations and perspectives

Each of our contributions presents limitations, either in terms of assumptions
made, or in terms of results obtained. We discuss these limitations in the following
subsections and present related perspectives to address these issues in future works.

6.2.1 A priori knowledge on context dimensions

In our place-based activity recognition approach, we assume that the location
of sensors and activity classes is known in advance, in order to allocate each
of them to the different place models. In current smart home systems, these
information must be given by its users (i.e. the occupants of the home), which is
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problematic: it requires effort from the occupants, and these information might
become outdated as time goes by, requiring updating efforts. As such, it would be
desirable that these information were discovered automatically.

Promising strategies for the discovering the location of sensors and activity
classes include unsupervised machine learning approaches. In particular, we
believe that clustering methods may allow to find groups of sensors and classes
that are meaningful (in the home topology sense). Indeed, we can hypothesize
that sensors located in the same place will often activate in a correlated fashion,
whereas sensors in different places will not. Similar correlations may appear for
activity classes. A major research problem introduced by this approach is in
the choice of the best similarity metric for clustering to find such place-based
correlations.

6.2.2 Accuracy of prediction models

Prediction accuracies we obtained in our experiments on the CASAS datasets
using PSINES, while significantly higher than CRAFFT, remain much too low to
be used in reliable smart home systems. Moreover, we hypothesize that predicting
multiple future steps of activities in a row will lead to even lower accuracies.
Results can be acceptable on datasets with high regularities in the routines of
occupants (such as Orange4Home).

While our contributions show that sensors, non-Markovianness, and cognitive
states are helpful to predict future activities, significant leaps are still required to
reach high prediction accuracies. Designing predictive models capable of taking
these leaps remains an open problem currently.

Further work is also required to predict durations and start times of activities
in addition to the future activity class. Investigating the problem of occurrence
prediction (from which we can solve sequence prediction) is thus a desirable
perspective.

6.2.3 Availability prediction

In this thesis, we did not study availability prediction. A simple first set
of experiments can consist in predicting activities using PSINES, on which we
then infer availability for communication. Similarly to activity recognition,
performances of the prediction algorithm will probably greatly impact availability
inference.

Future work could include the extension of PSINES to directly include avail-
ability, through the inclusion of new nodes modelling availability, correspondents,
and modalities. A comparative study of this new approach compared to the one
presented in the previous paragraph could shed some light on whether availability
can be inferred from predicted situations, or if availability should be directly
predicted.
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6.2.4 Labelling issues in supervised techniques

Each of our contributions to activity recognition, activity prediction, and
availability inference requires a substantial labelled dataset of activities (and
availabilities in the last case). Collecting labelled data is a perpetual problem
of supervised machine learning approaches. In some research domains, large
quantities of examples already exist (e.g. computer vision), and in others, labelled
datasets can be provided by experts (e.g. medical assistance). In smart home
research, few representative datasets exist (due to the lack of instrumented homes),
and labelled datasets are generally not collected over very long periods of time
(due to the constraints of living in an experimental setting, and the cost of labelling
data).

Further work is thus required to simplify the collection of representative,
labelled, long-spanned datasets of activities in the home. Potential improvements
include the use of more suitable modalities for in situ labelling, such as vocal assis-
tants (which have become more popular recently). Labelling could be provided
occasionally through vocal exchanges with the assistant, thus reducing annoyance
for occupants. Interaction loops where occupants would validate the behaviour
of the system, explicitly or implicitly (through their actions), could also be used
to continuously improve the training dataset.

Another area of improvements related to labelled datasets, which we explored
in the place-based recognition approach, consists in designing algorithms that re-
quire less labelled data. In particular, unsupervised or semi-supervised techniques
may be prove to be valuable in smart home systems.

6.2.5 Multi-occupant scenarios

In this thesis, we always assumed that only one occupant was present in the
home at once, and their identity was not taken into account for activity recog-
nition, activity prediction, or availability inference. Obviously, this assumption
does not hold in general households, which very often contain multiple occu-
pants. Moreover, occupants are regularly in the same place of the home, and will
interact with each other frequently (which will have an impact on their activity
and availability).

While the place-based activity recognition approach can be adapted (by modi-
fying the decision fusion step) to multi-occupant scenarios when occupants are
in different places, it cannot process more general situations such as the ones
described in the previous paragraph. The same can be said for our contributions
on activity prediction and availability inference. New models are thus required to
alleviate the need for this assumption.

We express our concerns on the possibility of addressing such multi-occupant
scenarios using only ambient smart home sensors. It is indeed doubtful that such
low-level measures can capture the complexity of interactions between occupants.
Wearable sensors and audio-visual sensors might provide more information in
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such cases, but have their own share of problems (as discussed in Chapter 2).

6.2.6 Concept drift in smart homes

In our thesis, we used supervised machine learning techniques to build recog-
nition or prediction models from a training dataset. However, we did not consider
the problem of concept drift [148], that is, the change in statistical behaviour
of variables over time, which causes models to become less and less accurate.
In smart homes, concept drift can be mainly caused by changes in routines of
occupants (e.g. new hobbies), or by changes in the environment (e.g. a new
sensor is installed in the home).

Concept drift in the home can occur both progressively or abruptly: for
example, a sensor can be removed from the home occasionally, or the occupant
can move into a completely different home; similarly, an occupant can find new
hobbies during the year that don’t impact their routines much, or they can
invite their partner to live permanently in their home which has a great and
unpredictable impact on the initial model.

Further work is thus required to address the problem of concept drift, taking
into account the specificities of smart homes mentioned above. We suggest in
particular that solutions which can address cyclic concept drift should be valuable
in smart homes. Indeed, in addition to the previous problems, we hypothesize
that occupants will have cyclic changes in routines during the year, caused for
example by changes in seasons, periods of vacations, weekends, etc.

6.2.7 Acceptability of context-aware smart homes

Assuming that a smart home system always provides useful services at ap-
propriate times, there would still be acceptability issues for such technologies
currently. Indeed, occupants might no be comfortable with the idea that their
home is able to infer private and potentially sensitive information about their
context (identifying who is in the home, recognizing their activities, etc.). We
also discussed in previous chapters that some data sources (such as cameras and
microphones) are generally badly perceived by occupants. Remote processing
of personal data in the cloud and security of information in general are also
sensitive topics. We proposed approaches that limited these concerns by excluding
intrusive sensor categories and by using personalized models that do not require
high computing power (thus alleviating the need for remote processing), but all
acceptability issues are not yet addressed.

Furthermore, legal issues can arise in such systems. In particular, new regula-
tions on personal user data can impose constraints on accessible data or storage
durations, and thus on context-aware services.
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